Production of Bio-Oil from Thermo-Catalytic Decomposition of Pomegranate Peels over a Sulfonated Tea Waste Heterogeneous Catalyst: A Kinetic Investigation
Abstract
:1. Introduction
2. Material and Methods
2.1. Materials
2.2. Synthesis and Characterization of Catalyst
2.3. Loading of Catalyst to Pomegranate Peels Powder
2.4. Pyrolysis and Characterization of Products
2.5. Kinetic Study
3. Results and Discussion
3.1. Characterization of Catalyst
3.2. Characterization of Biomass Samples
3.3. Pyrolysis and Analysis of Pyrolysates
3.4. Thermogravimetric Analysis and Kinetic Study
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, Q.; Chang, J.; Wang, T.; Xu, Y. Review of biomass pyrolysis oil properties and upgrading research. Energy Convers. Manag. 2007, 48, 87–92. [Google Scholar] [CrossRef]
- Nisar, J.; Ullah, N.; Awan, I.A.; Iqbal, M.; Khan, T.A. Pyrolysis–gas chromatography of sugar beet bagasse. Waste Biomass Valorization 2016, 7, 79–85. [Google Scholar] [CrossRef]
- Popa, V.I. Biomass for fuels and biomaterials. In Biomass as Renewable Raw Material to Obtain Bioproducts of High-Tech Value; Elsevier: Amsterdam, The Netherlands, 2018; pp. 1–37. [Google Scholar]
- Veses, A.; Aznar, M.; Martínez, I.; Martínez, J.; López, J.; Navarro, M.; Callén, M.; Murillo, R.; García, T. Catalytic pyrolysis of wood biomass in an auger reactor using calcium-based catalysts. Bioresour. Technol. 2014, 162, 250–258. [Google Scholar] [CrossRef]
- Bridgwater, A.V. Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenergy 2012, 38, 68–94. [Google Scholar] [CrossRef]
- Taarning, E.; Osmundsen, C.M.; Yang, X.; Voss, B.; Andersen, S.I.; Christensen, C.H. Zeolite-catalyzed biomass conversion to fuels and chemicals. Energy Environ. Sci. 2011, 4, 793–804. [Google Scholar] [CrossRef] [Green Version]
- Ali, G.; Afraz, M.; Muhammad, F.; Nisar, J.; Shah, A.; Munir, S.; Tasleem Hussain, S. Production of Fuel Range Hydrocarbons from Pyrolysis of Lignin over Zeolite Y, Hydrogen. Energies 2022, 16, 215. [Google Scholar] [CrossRef]
- Bulushev, D.A.; Ross, J.R. Catalysis for conversion of biomass to fuels via pyrolysis and gasification: A review. Catal. Today 2011, 171, 1–13. [Google Scholar] [CrossRef]
- Nisar, J.; Farid, R.; Ali, G.; Muhammad, F.; Shah, A.; Farooqi, Z.H.; Shah, F. Kinetics and fuel properties of the oil obtained from the pyrolysis of polypropylene over cobalt oxide. Clean. Chem. Eng. 2022, 4, 100083. [Google Scholar] [CrossRef]
- Prakash, C.V.S.; Prakash, I. Bioactive chemical constituents from pomegranate (Punica granatum) juice, seed and peel-a review. Int. J. Res. Chem. Environ. 2011, 1, 1–18. [Google Scholar]
- Kar, Y. Pyrolysis of waste pomegranate peels for bio-oil production. Energy Sources Part A Recovery Util. Environ. Eff. 2018, 40, 2812–2821. [Google Scholar] [CrossRef]
- Ayas, N.; Esen, T. Hydrogen production from tea waste. Int. J. Hydrogen Energy 2016, 41, 8067–8072. [Google Scholar] [CrossRef]
- Fadhil, A.B.; Dheyab, M.M.; Abdul-Qader, A.-Q.Y. Purification of biodiesel using activated carbons produced from spent tea waste. J. Assoc. Arab Univ. Basic Appl. Sci. 2012, 11, 45–49. [Google Scholar] [CrossRef] [Green Version]
- Malakahmad, A.; Tan, S.; Yavari, S. Valorization of wasted black tea as a low-cost adsorbent for nickel and zinc removal from aqueous solution. J. Chem. 2016, 2016, 5680983. [Google Scholar] [CrossRef] [Green Version]
- Nisar, J.; Rahman, A.; Ali, G.; Shah, A.; Farooqi, Z.H.; Bhatti, I.A.; Iqbal, M.; Ur Rehman, N. Pyrolysis of almond shells waste: Effect of zinc oxide on kinetics and product distribution. Biomass Convers. Biorefinery 2022, 12, 2583–2595. [Google Scholar] [CrossRef]
- Blaine, R.L.; Kissinger, H.E. Homer Kissinger and the Kissinger equation. Thermochim. Acta 2012, 540, 1–6. [Google Scholar] [CrossRef]
- Rashid, U.; Ahmad, J.; Ibrahim, M.L.; Nisar, J.; Hanif, M.A.; Shean, T.Y.C. Single-Pot Synthesis of Biodiesel using Efficient Sulfonated-Derived Tea Waste-Heterogeneous Catalyst. Materials 2019, 12, 2293. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.T.; Dehkhoda, A.M.; Ellis, N. Development of biochar-based catalyst for transesterification of canola oil. Energy Fuels 2011, 25, 337–344. [Google Scholar] [CrossRef]
- Konwar, L.J.; Das, R.; Thakur, A.J.; Salminen, E.; Mäki-Arvela, P.; Kumar, N.; Mikkola, J.-P.; Deka, D. Biodiesel production from acid oils using sulfonated carbon catalyst derived from oil-cake waste. J. Mol. Catal. A Chem. 2014, 388, 167–176. [Google Scholar] [CrossRef]
- Doroodmand, M.; Sobhani, S.; Ashoori, A. Sulfonated multiwalled carbon nanotubes (MWCNTs) as a new, efficient, and recyclable heterogeneous nanocatalyst for the synthesis of amines. Can. J. Chem. 2012, 90, 701–707. [Google Scholar] [CrossRef]
- Ahsan, M.A.; Katla, S.K.; Islam, M.T.; Hernandez-Viezcas, J.A.; Martinez, L.M.; Díaz-Moreno, C.A.; Lopez, J.; Singamaneni, S.R.; Banuelos, J.; Gardea-Torresdey, J. Adsorptive removal of methylene blue, tetracycline and Cr (VI) from water using sulfonated tea waste. Environ. Technol. Innov. 2018, 11, 23–40. [Google Scholar] [CrossRef]
- Lokman, I.M.; Rashid, U.; Taufiq-Yap, Y.H.; Yunus, R. Methyl ester production from palm fatty acid distillate using sulfonated glucose-derived acid catalyst. Renew. Energy 2015, 81, 347–354. [Google Scholar] [CrossRef]
- Ahmad, M.A.; Puad, N.A.A.; Bello, O.S. Kinetic, equilibrium and thermodynamic studies of synthetic dye removal using pomegranate peel activated carbon prepared by microwave-induced KOH activation. Water Resour. Ind. 2014, 6, 18–35. [Google Scholar] [CrossRef] [Green Version]
- Asadieraghi, M.; Daud, W.M.A.W. Characterization of lignocellulosic biomass thermal degradation and physiochemical structure: Effects of demineralization by diverse acid solutions. Energy Convers. Manag. 2014, 82, 71–82. [Google Scholar] [CrossRef]
- Nisar, J.; Ali, F.; Malana, M.A.; Ali, G.; Iqbal, M.; Shah, A.; Bhatti, I.A.; Khan, T.A.; Rashid, U. Kinetics of the pyrolysis of cobalt-impregnated sesame stalk biomass. Biomass Convers. Biorefinery 2020, 10, 1179–1187. [Google Scholar] [CrossRef]
- El-Azazy, M.; Kalla, R.N.; Issa, A.A.; Al-Sulaiti, M.; El-Shafie, A.S.; Shomar, B.; Al-Saad, K. Pomegranate peels as versatile adsorbents for water purification: Application of Box–Behnken design as a methodological optimization approach. Environ. Prog. Sustain. Energy 2019, 38, 13223. [Google Scholar] [CrossRef]
- Hong, T.; Wang, S.-r. Experimental study of the effect of acid-washing pretreatment on biomass pyrolysis. J. Fuel Chem. Technol. 2009, 37, 668–672. [Google Scholar]
- Pütün, E.; Uzun, B.B.; Pütün, A.E. Production of bio-fuels from cottonseed cake by catalytic pyrolysis under steam atmosphere. Biomass Bioenergy 2006, 30, 592–598. [Google Scholar] [CrossRef]
- Nisar, J.; Waris, S.; Shah, A.; Anwar, F.; Ali, G.; Ahmad, A.; Muhammad, F. Production of Bio-Oil from De-Oiled Karanja (Pongamia pinnata L.) Seed Press Cake Via Pyrolysis: Kinetics and Evaluation of Anthill as the Catalyst. Sustain. Chem. 2022, 3, 345–359. [Google Scholar] [CrossRef]
- Nisar, J.; Ahmad, A.; Ali, G.; Rehman, N.U.; Shah, A.; Shah, I. Enhanced Bio-Oil Yield from Thermal Decomposition of Peanut Shells Using Termite Hill as the Catalyst. Energies 2022, 15, 1891. [Google Scholar] [CrossRef]
- Saadi, W.; Rodríguez-Sánchez, S.; Ruiz, B.; Souissi-Najar, S.; Ouederni, A.; Fuente, E. Pyrolysis technologies for pomegranate (Punica granatum L.) peel wastes. Prospects in the bioenergy sector. Renew. Energy 2019, 136, 373–382. [Google Scholar] [CrossRef]
- Zhang, B.; Zhong, Z.; Min, M.; Ding, K.; Xie, Q.; Ruan, R. Catalytic fast co-pyrolysis of biomass and food waste to produce aromatics: Analytical Py–GC/MS study. Bioresour. Technol. 2015, 189, 30–35. [Google Scholar] [CrossRef]
- Silva, R.; Romeiro, G.; Veloso, M.; Figueiredo, M.-K.; Pinto, P.; Ferreira, A.; Gonçalves, M.; Teixeira, A.; Damasceno, R. Fractions composition study of the pyrolysis oil obtained from sewage sludge treatment plant. Bioresour. Technol. 2012, 103, 459–465. [Google Scholar] [CrossRef]
- Aysu, T.; Küçük, M.M. Biomass pyrolysis in a fixed-bed reactor: Effects of pyrolysis parameters on product yields and characterization of products. Energy 2014, 64, 1002–1025. [Google Scholar] [CrossRef]
- Aho, A.; Kumar, N.; Eränen, K.; Salmi, T.; Hupa, M.; Murzin, D.Y. Catalytic pyrolysis of woody biomass in a fluidized bed reactor: Influence of the zeolite structure. Fuel 2008, 87, 2493–2501. [Google Scholar] [CrossRef]
- Hernandez-Mena, L.E.; Pécoraa, A.; Beraldob, A.L. Slow pyrolysis of bamboo biomass: Analysis of biochar properties. Chem. Eng. 2014, 37, 115–120. [Google Scholar]
- Torres-García, E.; Ramírez-Verduzco, L.; Aburto, J. Pyrolytic degradation of peanut shell: Activation energy dependence on the conversion. Waste Manag. 2020, 106, 203–212. [Google Scholar] [CrossRef]
- Nisar, J.; Nasir, U.; Ali, G.; Shah, A.; Farooqi, Z.H.; Iqbal, M.; Shah, M.R. Kinetics of pyrolysis of sugarcane bagasse: Effect of catalyst on activation energy and yield of pyrolysis products. Cellulose 2021, 28, 7593–7607. [Google Scholar] [CrossRef]
S.No | R/T (min) | Compound | Chem. Formula | M.wt | Area% |
---|---|---|---|---|---|
1 | 1.85 | Furfural | C5H4O2 | 96 | 27.55 |
2 | 2.67 | 2,3-dimethyl-Cyclohexanol | C8H16O | 128 | 3.12 |
3 | 3.28 | 5-methyl-2-Furancarboxaldehyde | C6H6O2 | 110 | 12.05 |
4 | 3.77 | N-Butyl-tert-butylamine | C8H19N | 129 | 8.79 |
5 | 4.34 | 5-hydroxy-3,4,4-trimethyl -2-Hexanoic acid | C9H16O3 | 172 | 1.56 |
6 | 4.99 | 2-methoxy-Phenol | C7H8O2 | 124 | 8.13 |
7 | 5.34 | Levoglucosenon | C6H6O3 | 126 | 0.93 |
8 | 5.91 | a-d-Lyxofuranos,cyclic 2,3-(ethylebronate) | C7H13BO5 | 188 | 2.53 |
9 | 6.42 | 2-methoxy-4-methyl-Phenol | C8H10O2 | 138 | 7.11 |
10 | 7.23 | 5-(hydoxymethyl)-2-Furancarboxaldhye | C6H6O3 | 126 | 1.28 |
12 | 7.58 | 4-ethyl-2-methoxy-Phenol | C9H12O2 | 152 | 4.78 |
13 | 8.05 | 2-Methoxy, 4-vinylphenol | C9H10O2 | 150 | 4.78 |
14 | 8.56 | 2,3-dimethoxy-Phenol | C8H10O3 | 154 | 3.78 |
15 | 9.19 | Vanillin | C8H8O3 | 152 | 1.24 |
16 | 9.78 | 4-methoxy-3-(methoxymethyl)-Phenol | C9H13O3 | 168 | 5.61 |
17 | 10.27 | Ethanon, 1-(4-hydroxy-3-methoxyphenyl) | C9H10O3 | 166 | 0.34 |
18 | 10.80 | 2-Propenon, (4-hydroxy-3-methoxyphenyl) | C10H12O3 | 180 | 2.91 |
19 | 11.18 | 2,5-dimethoxy-4-ethylamphetamin | C13H21NO2 | 223 | 1.04 |
20 | 12.26 | Benzaldehyde, 4-hydroxy-3,5-dimethoxy | C9H10O4 | 182 | 1.38 |
21 | 12.69 | Phenol, 2,6-dimethoxy-4-(2-propenyl) | C11H14O3 | 194 | 1.52 |
22 | 13.47 | Desaspidinol | C11H14O4 | 210 | 1.11 |
S. No | R/T (min) | Compound Name | Chem. Formula | M.wt | % Area |
---|---|---|---|---|---|
1 | 1.85 | Furfural | C5H4O2 | 96 | 30.11 |
2 | 2.85 | Propan-2-ol,1-(2isopropyl-5-methylcyclohexyloxy)-3-(1-piperidyl) | C18H35O2 | 297 | 3.64 |
3 | 3.32 | 2-Furancarboxaldehyde,5 methyl | C6H6O2 | 110 | 5.62 |
4 | 3.77 | N-Butyl-tert-butylamine | C8H19N | 129 | 3.8 |
5 | 4.20 | 1,2-Cyclopentanedione,3-methyl | C6H8O2 | 112 | 2.41 |
6 | 5.01 | 2-methoxy-Phenol | C9H8O2 | 124 | 6.11 |
7 | 5.38 | Maltol | C6H6O3 | 126 | 2.12 |
8 | 5.93 | 2-Ethyl-4-[3-(2-oxiranyl)propyl]-1,3,2-dioxaborolane | C9H17BO3 | 184 | 1.37 |
9 | 6.44 | Phenol,2-methoxy-4-methyl | C8H10O2 | 138 | 6.63 |
10 | 7.07 | 1-Dodecanol,3,7,11 trimethyl | C15H32O | 228 | 3.44 |
11 | 7.60 | Phenol, 4-ethyl-2-methoxy | C9H12O2 | 152 | 4.18 |
12 | 8.05 | Ascaridole epoxide | C10H16O3 | 184 | 4.71 |
13 | 8.58 | Phenol, 2,6-dimethoxy | C8H10O3 | 154 | 5.5 |
14 | 9.19 | 1H-Benzocyclohepten-7ol, 2,3,4,4a,5,6,7,8-octahydro-1,1,4a,7-tetramethyl-,cis | C15H26O | 222 | 1.21 |
15 | 9.78 | 1,2,4-Trimethoxybenzene | C9H12O3 | 168 | 4.64 |
16 | 10.27 | Ethanone,1-(4-hydroxy-3-methoxyphenyl)- | C9H10O3 | 166 | 0.55 |
17 | 10.80 | 2-Propanone,1-(4hydroxy-3-methoxyphenyl)- | C10H12O3 | 180 | 4.16 |
18 | 11.18 | Neocurdione | C15H24O2 | 236 | 1.77 |
19 | 12.16 | Methyl-(2-hydoxy-3-ethoxy-benzyl)ether | C10H14O3 | 182 | 1.03 |
20 | 12.69 | Phenol, 2,6-dimethoxy-4-(2-propenyl)- | C11H14O3 | 194 | 1.36 |
21 | 13.06 | 1b,4a-Epoxy-2H cyclopenta [3,4]cyclopropa [8,9]cycloundec [1,2-b]oxiren-5(6H) –one | C22H32O8 | 424 | 1.5 |
22 | 13.47 | Desaspidinol | C11H14O4 | 210 | 1.91 |
22 | 14.28 | 2-Methyl-cis-7,8-epoxynonadecane | C20H40O | 296 | 0.04 |
23 | 15.14 | 1-Tricosanol | C23H48O | 340 | 0.47 |
24 | 15.95 | 2-Dodecen-1-yl(-)succinic anhydride | C16H26O3 | 246 | 0.72 |
25 | 16.48 | 7-Methyl-Z-tetradecen-1-ol acetate | C17H32O2 | 268 | 0.02 |
26 | 17.30 | tert-Hexadecanethiol | C16H34S | 258 | 0.53 |
Without Catalyst | With Catalyst | |||
---|---|---|---|---|
Name | Ea (kJmol−1) | A (min−1) | Ea (kJmol−1) | A (min−1) |
Hemicellulose | 199 | 1.3 × 109 | 122 | 1.3 × 108 |
Cellulose | 249 | 7.1 × 1013 | 163 | 1.4 × 109 |
Lignin | 299 | 2.9 × 1014 | 207 | 1.5 × 1011 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rehman, N.U.; Nisar, J.; Ali, G.; Ahmad, A.; Shah, A.; Farooqi, Z.H.; Muhammad, F. Production of Bio-Oil from Thermo-Catalytic Decomposition of Pomegranate Peels over a Sulfonated Tea Waste Heterogeneous Catalyst: A Kinetic Investigation. Energies 2023, 16, 1908. https://doi.org/10.3390/en16041908
Rehman NU, Nisar J, Ali G, Ahmad A, Shah A, Farooqi ZH, Muhammad F. Production of Bio-Oil from Thermo-Catalytic Decomposition of Pomegranate Peels over a Sulfonated Tea Waste Heterogeneous Catalyst: A Kinetic Investigation. Energies. 2023; 16(4):1908. https://doi.org/10.3390/en16041908
Chicago/Turabian StyleRehman, Nafees Ur, Jan Nisar, Ghulam Ali, Ali Ahmad, Afzal Shah, Zahoor H. Farooqi, and Faisal Muhammad. 2023. "Production of Bio-Oil from Thermo-Catalytic Decomposition of Pomegranate Peels over a Sulfonated Tea Waste Heterogeneous Catalyst: A Kinetic Investigation" Energies 16, no. 4: 1908. https://doi.org/10.3390/en16041908
APA StyleRehman, N. U., Nisar, J., Ali, G., Ahmad, A., Shah, A., Farooqi, Z. H., & Muhammad, F. (2023). Production of Bio-Oil from Thermo-Catalytic Decomposition of Pomegranate Peels over a Sulfonated Tea Waste Heterogeneous Catalyst: A Kinetic Investigation. Energies, 16(4), 1908. https://doi.org/10.3390/en16041908