Decarbonization Analysis for Thermal Generation and Regionally Integrated Large-Scale Renewables Based on Minutely Optimal Dispatch with a Kentucky Case Study
Abstract
:1. Introduction
2. Global and Regional Developments and Studies—Literature Review
3. Economic Load Dispatch Problem Formulation and Optimization
3.1. Problem Formulation
3.2. Optimization Method
Algorithm 1 Pseudo-code of the implemented multi-objective optimization algorithm for economic load dispatch based on differential evolution. | |
Create an initial population with designs of selected quantities from the firm generation types | |
while stopping criteria is not satisfied do | |
for each population, p, in do | |
Sample random indices R | |
▹ Mutation | |
if then | ▹ Crossover |
else | |
end if | |
if ≤ then | ▹ Selection |
else | |
end if | |
end for | |
▹ Increment to the next iteration | |
end while |
3.3. Input Data and Assumptions
4. Minutely Economic Dispatch Case Studies
4.1. Pathways to Decarbonization Scenarios
4.2. Simulation Results
5. Results and Discussion
5.1. Technical Feasibility
5.2. Effective Renewable Integration
5.3. Uncertainty, Peaking Reserves, and Energy Storage
5.4. Cost to Build per Portfolio
Coal | NGCC | CCS | NGCT | Hydrogen | Solar | Wind | |
---|---|---|---|---|---|---|---|
CAPEX [$/kW] | 3055 | 883 | 2304 | 1025 | 2700 | 1121 | 1135 |
CO2 [lbs./kWh] | 2000 | 800 | 80 | 1200 | 80 | N/A | N/A |
5.5. Levelized Cost of Energy per Generation Portfolio
5.6. Kentucky Regional Case Study Specific Conclusions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
ATB | Annual technology baseline |
C | Current coal-dominant energy portfolio case for example region |
Adaption of C case with added solar generation | |
Adaption of C case with added solar and wind generation | |
CCS | Carbon capture and sequestration |
Adaption of case with full adaptation of CCS | |
CAPEX | Capital expenditures |
Capacity Factor | |
Cfa | Temperate, dry winter, hot summer Koppen climate classification |
Running cost of generator | |
CO2 | Carbon dioxide |
Cost of consumables for emission reduction | |
CPU | Central processing unit |
Cross-over probability | |
Design, population, and generation index | |
Total energy demand for the year 2019 | |
Energy used per generation type | |
Annual overgeneration | |
ERGIS | Eastern Renewable Generation Integration Study |
Annual solar and wind generation | |
F | Scaling factor |
FC | Fuel cost |
Fuel cost | |
FCR | Fixed charge rate |
Fixed charge rate per generation type | |
FOM | Fixed operation and maintenance |
Annual fixed operation and maintenance cost | |
g | Elements within generation vectors |
GHG | Greenhouse gas emissions |
HPC | High performance computing |
Heat rate | |
Adaption of case with hydrogen generation | |
IEA | International Energy Agency |
Power imbalance | |
LCOE | Levelized cost of energy |
LG&E and KU | Louisville Gas and Electric and Kentucky Utilities |
LOLE | Loss of load expectation |
Cost of maintenance | |
M-M | Minute to minute |
MODE | Multi-objective differential evolution |
MOO | Multi-objective optimization |
NERC | North American Electricity Reliability Corporation |
NGCT | Natural gas combustion turbine |
NGCC | Natural gas combined cycle |
Current energy portfolio case with all coal replaced with NG | |
Adaption of case with added solar generation | |
Adaption of case with added solar and wind generation | |
NREL | National Renewable Energy Laboratory |
NSGA-II | Non-dominated sorting genetic algorithm 2 |
Power output of each thermal generator | |
Load | |
Minimum rated capacity | |
Maximum rated capacity | |
Renewable output | |
Cost per thermal generation dispatch | |
SOC | State of charge |
Function to produce a set of random values (0 and 1) | |
Rated capacity of solar and wind | |
Generator ramping rate | |
Distinct design indices not equal to d | |
VOM | Variable operation and maintenance |
Variable operation and maintenance cost | |
VRE | Variable renewable energy |
References
- Global Energy-Related CO2 Emissions by Sector—Charts—Data & Statistics. 2022. Available online: https://www.iea.org/data-and-statistics/charts/global-energy-related-CO2-emissions-by-sector (accessed on 5 August 2022).
- Burdick, A.; Schlag, N.; Au, A.; Go, R.; Ming, Z.; Olson, A. Lighting a Reliable Path to 100% Clean Electricity: Evolving Resource Adequacy Practices for a Decarbonizing Grid. IEEE Power Energy Mag. 2022, 20, 30–43. [Google Scholar] [CrossRef]
- Hoff, S. U.S. Electric System Is Made up of Interconnections and Balancing Authorities; Technical Report; U.S. Energy Information Administration: Washington, DC, USA, 2016. Available online: https://www.eia.gov/todayinenergy/detail.php?id=27152 (accessed on 29 January 2023).
- EPA. Clean Air Markets Program Data (CAMPD); Technical Report; EPA: Washington, DC, USA, 2022. Available online: https://campd.epa.gov (accessed on 16 September 2022).
- EIA. United States Energy Information Administration (EIA) Monthly Electric Generator Inventory; Technical Report; EIA: Washington, DC, USA, 2022. Available online: https://www.eia.gov/electricity/data/eia860m/archive/xls/january_generator2022.xlsx (accessed on 16 September 2022).
- Pennsylvania Power and Light. PPL’s 2021 Climate Assessment Report; Technical Report; Pennsylvania Power and Light: Allentown, PA, USA, 2022; Available online: https://www.pplweb.com/wp-content/uploads/2022/01/PPL_Corp-2021-Climate-Assessment_2022-01-04.pdf (accessed on 16 September 2022).
- Louisville Gas and Electric and Kentucky Utilities. EIA 860M and LG&E and KU 2021 Integrated Resources Plan; Technical Report; Louisville Gas and Electric and Kentucky Utilities: Louisville, KY, USA, 2021. Available online: https://psc.ky.gov/pscecf/2021-00393/rick.lovekamp%40lge-ku.com/10192021013101/5-LGE_KU_2021_IRP_Volume_III.pdf (accessed on 16 September 2022).
- Geospatial Data Science. 2021. Available online: https://www.nrel.gov/gis/index.html (accessed on 8 September 2022).
- NREL. Electricity ATB Technologies and Data Overview; Technical Report; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2021. Available online: https://atb.nrel.gov/electricity/2021/index (accessed on 15 January 2022).
- Javed, M.S.; Ma, T.; Jurasz, J.; Canales, F.A.; Lin, S.; Ahmed, S.; Zhang, Y. Economic Analysis and Optimization of a Renewable Energy Based Power Supply System with Different Energy Storages for a Remote Island. Renew. Energy 2021, 164, 1376–1394. [Google Scholar] [CrossRef]
- Heuberger, C.F.; Staffell, I.; Shah, N.; Dowell, N.M. A Systems Approach to Quantifying the Value of Power Generation and Energy Storage Technologies in Future Electricity Networks. Comput. Chem. Eng. 2017, 107, 247–256. [Google Scholar] [CrossRef]
- van der Wiel, K.; Stoop, L.; Van Zuijlen, B.; Blackport, R.; Van den Broek, M.; Selten, F. Meteorological Conditions Leading to Extreme Low Variable Renewable Energy Production and Extreme High Energy Shortfall. Renew. Sustain. Energy Rev. 2019, 111, 261–275. [Google Scholar] [CrossRef]
- Lauby, M.; Villafranca, R. Method to Model and Calculate Capacity Contributions of Variable Generation for Resource Adequacy Planning; Technical Report; NERC: Atlanta, GA, USA, 2011; Available online: https://www.nerc.com/pa/RAPA/ra/Reliability%20Assessments%20DL/IVGTF1-2.pdf (accessed on 9 September 2022).
- Copp, D.A.; Nguyen, T.A.; Byrne, R.H.; Chalamala, B.R. Optimal Sizing of Distributed Energy Resources for Planning 100% Renewable Electric Power Systems. Energy 2022, 239, 122436. [Google Scholar] [CrossRef]
- Denholm, P.; Arent, D.J.; Baldwin, S.F.; Bilello, D.E.; Brinkman, G.L.; Cochran, J.M.; Cole, W.J.; Frew, B.; Gevorgian, V.; Heeter, J.; et al. The Challenges of Achieving a 100% Renewable Electricity System in the United States. Joule 2021, 5, 1331–1352. [Google Scholar] [CrossRef]
- Denholm, P.; Brown, P.; Cole, W.; Mai, T.; Sergi, B.; Brown, M.; Jadun, P.; Ho, J.; Mayernik, J.; McMillan, C.; et al. Examining Supply-Side Options to Achieve 100% Clean Electricity by 2035; Technical Report; NREL: Golden, CO, USA, 2022. Available online: https://www.nrel.gov/docs/fy22osti/81644.pdf (accessed on 24 January 2023).
- Bistline, J.E.T. The Importance of Temporal Resolution in Modeling Deep Decarbonization of the Electric Power Sector. Environ. Res. Lett. 2021, 16, 084005. [Google Scholar] [CrossRef]
- Tejada-Arango, D.A.; Morales-España, G.; Wogrin, S.; Centeno, E. Power-Based Generation Expansion Planning for Flexibility Requirements. IEEE Trans. Power Syst. 2020, 35, 2012–2023. [Google Scholar] [CrossRef] [Green Version]
- Sepulveda, N.A.; Jenkins, J.D.; de Sisternes, F.J.; Lester, R.K. The Role of Firm Low-Carbon Electricity Resources in Deep Decarbonization of Power Generation. Joule 2018, 2, 2403–2420. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Lin, Y.; Lu, Z.; Qiao, Y.; Qin, J.; Kang, C.; Ye, X. Long Duration Flexibility Planning Challenges and Solutions for Power System With Ultra High Share of Renewable Energy. IEEE Open Access J. Power Energy 2022, 9, 412–424. [Google Scholar] [CrossRef]
- Lunz, B.; Stöcker, P.; Eckstein, S.; Nebel, A.; Samadi, S.; Erlach, B.; Fischedick, M.; Elsner, P.; Sauer, D.U. Scenario-based Comparative Assessment of Potential Future Electricity Systems—A New Methodological Approach Using Germany in 2050 as an Example. Appl. Energy 2016, 171, 555–580. [Google Scholar] [CrossRef] [Green Version]
- Van Zuijlen, B.; Zappa, W.; Turkenburg, W.; Van der Schrier, G.; Van den Broek, M. Cost-optimal Reliable Power Generation in a Deep Decarbonisation Future. Appl. Energy 2019, 253, 113587. [Google Scholar] [CrossRef]
- Zappa, W.; Junginger, M.; Van den Broek, M. Is a 100% Renewable European Power System Feasible by 2050? Applied Energy 2019, 233–234, 1027–1050. [Google Scholar] [CrossRef]
- Shaner, M.R.; Davis, S.J.; Lewis, N.S.; Caldeira, K. Geophysical constraints on the reliability of solar and wind power in the United States. Energy Environ. Sci. 2018, 11, 914–925. [Google Scholar] [CrossRef] [Green Version]
- Phadke, A.; Wooley, D.; Abhyankar, N.; Paliwal, U.; Paulos, B. 2035 The Report; Technical Report; Goldman School of Public Policy, University of California Berkeley: Berkeley, CA, USA, 2020; Available online: http://www.2035report.com/wp-content/uploads/2020/06/2035-Report.pdf (accessed on 4 April 2022).
- Larson, E.; Greig, C.; Jenkins, J.; Mayfield, E.; Pascale, A.; Zhang, C.; Drossman, J.; Williams, R.; Pacala, S.; Socolow, R.; et al. Net-Zero America: Potential Pathways, Infrastucture, and Impacts; Technical Report; Princeton University: Princeton, NJ, USA, 2021; Available online: https://netzeroamerica.princeton.edu/ (accessed on 4 April 2022).
- Gyanwali, K.; Komiyama, R.; Fujii, Y. Deep Decarbonization of Integrated Power Grid of Eastern South Asia Considering Hydrogen and CCS Technology. Int. J. Greenh. Gas Control 2021, 112, 103515. [Google Scholar] [CrossRef]
- Budischak, C.; Sewell, D.; Thomson, H.; Mach, L.; Veron, D.E.; Kempton, W. Cost-minimized combinations of wind power, solar power and electrochemical storage, powering the grid up to 99.9% of the time. J. Power Sources 2013, 225, 60–74. [Google Scholar] [CrossRef] [Green Version]
- Bloom, A.; Townsend, A.; Palchak, D.; Novacheck, J.; King, J.; Barrows, C.; Ibanez, E.; O’Connell, M.; Jordan, G.; Roberts, B.; et al. Eastern Renewable Generation Integration Study; Technical Report; NREL: Golden, CO, USA, 2016. Available online: https://www.nrel.gov/docs/fy16osti/64472.pdf (accessed on 24 January 2023).
- Jenkins, J.D.; Luke, M.; Thernstrom, S. Getting to Zero Carbon Emissions in the Electric Power Sector. Joule 2018, 2, 2498–2510. [Google Scholar] [CrossRef] [Green Version]
- Borasio, M.; Moret, S. Deep Decarbonisation of Regional Energy Systems: A Novel Modelling Approach and its Application to the Italian Energy Transition. Renew. Sustain. Energy Rev. 2022, 153, 111730. [Google Scholar] [CrossRef]
- United States Mid-Century Strategy for Deep Decarbonization. 2016. Available online: https://unfccc.int/files/focus/long-term_strategies/application/pdf/mid_century_strategy_report-final_red.pdf (accessed on 28 March 2022).
- Chapman, A.; Itaoka, K.; Farabi-Asl, H.; Fujii, Y.; Nakahara, M. Societal Penetration of Hydrogen into the Future Energy System: Impacts of Policy, Technology and Carbon Targets. Int. J. Hydrogen Energy 2020, 45, 3883–3898. [Google Scholar] [CrossRef]
- Southern Company. Implentation and Action towards Net Zero; Technical Report; Southern Company: Atlanta, GA, USA, 2020; Available online: https://www.southerncompany.com/content/dam/southern-company/pdf/public/Net-zero-report.pdf (accessed on 24 January 2023).
- Bistline, J.E.T.; Young, D.T. The role of natural gas in reaching net-zero emissions in the electric sector. Nat. Commun. 2022, 13, 4743. [Google Scholar] [CrossRef]
- Wu, T.; Wang, J.; Yue, M. On the Integration of Hydrogen Into Integrated Energy Systems: Modeling, Optimal Operation, and Reliability Assessment. IEEE Open Access J. Power Energy 2022, 9, 451–464. [Google Scholar] [CrossRef]
- Kiviluoma, J.; Helistö, N.; Putkonen, N.; Smith, C.; Koivisto, M.; Korpås, M.; Flynn, D.; Söder, L.; Taibi, E.; Guminski, A. Flexibility From the Electrification of Energy: How Heating, Transport, and Industries Can Support a 100% Sustainable Energy System. IEEE Power Energy Mag. 2022, 20, 55–65. [Google Scholar] [CrossRef]
- Kumano, T. A functional optimization based dynamic economic load dispatch considering ramping rate of thermal units output. In Proceedings of the 2011 IEEE/PES Power Systems Conference and Exposition, Phoenix, AZ, USA, 20–23 March 2011; pp. 1–8. [Google Scholar] [CrossRef]
- Luz, T.; Moura, P. 100% Renewable Energy Planning with Complementarity and Flexibility Based on a Multi-Objective Assessment. Appl. Energy 2019, 255, 113819. [Google Scholar] [CrossRef]
- Montero, L.; Bello, A.; Reneses, J. A Review on the Unit Commitment Problem: Approaches, Techniques, and Resolution Methods. Energies 2022, 15, 1296. [Google Scholar] [CrossRef]
- Guerra, K.; Haro, P.; Gutiérrez, R.; Gómez-Barea, A. Facing the High Share of Variable Renewable Energy in the Power System: Flexibility and Stability Requirements. Appl. Energy 2022, 310, 118561. [Google Scholar] [CrossRef]
- Palmintier, B.S.; Webster, M.D. Impact of Operational Flexibility on Electricity Generation Planning With Renewable and Carbon Targets. IEEE Trans. Sustain. Energy 2016, 7, 672–684. [Google Scholar] [CrossRef]
- Meus, J.; Poncelet, K.; Delarue, E. Applicability of a Clustered Unit Commitment Model in Power System Modeling. IEEE Trans. Power Syst. 2018, 33, 2195–2204. [Google Scholar] [CrossRef] [Green Version]
- Morales-España, G.; Tejada-Arango, D.A. Modeling the Hidden Flexibility of Clustered Unit Commitment. IEEE Trans. Power Syst. 2019, 34, 3294–3296. [Google Scholar] [CrossRef] [Green Version]
- Bird, L.; Lew, D. Integrating Wind and Solar Energy in the U.S. Bulk Power System: Lessons from Regional Integration Studies; Technical Report; NREL: Golden, CO, USA, 2012. Available online: https://www.osti.gov/biblio/1051913 (accessed on 24 January 2023).
- Akeyo, O.M.; Patrick, A.; Ionel, D.M. Study of Renewable Energy Penetration on a Benchmark Generation and Transmission System. Energies 2021, 14, 169. [Google Scholar] [CrossRef]
- Storn, R.; Price, K. Differential Evolution—A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces. J. Glob. Optim. 1997, 11, 341–359. [Google Scholar] [CrossRef]
- Muralikrishnan, N.; Jebaraj, L.; Rajan, C.C.A. A Comprehensive Review on Evolutionary Optimization Techniques Applied for Unit Commitment Problem. IEEE Access 2020, 8, 132980–133014. [Google Scholar] [CrossRef]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated World Map of the Köppen-Geiger Climate Classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Wang, J.; Zhao, D.; Li, G.; Chen, C. A Two-stage Approach for Combined Heat and Power Economic Emission Dispatch: Combining Multi-objective Optimization with Integrated Decision Making. Energy 2018, 162, 237–254. [Google Scholar] [CrossRef] [Green Version]
- Kentucky Mesonet at WKU. 2022. Available online: http://www.kymesonet.org/ (accessed on 15 January 2022).
- E.W. Brown Solar Facility Historical Data|LG&E and KU. 2022. Available online: http://lge-ku.com/live-solar-generation/historical-data (accessed on 2 February 2022).
- North American Electric Reliability Corporation. BAL-002-1; Technical Report; North American Electric Reliability Corporation: Atlanta, GA, USA, 2015; Available online: https://www.nerc.com/pa/Stand/Pages/BAL002-1RI.aspx (accessed on 30 July 2022).
- Western Electricity Coordinating Council. Balancing Authority and Regulation Overview; Technical Report; Western Electricity Coordinating Council: Salt Lake City, UT, USA, 2011; Available online: https://www.wecc.org/Administrative/06-Balancing%20Authority%20Overview.pdf (accessed on 29 January 2023).
- Ela, E.; O’Malley, M. Studying the Variability and Uncertainty Impacts of Variable Generation at Multiple Timescales. IEEE Trans. Power Syst. 2012, 27, 1324–1333. [Google Scholar] [CrossRef] [Green Version]
- Surender Reddy, S.; Bijwe, P.R.; Abhyankar, A.R. Real-Time Economic Dispatch Considering Renewable Power Generation Variability and Uncertainty Over Scheduling Period. IEEE Syst. J. 2015, 9, 1440–1451. [Google Scholar] [CrossRef]
- NREL. Life Cycle Greenhouse Gas Emissions from Electricity Generation: Update; Technical Report; NREL: Golden, CO, USA, 2021. Available online: https://www.nrel.gov/docs/fy21osti/80580.pdf (accessed on 14 July 2022).
- Hong, Y.Y.; Apolinario, G.F.D. Uncertainty in Unit Commitment in Power Systems: A Review of Models, Methods, and Applications. Energies 2021, 14, 6658. [Google Scholar] [CrossRef]
- Gong, H.; Alden, R.E.; Ionel, D.M. Stochastic Battery SOC Model of EV Community for V2G Operations Using CTA-2045 Standards. In Proceedings of the 2022 IEEE Transportation Electrification Conference & Expo (ITEC), Anaheim, CA, USA, 15–17 June 2022; pp. 1144–1147. [Google Scholar] [CrossRef]
- Crozier, C.; Quarton, C.; Mansor, N.; Pagnano, D.; Llewellyn, I. Modelling of the Ability of a Mixed Renewable Generation Electricity System with Storage to Meet Consumer Demand. Electricity 2022, 3, 2. [Google Scholar] [CrossRef]
- Lai, C.S.; McCulloch, M.D. Levelized Cost of Electricity for Solar Photovoltaic and Electrical Energy Storage. Appl. Energy 2017, 190, 191–203. [Google Scholar] [CrossRef]
Type | Ramp Rate [%] | a [] | b | c | Fuel Cost [$/MMBtu] | Aux [$/MWh] |
---|---|---|---|---|---|---|
NGCC | 4 | 0.000385 | 7.700745 | 630.0665 | 176 | 1.28 |
NGCT | 20 | 0.020731 | 2.741114 | 753.0348 | 176 | 5.65 |
Coal | 1.23 | 0.000001 | 10.5 | 0.00001 | 196 | 2.34 |
Case [GW] | Coal | NGCC | CCS | Hydrogen | NGCT | Hydro | Solar | Wind |
---|---|---|---|---|---|---|---|---|
C | 5 | 0.7 | 0 | 0 | 2 | 0.1 | 0.1 | 0 |
0 | 5.6 | 0 | 0 | 2 | 0.1 | 0.1 | 0 | |
5 | 0.7 | 0 | 0 | 2 | 0.1 | 0–20 | 0 | |
0 | 5.6 | 0 | 0 | 2 | 0.1 | 0–20 | 0 | |
5 | 0.7 | 0 | 0 | 2 | 0.1 | 0–20 | 0–10 | |
0 | 5.6 | 0 | 0 | 2 | 0.1 | 0–20 | 0–10 | |
0 | 0 | 7.6 | 0 | 0 | 0.1 | 0–20 | 0–10 | |
0 | 0 | 0 | 7.6 | 0 | 0.1 | 0–20 | 0–10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lewis, D.D.; Patrick, A.; Jones, E.S.; Alden, R.E.; Hadi, A.A.; McCulloch, M.D.; Ionel, D.M. Decarbonization Analysis for Thermal Generation and Regionally Integrated Large-Scale Renewables Based on Minutely Optimal Dispatch with a Kentucky Case Study. Energies 2023, 16, 1999. https://doi.org/10.3390/en16041999
Lewis DD, Patrick A, Jones ES, Alden RE, Hadi AA, McCulloch MD, Ionel DM. Decarbonization Analysis for Thermal Generation and Regionally Integrated Large-Scale Renewables Based on Minutely Optimal Dispatch with a Kentucky Case Study. Energies. 2023; 16(4):1999. https://doi.org/10.3390/en16041999
Chicago/Turabian StyleLewis, Donovin D., Aron Patrick, Evan S. Jones, Rosemary E. Alden, Abdullah Al Hadi, Malcolm D. McCulloch, and Dan M. Ionel. 2023. "Decarbonization Analysis for Thermal Generation and Regionally Integrated Large-Scale Renewables Based on Minutely Optimal Dispatch with a Kentucky Case Study" Energies 16, no. 4: 1999. https://doi.org/10.3390/en16041999
APA StyleLewis, D. D., Patrick, A., Jones, E. S., Alden, R. E., Hadi, A. A., McCulloch, M. D., & Ionel, D. M. (2023). Decarbonization Analysis for Thermal Generation and Regionally Integrated Large-Scale Renewables Based on Minutely Optimal Dispatch with a Kentucky Case Study. Energies, 16(4), 1999. https://doi.org/10.3390/en16041999