Research and Innovation Needs for the Waste-To-Energy Sector towards a Net-Zero Circular Economy
Abstract
:1. Introduction
2. Near Zero Pollution
2.1. Applied Research Challenges
Enhanced Modelling of Flue Gas Treatment Processes
2.2. Process Innovation Challenges
2.2.1. Process Design, Optimization, and Intensification
2.2.2. Data Analytics and Model-Based Process Control
3. Waste-to-Energy-and-Materials
3.1. Applied Research Challenges
3.1.1. Enhanced Modelling of Combustion with Focus on Inorganic Chemistry
3.1.2. Boiler Fouling and Corrosion Modelling
3.2. Process Innovation Challenges
3.2.1. Chemical Analysis and In-Line Monitoring of Complex and Extreme Process Environments
3.2.2. Valorization of Bottom and Fly Ash from Conventional WtE Operation
3.2.3. Mono-Incineration of Selected Waste Fractions for Enhanced Element Recovery
4. Carbon Neutrality and Beyond
- The resulting carbon dioxide emissions from the combustion of fossil carbon in waste must be reduced, in effect, to zero, eliminating sources of carbon dioxide emissions in the WtE sector,
- Biogenic carbon dioxide emissions should be reduced to zero, so that the WtE sector maximizes its role as a sink of greenhouse gases.
4.1. Applied Research Challenges
4.1.1. Zero Residual Emissions from CO2 Capture
4.1.2. Understanding the Role of Flue Gas Impurities in CO2 Capture
4.2. Process Innovation Challenges
4.2.1. Optimization of CCS Approaches for WtE Application
4.2.2. Characterization and Control of the Emission of Non-CO2 GHGs in WtE Operation
5. Non-Engineering Cross-Cutting Developments
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
BA | Bottom ash |
BAT | Best available technique |
BECCS | Biomass-enhanced carbon capture and storage |
CCS | Carbon capture and storage |
ELV | Emission limit value |
FA | Fly ash |
FGT | Flue gas treatment |
GHG | Greenhouse gases |
PID | Proportional–integral–derivative (control) |
SCR | Selective catalytic reduction |
SNCR | Selective non-catayltic reduction |
WtE | Waste-to-Energy |
References
- Cucchiella, F.; D’Adamo, I.; Gastaldi, M. Sustainable waste management: Waste to energy plant as an alternative to landfill. Energy Convers. Manag. 2017, 131, 18–31. [Google Scholar] [CrossRef]
- Van Caneghem, J.; Van Acker, K.; De Greef, J.; Wauters, G.; Vandecasteele, C. Waste-to-energy is compatible and complementary with recycling in the circular economy. Clean Technol. Environ. Policy 2019, 21, 925–939. [Google Scholar] [CrossRef]
- Vehlow, J. Air pollution control systems in WtE units: An overview. Waste Manag. 2015, 37, 58–74. [Google Scholar] [CrossRef]
- Leckner, B.; Lind, F. Combustion of municipal solid waste in fluidized bed or on grate—A comparison. Waste Manag. 2020, 109, 94–108. [Google Scholar] [CrossRef]
- Syc, M.; Simon, F.G.; Hyks, J.; Braga, R.; Biganzoli, L.; Costa, G.; Funari, V.; Grosso, M. Metal recovery from incineration bottom ash: State-of-the-art and recent developments. J. Hazard. Mater. 2020, 393, 122433. [Google Scholar] [CrossRef]
- Wienchol, P.; Szlęk, A.; Ditaranto, M. Waste-to-energy technology integrated with carbon capture—Challenges and opportunities. Energy 2020, 198, 117–352. [Google Scholar] [CrossRef]
- European Commission; Joint Research Centre; Cusano, G.; Roudier, S.; Neuwahl, F.; Simon, H.; Jorge, G.B. Best Available Techniques (BAT) Reference Document for Waste Incineration: Industrial Emissions Directive 2010/75/EU (Integrated Pollution Prevention and Control), Publications Office. 2020. Available online: https://data.europa.eu/doi/10.2760/761437 (accessed on 20 December 2022).
- De Greef, J.; Verbinnen, B.; Van Caneghem, J. Chemical engineering analysis of SOx and HCl from municipal solid waste in grate-fired waste-to-energy (WtE) combustors. In Proceedings of the 6th International Symposium on Energy from Biomass and Waste, Venice, Italy, 14–17 November 2016. [Google Scholar]
- Dal Pozzo, A.; Guglielmi, D.; Antonioni, G.; Tugnoli, A. Sustainability analysis of dry treatment technologies for acid gas removal in waste-to-energy plants. J. Clean. Prod. 2017, 162, 1061–1074. [Google Scholar] [CrossRef]
- Dong, J.; Jeswani, H.K.; Nzihou, A.; Azapagic, A. The environmental cost of recovering energy from municipal solid waste. Appl. Energy 2020, 267, 114792. [Google Scholar] [CrossRef]
- Chin, T.; Yan, R.; Liang, D.T.; Tay, J.H. Hydrated Lime Reaction with HCl under Simulated Flue Gas Conditions. Ind. Eng. Chem. Res. 2005, 44, 3742–3748. [Google Scholar] [CrossRef]
- Antonioni, G.; Dal Pozzo, A.; Guglielmi, D.; Tugnoli, A.; Cozzani, V. Enhanced modelling of heterogeneous gas–solid reactions in acid gas removal dry processes. Chem. Eng. Sci. 2016, 148, 140–154. [Google Scholar] [CrossRef]
- Marocco, L.; Mora, A. CFD modeling of the Dry-Sorbent-Injection process for flue gas desulfurization using hydrated lime. Sep. Purif. Technol. 2013, 108, 205–214. [Google Scholar] [CrossRef]
- Dal Pozzo, A.; Lazazzara, L.; Antonioni, G.; Cozzani, V. Techno-economic performance of HCl and SO2 removal in waste-to-energy plants by furnace direct sorbent injection. J. Hazard. Mater. 2020, 394, 122518. [Google Scholar] [CrossRef]
- De Greef, J.; Villani, K.; Goethals, J.; Van Belle, H.; Van Caneghem, J.; Vandecasteele, C. Optimising energy recovery and use of chemicals, resources and materials in modern waste-to-energy plants. Waste Manag. 2013, 33, 2416–2424. [Google Scholar] [CrossRef]
- Stehlik, P. Up-to-Date Waste-to-Energy Approach—From Idea to Industrial Application; Springer Briefs in Applied Sciences and Technology; Springer: New York, NY, USA, 2016; ISBN 978-3-319-15466-4. [Google Scholar]
- Jedrusik, M.; Luszkiewicz, D.; Swierczok, A.; Gostomczyk, M.A.; Kobylanska-Pawlisz, M. Simultaneous removal of NOx, SO2, and Hg from flue gas in FGD absorber with oxidant injection (NaClO2)–full-scale investigation. J. Air Waste Manag. Assoc. 2020, 70, 629–640. [Google Scholar] [CrossRef]
- Bacci di Capaci, R.; Pannocchia, G.; Dal Pozzo, A.; Antonioni, G.; Cozzani, V. Data-driven Models for Advanced Control of Acid Gas Treatment in Waste-to-energy Plants. IFAC-PapersOnLine 2022, 55, 869–874. [Google Scholar] [CrossRef]
- Dal Pozzo, A.; Muratori, G.; Antonioni, A.; Cozzani, V. Economic and environmental benefits by improved process control strategies in HCl removal from waste-to-energy flue gas. Waste Manag. 2021, 125, 303–315. [Google Scholar] [CrossRef]
- Reis, M.F. Solid Waste Incinerators: Health Impacts. In Encyclopedia of Environmental Health; Nriagu, J.O., Ed.; Elsevier Science: Amsterdam, The Netherlands, 2011; ISBN 978-0-444-52272-6. [Google Scholar]
- Faaij, A.P.C. Biomass Combustion. In Encyclopedia of Energy; Cleveland, C.J., Ed.; Elsevier Science: Amsterdam, The Netherlands, 2004; ISBN 978-0-12-176480-7. [Google Scholar]
- De Greef, J.; Verbinnen, B.; Van Caneghem, J. Waste-to-energy: Coupling Waste Treatment to Highly Efficient CHP. Int. J. Chem. React. Eng. 2018, 16, 20170248. [Google Scholar] [CrossRef]
- Herraiz, L.; Su, D.; Muslemani, H.; Struthers, I.; Thomson, C.; Chalmers, H.; Lucquiaud, M. A preliminary assessment of negative CO2 emissions in the European waste sector. In Proceedings of the 2nd International Conference on Negative CO2 Emissions, Goteborg, Sweden, 14–17 June 2022. [Google Scholar]
- Boakes, E.; De Voogd, J.-K.; Wauters, G.; Van Caneghem, J. The influence of energy output and substitution on the environmental impact of waste-to-energy operation: Quantification by means of a case study. Clean Technol. Environ. Policy, 2022; in press. [Google Scholar] [CrossRef]
- Hoang, N.Q.; Vanierschot, M.; Blondeau, J.; Croymans, T.; Pittoors, R.; Van Caneghem, J. Review of numerical studies on thermal treatment of municipal solid waste in packed bed combustion. Fuel Commun. 2021, 7, 100013. [Google Scholar] [CrossRef]
- Birgen, C.; Magnanelli, E.; Carlsson, P.; Becidan, M. Operational guidelines for emissions control using cross-correlation analysis of waste-to-energy process data. Energy 2021, 220, 119733. [Google Scholar] [CrossRef]
- Verbinnen, B.; De Greef, J.; Van Caneghem, J. Theory and practice of corrosion related to ashes and deposits in a WtE boiler. Waste Manag. 2018, 73, 307–312. [Google Scholar] [CrossRef]
- Ma, W.; Wenga, T.; Frandsen, F.J.; Yan, B.; Chen, G. The fate of chlorine during MSW incineration: Vaporization, transformation, deposition, corrosion and remedies. Prog. Energy Comb. Sci. 2020, 76, 100789. [Google Scholar] [CrossRef]
- Biganzoli, L.; Racanella, G.; Rigamonti, L.; Marras, R.; Grosso, M. High temperature abatement of acid gases from waste incineration. Part I: Experimental tests in full scale plants. Waste Manag. 2015, 36, 98–105. [Google Scholar] [CrossRef]
- Cossu, R.; Garbo, F.; Girotto, F.; Simion, F.; Pivato, A. PLASMIX management: LCA of six possible scenarios. Waste Manag. 2017, 69, 567–576. [Google Scholar] [CrossRef]
- Zhou, S.; Liu, C.; Zhang, L. Critical Review on the Chemical Reaction Pathways Underpinning the Primary Decomposition Behavior of Chlorine-Bearing Compounds under Simulated Municipal Solid Waste Incineration Conditions. Energy Fuels 2020, 34, 1–15. [Google Scholar] [CrossRef]
- Strobel, R.; Waldner, M.H.; Gablinger, H. Highly efficient combustion with low excess air in a modern energy-from-waste (EfW) plant. Waste Manag. 2018, 73, 301–306. [Google Scholar] [CrossRef]
- Raja, V.S. Grand Challenges in Metal Corrosion and Protection Research. Front. Met. Alloy. 2022, 1, 894181. [Google Scholar] [CrossRef]
- Lee, S.-H.; Themelis, N.J.; Castaldi, M.J. High-Temperature Corrosion in Waste-to-Energy Boilers. J. Therm. Spray Technol. 2007, 16, 104–110. [Google Scholar] [CrossRef] [Green Version]
- Hu, S.; Finklea, H.; Liu, X. A review on molten sulfate salts induced hot corrosion. J. Mater. Sci. Technol. 2021, 90, 243–254. [Google Scholar] [CrossRef]
- Andersson, S.; Blomqvist, E.W.; Bafver, L.; Jones, F.; Davidsson, K.; Froitzheim, J.; Karlsson, M.; Larsson, E.; Liske, J. Sulfur recirculation for increased electricity production in Waste-to-Energy plants. Waste Manag. 2014, 34, 67–78. [Google Scholar] [CrossRef]
- Bellani, G.; Lazzarini, L.; Dal Pozzo, A.; Moretti, S.; Zattini, M.; Cozzani, V.; Talamelli, A. Experimental assessment of an indirect method to measure the post-combustion flue gas flow rate in waste-to-energy plant based on multi-point measurements. Waste Manag. 2023, 157, 91–99. [Google Scholar] [CrossRef]
- Weng, W.; Larsson, J.; Bood, J.; Alden, M.; Li, Z. Quantitative Hydrogen Chloride Detection in Combustion Environments Using Tunable Diode Laser Absorption Spectroscopy with Comprehensive Investigation of Hot Water Interference. Appl. Spectrosc. 2022, 76, 207–215. [Google Scholar] [CrossRef]
- Qu, Z.; Nwaboh, J.; Werhahn, O.; Ebert, V. Towards a dTDLAS-Based Spectrometer for Absolute HCl Measurements in Combustion Flue Gases and a Better Evaluation of Thermal Boundary Layer Effects. Flow Turbul. Combust. 2021, 106, 533–546. [Google Scholar] [CrossRef]
- He, J.; Li, J.; Huang, Q.; Yan, J. Release characteristics of potassium and sodium during pellet combustion of typical MSW fractions using the FES method. Combust. Flame 2022, 244, 112233. [Google Scholar] [CrossRef]
- He, X.; Lou, C.; Qiao, Y.; Lim, M. In-situ measurement of temperature and alkali metal concentration in municipal solid waste incinerators using flame emission spectroscopy. Waste Manag. 2019, 102, 486–491. [Google Scholar] [CrossRef]
- Yang, W.; Pudasainee, D.; Gupta, R.; Li, W.; Wang, B.; Sun, L. An overview of inorganic particulate matter emission from coal/biomass/MSW combustion: Sampling and measurement, formation, distribution, inorganic composition and influencing factors. Fuel Process. Technol. 2021, 213, 106657. [Google Scholar] [CrossRef]
- Schumacher, S.; Lindermann, J.; Stahlmecke, B.; Khot, A.; Zeiner, T.; van der Zwaag, T.; Nordsieck, H.; Warnecke, R.; Asbach, C. Particle sampling in boilers of waste incineration plants for characterizing corrosion relevant species. Corros. Sci. 2016, 110, 82–90. [Google Scholar] [CrossRef]
- Cox, W.M. A Strategic Approach to Corrosion Monitoring and Corrosion Management. Procedia Eng. 2014, 86, 567–575. [Google Scholar] [CrossRef] [Green Version]
- Waldmann, B.; Haider, F.; Horn, S.; Warnecke, R. Corrosion monitoring in waste-to-energy plants. In Proceedings of the Eurocorr—The European Corrosion Congress, Edinburgh, UK, 7–11 September 2008. [Google Scholar]
- Muri, H.I.D.I.; Hjelme, D.R. Sensor Technology Options for Municipal Solid Waste Characterization for Optimal Operation of Waste-to-Energy Plants. Energies 2022, 15, 1105. [Google Scholar] [CrossRef]
- Feil, A.; Pretz, T.; Julius, J.; Go, N.; Bosling, M.; Johnen, K. Metal Waste. In Waste—A Handbook for Management; Letcher, T.M., Vallero, D.A., Eds.; Academic Press: New York, NY, USA, 2019; ISBN 978-0-12-815060-3. [Google Scholar]
- Verbinnen, B.; Billen, P.; Van Caneghem, J.; Vandecasteele, C. Recycling of MSWI Bottom Ash: A Review of Chemical Barriers, Engineering Applications and Treatment Technologies. Waste Biomass Valorization 2017, 8, 1453–1466. [Google Scholar] [CrossRef]
- Dal Pozzo, A.; Armutlulu, A.; Rekhtina, M.; Müller, C.R.; Cozzani, V. CO2 Uptake Potential of Ca-Based Air Pollution Control Residues over Repeated Carbonation–Calcination Cycles. Energy Fuels 2018, 32, 5386–5395. [Google Scholar] [CrossRef]
- Haberl, J.; Koralewska, R.; Schlumberger, S.; Schuster, M. Quantification of main and trace metal components in the fly ash of waste-to-energy plants located in Germany and Switzerland: An overview and comparison of concentration fluctuations within and between several plants with particular focus on valuable metals. Waste Manag. 2018, 75, 361–371. [Google Scholar] [PubMed]
- Wang, H.; Zhu, F.; Liu, X.; Han, M.; Zhang, R. A mini-review of heavy metal recycling technologies for municipal solid waste incineration fly ash. Waste Manag. Res. 2021, 39, 1135–1148. [Google Scholar] [CrossRef] [PubMed]
- Karlfeldt Fedje, K.; Andersson, S. Zinc recovery from Waste-to-Energy fly ash—A pilot test study. Waste Manag. 2020, 118, 90–98. [Google Scholar] [CrossRef] [PubMed]
- Weibel, G.; Zappatini, A.; Wolffers, M.; Ringmann, S. Optimization of metal recovery from MSWI fly ash by acid leaching: Findings from laboratory-and industrial-scale experiments. Processes 2021, 9, 352. [Google Scholar] [CrossRef]
- Schnell, M.; Horst, T.; Quicker, P. Thermal treatment of sewage sludge in Germany: A review. J. Environ. Manag. 2020, 263, 110367. [Google Scholar] [CrossRef] [PubMed]
- Smol, M. Implementation of the green deal in the management of nutrients—Phosphorus recovery potential from sewage sludge. Desalination Wat. Treat. 2021, 232, 208–215. [Google Scholar] [CrossRef]
- Maj, I.; Kalisz, S.; Ciukaj, S. Properties of Animal-Origin Ash—A Valuable Material for Circular Economy. Energies 2022, 15, 1274. [Google Scholar] [CrossRef]
- Maj, I. Significance and Challenges of Poultry Litter and Cattle Manure as Sustainable Fuels: A Review. Energies 2022, 15, 8981. [Google Scholar] [CrossRef]
- Granata, G.; Moscardini, E.; Furlani, G.; Pagnanelli, F.; Toro, L. Automobile shredded residue valorisation by hydrometallurgical metal recovery. J. Hazard. Mater. 2011, 185, 44–48. [Google Scholar] [CrossRef]
- Zhang, B.Y.; Tong, Y.; Singh, S.; Cai, H.; Huang, J.-Y. Assessment of carbon footprint of nano-packaging considering potential food waste reduction due to shelf life extension. Resour. Conserv. Recycl. 2019, 149, 322–331. [Google Scholar] [CrossRef]
- Pedersen, A.J.; Frandsen, F.J.; Riber, C.; Astrup, T.; Thomsen, S.N.; Lundtorp, K.; Mortensen, L.F. A full-scale study on the partitioning of trace elements in municipal solid waste incinerations-Effects of firing different waste types. Energy Fuels 2009, 23, 3475–3489. [Google Scholar] [CrossRef]
- Turner, A.; Filella, M. Bromine in plastic consumer products—Evidence for the widespread recycling of electronic waste. Sci. Total Environ. 2017, 601–602, 374–379. [Google Scholar] [CrossRef] [PubMed]
- Gao, R.; Xu, Z. Pyrolysis and utilization of nonmetal materials in waste printed circuit boards: Debromination pyrolysis, temperature-controlled condensation, and synthesis of oil-based resin. J. Hazard. Mater. 2019, 364, 1–10. [Google Scholar] [CrossRef]
- Gao, R.; Liu, B.; Zhan, L.; Guo, J.; Zhang, J.; Xu, Z. In-situ debromination mechanism based on self-activation and catalysis of Ca(OH)2 during pyrolysis of waste printed circuit boards. J. Hazard. Mater. 2020, 392, 122447. [Google Scholar] [CrossRef] [PubMed]
- CEWEP. Waste-to-Energy Climate Roadmap—The Path to Carbon Negative; Technical Report. 2022. Available online: https://www.cewep.eu/wp-content/uploads/2022/06/CEWEP-WtE-Climate-Roadmap-2022.pdf (accessed on 20 December 2022).
- Climate Change Committee. The Sixth Carbon Budget—The UK’s Path to Net Zero; Technical Report. 2020. Available online: https://www.theccc.org.uk/wp-content/uploads/2020/12/The-Sixth-Carbon-Budget-The-UKs-path-to-Net-Zero.pdf (accessed on 20 December 2022).
- Fajardy, M.; Chiquier, S.; Mac Dowell, N. Investigating the BECCS resource nexus: Delivering sustainable negative emissions. Energy Environ. Sci. 2018, 11, 3408–3430. [Google Scholar] [CrossRef] [Green Version]
- ADEME. Détermination des Contenus Biogène et Fossile des Ordures Ménagères Résiduelles et d’un CSR, à Partir d’une Analyse 14C du CO2 des gaz de Post-Combustion; Technical Report. 2020. Available online: https://librairie.ademe.fr/energies-renouvelables-reseaux-et-stockage/4007-determination-des-contenus-biogene-et-fossile-des-ordures-menageres-residuelles-et-d-un-csr-a-partir-d-une-analyse-14c-du-co2-des-gaz-de-post-combustion.html (accessed on 20 December 2022). (In French).
- Fuglsang, K.; Pedersen, N.H.; Larsen, A.W.; Astrup, T.F. Long-term sampling of CO2 from waste-to-energy plants: 14C determination methodology, data variation and uncertainty. Waste Manag. Res. 2014, 32, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Mohn, J.; Szidat, S.; Zeyer, K.; Emmenegger, L. Fossil and biogenic CO2 from waste incineration based on a yearlong radiocarbon study. Waste Manag. 2012, 32, 1516–1520. [Google Scholar] [CrossRef] [PubMed]
- Pour, N.; Webley, P.A.; Cook, P.J. Potential for using municipal solid waste as a resource for bioenergy with carbon capture and storage (BECCS). Int. J. Greenh. Gas Control 2018, 68, 1–15. [Google Scholar] [CrossRef]
- Tang, Y.; You, F. Multicriteria Environmental and Economic Analysis of Municipal Solid Waste Incineration Power Plant with Carbon Capture and Separation from the Life-Cycle Perspective. ACS Sustain. Chem. Eng. 2018, 6, 937–956. [Google Scholar] [CrossRef]
- Bisinella, V.; Hulgaard, T.; Riber, C.; Damgaard, A.; Christensen, T.H. Environmental assessment of carbon capture and storage (CCS) as a post-treatment technology in waste incineration. Waste Manag. 2021, 128, 99–113. [Google Scholar] [CrossRef]
- Fagerlund, J.; Zevenhoven, R.; Thomassen, J.; Tednes, M.; Abdollahi, F.; Thomas, L.; Nielsen, C.J.; Mikoviny, T.; Wisthaler, A.; Zhu, L.; et al. Performance of an amine-based CO2 capture pilot plant at the Fortum Oslo Varme Waste to Energy plant in Oslo, Norway. Int. J. Greenh. Gas Control 2021, 106, 103242. [Google Scholar] [CrossRef]
- AVR. Waste-To-Energy Company Tackles CO2 Emissions with Large-Scale CO2 Capture Installation; Press Release. 2018. Available online: https://www.avr.nl/wp-content/uploads/2021/05/press-release-waste-to-energy-company-tackles-co2-emissions-with-co2-capture-installation.pdf (accessed on 20 December 2022).
- Huttenhuis, P.; Roeloffzen, A.; Versteeg, G. CO2 Capture and Re-use at a Waste Incinerator. Energy Procedia 2016, 86, 47–55. [Google Scholar] [CrossRef] [Green Version]
- UK Environment Agency. Guidance—Post-Combustion Carbon Dioxide Capture: Best Available Techniques (BAT); Technical Report. 2021. Available online: https://www.gov.uk/guidance/post-combustion-carbon-dioxide-capture-best-available-techniques-bat (accessed on 20 December 2022).
- Feron, P.; Cousins, A.; Jiang, K.; Zhai, R.; Hla, S.S.; Thiruvenkatachari, R.; Burnard, K. Towards Zero Emissions from Fossil Fuel Power Stations. Int. J. Greenh. Gas Control 2019, 87, 188–202. [Google Scholar] [CrossRef]
- Danaci, D.; Bui, M.; Petit, C.; MacDowell, N. En Route to Zero Emissions for Power and Industry with Amine-Based Post-combustion Capture. Environ. Sci. Technol. 2021, 55, 10619–10632. [Google Scholar] [CrossRef]
- Michailos SGibbins, J. A Modelling Study of Post-Combustion Capture Plant Process Conditions to Facilitate 95–99% CO2 Capture Levels From Gas Turbine Flue Gases. Front. Energy Res. 2022, 10, 866838. [Google Scholar] [CrossRef]
- Gao, T.; Selinger, J.L.; Rochelle, G.T. Demonstration of 99% CO2 removal from coal flue gas by amine scrubbing. Int. J. Greenh. Gas Control 2019, 83, 236–244. [Google Scholar] [CrossRef]
- Ismail Shah, M.; Silva, E.; Gjernes, E.; Åsen Ingvar, K. Cost Reduction Study for MEA based CCGT Post-Combustion CO2 Capture at Technology Center Mongstad. In Proceedings of the 15th Greenhouse Gas Control Technologies Conference, Abu Dhabi, United Arab Emirates, 15–18 March 2021. [Google Scholar]
- Hirata, T.; Tsujiuchi, T.; Kamijo, T.; Kishimoto, S.; Inui, M.; Kawasaki, S.; Lin, Y.-L.; Nakagami, Y.; Nojo, T. Near-Zero Emission Thermal Power Plant using Advanced KM CDR ProcessTM. Int. J. Greenh. Gas Control 2020, 92, 102847. [Google Scholar] [CrossRef]
- Su, D.; Herraiz, L.; Lucquiaud, M.; Thomson, C.; Chalmers, H. Thermal integration of waste to energy plants with Post-combustion CO2 capture. Fuel 2023, 332, 126004. [Google Scholar] [CrossRef]
- Ge, X.; Shaw, S.L.; Zhang, Q. Toward Understanding Amines and Their Degradation Products from Postcombustion CO2 Capture Processes with Aerosol Mass Spectrometry. Environ. Sci. Technol. 2014, 48, 5066–5075. [Google Scholar] [CrossRef]
- Lucquiaud, M.; Herraiz, L.; Su, D.; Thomson, C.; Chalmers, H.; Becidan, M.; Ditaranto, M.; Roussanaly, S.; Anantharaman, R.; Moreno Mendaza, J.; et al. Negative Emissions in the Waste-to-Energy Sector: An Overview of the Newest-CCUS Programme. In Proceedings of the 15th Greenhouse Gas Control Technologies Conference, Abu Dhabi, United Arab Emirates, 15–18 March 2021. [Google Scholar]
- Gibbins, J.; Lucquiaud, M. BAT Review for New-Build and Retrofit Post-Combustion Carbon Dioxide Capture Using Amine-Based Technologies for Power and CHP Plants Fuelled by Gas and Biomass as an Emerging Technology under the IED for the UK, UKCCSRC Report, Ver.1.0. July 2021. Available online: https://ukccsrc.ac.uk/best-available-technology-bat-information-for-ccs/ (accessed on 20 December 2022).
- Zhang, L.; Li, J.; Zhou, L.; Liu, R.; Wang, X.; Yang, L. Fouling of Impurities in Desulfurized Flue Gas on Hollow Fiber Membrane Absorption for CO2 Capture. Ind. Eng. Chem. Res. 2016, 55, 8002–8010. [Google Scholar] [CrossRef]
- Haaf, M.; Anantharaman, R.; Roussanaly, S.; Strohle, J.; Epple, B. CO2 capture from waste-to-energy plants: Techno-economic assessment of novel integration concepts of calcium looping technology. Resour. Conserv. Recycl. 2020, 162, 104973. [Google Scholar] [CrossRef]
- Moreno, J.; Schmid, M.; Scharr, S.; Scheffknecht, G. Oxy-Combustion of Solid Recovered Fuel in a Semi-Industrial CFB Reactor: On the Implications of Gas Atmosphere and Combustion Temperature. ACS Omega 2022, 7, 8950–8959. [Google Scholar] [CrossRef] [PubMed]
- Magnanelli, E.; Mosby, J.; Becidan, M. Scenarios for carbon capture integration in a waste-to-energy plant. Energy 2021, 227, 120407. [Google Scholar] [CrossRef]
- Dal Pozzo, A.; Abagnato, S.; Cozzani, V. Assessment of cross-media effects deriving from the application of lower emission standards for acid pollutants in waste-to-energy plants. Sci. Total Environ. 2023, 856, 159159. [Google Scholar] [CrossRef] [PubMed]
- Gålfalk, M.; Bastviken, D. Remote sensing of methane and nitrous oxide fluxes from waste incineration. Waste Manag. 2018, 75, 319–326. [Google Scholar] [CrossRef] [PubMed]
- Hwang, K.-L.; Choi, S.-M.; Kim, M.-K.; Heo, J.-B.; Zoh, K.-D. Emission of greenhouse gases from waste incineration in Korea. J. Environ. Manag. 2017, 196, 710–718. [Google Scholar] [CrossRef] [PubMed]
- Roussanaly, S.; Ouassou, J.A.; Anantharaman, R.; Haaf, M. Impact of Uncertainties on the Design and Cost of CCS From a Waste-to-Energy Plant. Front. Energy Res. 2020, 8, 17. [Google Scholar] [CrossRef]
- Muslemani, H.; Liang, X.; Kaesehage, K.; Wilson, J. Business Models for Carbon Capture, Utilization and Storage Technologies in the Steel Sector: A Qualitative Multi-Method Study. Processes 2020, 8, 576. [Google Scholar] [CrossRef]
- Torvanger, A. Business Models for Negative Emissions From Waste-to-Energy Plants. Front. Clim. 2021, 3, 709891. [Google Scholar] [CrossRef]
- Achillas, C.; Vlachokostas, C.; Moussiopoulos, N.; Banias, G.; Kafetzopoulos, G.; Karagiannidis, A. Social acceptance for the development of a waste-to-energy plant in an urban area. Resour. Conserv. Recycl. 2011, 55, 857–863. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dal Pozzo, A.; Lucquiaud, M.; De Greef, J. Research and Innovation Needs for the Waste-To-Energy Sector towards a Net-Zero Circular Economy. Energies 2023, 16, 1909. https://doi.org/10.3390/en16041909
Dal Pozzo A, Lucquiaud M, De Greef J. Research and Innovation Needs for the Waste-To-Energy Sector towards a Net-Zero Circular Economy. Energies. 2023; 16(4):1909. https://doi.org/10.3390/en16041909
Chicago/Turabian StyleDal Pozzo, Alessandro, Mathieu Lucquiaud, and Johan De Greef. 2023. "Research and Innovation Needs for the Waste-To-Energy Sector towards a Net-Zero Circular Economy" Energies 16, no. 4: 1909. https://doi.org/10.3390/en16041909
APA StyleDal Pozzo, A., Lucquiaud, M., & De Greef, J. (2023). Research and Innovation Needs for the Waste-To-Energy Sector towards a Net-Zero Circular Economy. Energies, 16(4), 1909. https://doi.org/10.3390/en16041909