Pore Structure and Fractal Characteristics of Tight Sandstone: A Case Study for Huagang Formation in the Xihu Sag, East China Sea Basin, China
Abstract
:1. Introduction
2. Geological Setting
3. Experiments and Modeling
3.1. Sample and Experiments
3.2. Fractal Analysis Methods
3.2.1. Fractal Analysis Method from HPMI
3.2.2. Fractal Analysis Method from NMR
4. Results and Discussion
4.1. Physical Properties and Pore Types
4.2. Pore Throat Network Characteristics from HPMI
4.3. Pore Size Distributions from NMR
4.4. Fractal Analysis from NMR with Centrifugation
4.5. Fractal Analysis from Water-Saturated NMR
4.6. Fractal Analysis from HPMI
4.7. Comparison of Fractal Analysis from HPMI and NMR
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kang, Y.; Luo, P. Current status and prospect of key techniques for exploration and production of tight sandstone gas reservoirs in China. Pet. Explor. Dev. 2007, 34, 239–245. [Google Scholar]
- Dai, J.; Ni, Y.; Wu, X. Tight gas in China and its significance in exploration and exploitation. Pet. Explor. Dev. 2012, 39, 257–264. [Google Scholar] [CrossRef]
- Zou, C.; Zhu, R.; Liu, K.; Su, L.; Bai, B.; Zhang, X.; Yuan, X.; Wang, J. Tight gas sandstone reservoirs in China: Characteristics and recognition criteria. J. Pet. Sci. Eng. 2012, 88, 82–91. [Google Scholar] [CrossRef]
- Gao, H.; Li, H.A. Pore structure characterization, permeability evaluation and enhanced gas recovery techniques of tight gas sandstones. J. Nat. Gas Sci. Eng. 2016, 28, 536–547. [Google Scholar] [CrossRef]
- Li, P.; Zheng, M.; Bi, H.; Wu, S.; Wang, X. Pore throat structure and fractal characteristics of tight oil sandstone: A case study in the Ordos Basin, China. J. Pet. Sci. Eng. 2017, 149, 665–674. [Google Scholar] [CrossRef]
- Anovitz, L.M.; Cole, D.R. Characterization and analysis of porosity and pore structures. Rev. Mineral. Geochem. 2015, 80, 61–164. [Google Scholar] [CrossRef] [Green Version]
- Lai, J.; Wang, G.; Wang, Z.; Chen, J.; Pang, X.; Wang, S.; Zhou, Z.; He, Z.; Qin, Z.; Fan, X. A review on pore structure characterization in tight sandstones. Earth-Sci. Rev. 2018, 177, 436–457. [Google Scholar] [CrossRef]
- Schmitt, M.; Fernandes, C.P.; Wolf, F.G.; Neto, J.A.B.C.; Rahner, C.P.; Santos, V.S.S.D. Characterization of Brazilian tight gas sandstones relating permeability and Angstrom-to micron-scale pore structures. J. Nat. Gas Sci. Eng. 2015, 27, 785–807. [Google Scholar] [CrossRef]
- Fu, H.; Wang, X.; Zhang, L.; Gao, R.; Li, Z.; Xu, T.; Zhu, X.; Xu, W.; Li, Q. Investigation of the factors that control the development of pore structure in lacustrine shale: A case study of block X in the Ordos basin, China. J. Nat. Gas Sci. Eng. 2015, 26, 1422–1432. [Google Scholar] [CrossRef]
- Taylor, T.R.; Giles, M.R.; Hathon, L.A.; Diggs, T.N.; Braunsdorf, N.R.; Birbiglia, G.V.; Espejo, I.S. Sandstone diagenesis and reservoir quality prediction: Models, myths, and reality. AAPG Bull. 2010, 94, 1093–1132. [Google Scholar] [CrossRef]
- Golab, A.N.; Knackstedt, M.A.; Averdunk, H.; Senden, T. 3D porosity and mineralogy characterization in tight gas sandstones. Lead. Edge 2010, 29, 1476–1483. [Google Scholar] [CrossRef]
- Bera, B.; Mitra, S.K.; Vick, D. Understanding the micro structure of Berea Sandstone by the simultaneous use of micro-computed tomography (micro-CT) and focused ion beam-scanning electron microscopy (FIB-SEM). Micron 2011, 42, 412–418. [Google Scholar] [CrossRef] [PubMed]
- Comisky, J.T.; Newsham, K.E.; Rushing, J.A.; Blasingame, T.A. A comparative study of capillary-pressure-based empirical models for estimating absolute permeability in tight gas sands. In Proceedings of the SPE Annual Technical Conference and Exhibition, Anaheim, CA, USA, 11–14 November 2007; p. 110050. [Google Scholar]
- Liu, K.; Ostadhassan, M.; Kong, L. Fractal and multifractal characteristics of pore throats in the Bakken Shale. Transp. Porous Media 2019, 126, 579–598. [Google Scholar] [CrossRef]
- Zhao, P.; Wang, Z.; Sun, Z.; Cai, J.; Wang, L. Investigation on the pore structure and multifractal characteristics of tight oil reservoirs using NMR measurements: Permian Lucaogou Formation in Jimusaer Sag, Junggar Basin. Mar. Pet. Geol. 2017, 86, 1067–1081. [Google Scholar] [CrossRef]
- Labani, M.M.; Rezaee, R.; Saeedi, A.; Hinai, A.A. Evaluation of pore size spectrum of gas shale reservoirs using low pressure nitrogen adsorption, gas expansion and mercury porosimetry: A case study from the Perth and Canning basins, western Australia. J. Pet. Sci. Eng. 2013, 112, 7–16. [Google Scholar] [CrossRef]
- Cao, Z.; Liu, G.; Zhan, H.; Li, C.; You, Y.; Yang, C.; Jiang, H. Pore structure characterization of Chang-7 tight sandstone using MICP combined with N2GA techniques and its geological control factors. Sci. Rep. 2016, 6, 36919. [Google Scholar] [CrossRef] [PubMed]
- Maniscalco, R.; Fazio, E.; Punturo, R.; Cirrincione, R.; Di Stefano, A.; Distefano, S.; Forzese, M.; Lanzafame, G.; Leonardi, G.S.; Montalbano, S.; et al. The porosity in heterogeneous carbonate reservoir rocks: Tectonic versus diagenetic imprint—A multi-scale study from the hyblean plateau (SE Sicily, Italy). Geosciences 2022, 12, 149. [Google Scholar] [CrossRef]
- Shao, X.; Pang, X.; Jiang, F.; Li, L.; Huyan, Y.; Zheng, D. Reservoir characterization of tight sandstones using nuclear magnetic resonance and incremental pressure mercury injection experiments: Implication for tight sand gas reservoir quality. Energy Fuels 2017, 31, 10420–10431. [Google Scholar] [CrossRef]
- Broseta, D.; Barré, L.; Vizika, O.; Shahidzadeh, N.; Guilbaud, J.-P.; Lyonnard, S. Capillary condensation in a fractal porous medium. Phys. Rev. Lett. 2001, 86, 5313–5316. [Google Scholar] [CrossRef]
- Sakhaee-Pour, A.; Li, W. Fractal dimensions of shale. J. Nat. Gas Sci. Eng. 2016, 30, 578–582. [Google Scholar] [CrossRef]
- Katz, A.J.; Thompson, A.H. Fractal sandstone pores: Implications for conductivity and pore formation. Phys. Rev. Lett. 1985, 54, 1325–1328. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Huang, Z.; Zhao, L.; Han, W.; Ding, C.; Sun, X.; Yan, R.; Zhang, T.; Yang, X.; Wang, R. Pore structure and multi-fractal analysis of tight sandstone using MIP, NMR and NMRC methods: A case study from the Kuqa depression, China. J. Pet. Sci. Eng. 2019, 178, 544–558. [Google Scholar] [CrossRef]
- Lai, J.; Wang, G.; Fan, Z.; Chen, J.; Wang, S.; Zhou, Z.; Fan, X. Insight into the pore structure of tight sandstones using NMR and HPMI measurements. Energy Fuel. 2016, 30, 10200–10214. [Google Scholar] [CrossRef]
- Su, A.; Chen, H.; Chen, X.; He, C.; Liu, H.; Li, Q.; Wang, C. The characteristics of low permeability reservoirs, gas origin, generation and charge in the central and western Xihu Depression, east China sea basin. J. Nat. Gas Sci. Eng. 2018, 53, 94–109. [Google Scholar] [CrossRef]
- Xiao, D.; Lu, Z.; Jiang, S.; Lu, S. Comparison and integration of experimental methods to characterize the full-range pore features of tight gas sandstone—A case study in Songliao basin of China. J. Nat. Gas Sci. Eng. 2016, 34, 1412–1421. [Google Scholar] [CrossRef]
- Jiang, S.; Li, S.; Chen, X.; Zhang, H.; Wang, G. Simulation of oil–gas migration and accumulation in the east China sea continental shelf basin: A case study from the Xihu depression. Geol. J. 2016, 51, 229–243. [Google Scholar] [CrossRef]
- Zhao, Z.; Dong, C.; Zhang, X.; Lin, C.; Huang, X.; Duan, D.; Lin, J.; Zeng, F.; Li, D. Reservoir controlling factors of the Paleogene Oligocene Huagang formation in the north central part of the Xihu Depression, East China Sea Basin, China. J. Pet. Sci. Eng. 2019, 175, 159–172. [Google Scholar]
- Hao, L.; Wang, Q.; Guo, R.; Tuo, C.; Ma, D.; Mou, W.; Tian, B. Diagenetic fluids evolution of Oligocene Huagang Formation sandstone reservoir in the south of Xihu Sag, the East China Sea Shelf Basin: Constraints from petrology, mineralogy, and isotope geochemistry. Acta Oceanol. Sin. 2018, 37, 25–34. [Google Scholar] [CrossRef]
- Zhang, J.; Yu, Y.; Zhang, T.; Zhang, S.; Tang, X. A discussion on the exploration potential of deep basin gas in Xihu sag, East China Sea. China Offshore Oil Gas 2013, 25, 24–29. [Google Scholar]
- Nooruddin, H.A.; Hossain, M.E.; Hasan, A.; Okasha, T. Comparison of permeability models using mercury injection capillary pressure data on carbonate rock samples. J. Pet. Sci. Eng. 2014, 121, 9–22. [Google Scholar] [CrossRef]
- Washburn, E.W. Note on a method of determining the distribution of pore sizes in a porous material. Proc. Natl. Acad. Sci. USA 1921, 7, 115–116. [Google Scholar] [CrossRef] [Green Version]
- Daigle, H.; Thomas, B.; Rowe, H.; Nieto, M. Nuclear magnetic resonance characterization of shallow marine sediments from the Nankai Trough, Integrated Ocean Drilling Program Expedition 333. J. Geophys. Res. Solid Earth 2014, 119, 2631–2650. [Google Scholar] [CrossRef]
- Müller-Huber, E.; Schön, J.; Börner, F. Pore space characterization in carbonate rocks—Approach to combine nuclear magnetic resonance and elastic wave velocity measurements. J. Appl. Geophys. 2016, 127, 68–81. [Google Scholar]
- Ge, X.; Fan, Y.; Zhu, X.; Chen, Y.; Li, R. Determination of nuclear magnetic resonance T2 cutoff value based on multifractal theory—An application in sandstone with complex pore structure. Geophysics 2015, 80, D11–D21. [Google Scholar]
- Dong, J.; Huang, Z.; Chen, J.; Zhang, W.; Wang, L.; Li, T.; Huang, Q.; Liu, L. A new method to establish NMR T2 spectrum based on bimodal Gaussian density function: A case study of tight sandstone in East China Sea Basin. J. Pet. Sci. Eng. 2018, 167, 628–637. [Google Scholar]
- Kulesza, S.; Bramowicz, M. A comparative study of correlation methods for determination offractal parameters in surface characterization. Appl. Surf. Sci. 2014, 293, 196–201. [Google Scholar] [CrossRef]
- Cai, J.; Wei, W.; Hu, X.; Wood, D.A. Electrical conductivity models in saturated porous media: A review. Earth Sci. Rev. 2017, 171, 419–433. [Google Scholar]
- Pfeifer, P.; Avnir, D. Chemistry in no integral dimensions between two and three: I. Fractal theory of heterogeneous surfaces. J. Chem. Phys. 1982, 79, 3369–3558. [Google Scholar]
- Zhang, Z.; Weller, A. Fractal dimension of pore-space geometry of an Eocene sandstone formation. Geophysics 2014, 79, D377–D387. [Google Scholar]
- Rezaee, R.; Saeedi, A.; Clennell, B. Tight gas sands permeability estimation from mercury injection capillary pressure and nuclear magnetic resonance data. J. Pet. Sci. Eng. 2012, 88, 92–99. [Google Scholar]
- Dillinger, A.; Esteban, L. Experimental evaluation of reservoir quality in Mesozoic formations of the Perth Basin (Western Australia) by using a laboratory low field Nuclear Magnetic Resonance. Mar. Pet. Geol. 2014, 57, 455–469. [Google Scholar]
- Wang, Z.; Pan, M.; Shi, Y.; Liu, L.; Xiong, F.; Qin, Z. Fractal analysis of Donghetang sandstones using NMR measurements. Energy Fuels 2018, 32, 2973–2982. [Google Scholar] [CrossRef]
- Conlon, P.A.; Gallagher, P.T.; McAteer, R.T.J.; Ireland, J.; Young, C.A.; Kestener, P.; Hewett, R.J.; Maguire, K. Multifractal properties of evolving active regions. Sol. Phys. 2009, 248, 87–99. [Google Scholar]
- Shao, X.; Pang, X.; Li, H.; Zhang, X. Fractal analysis of pore network in tight gas sandstones using NMR method: A case study from the Ordos Basin, China. Energy Fuels 2017, 31, 10358–10368. [Google Scholar]
- Tavakoli, V.; Rahimpour-Bonab, H.; Esrafili-Dizaji, B. Diagenetic controlled reservoir quality of South Pars gas field, an integrated approach. Comptes Rendus Géoscience 2011, 343, 55–71. [Google Scholar] [CrossRef]
Sample | Well | Depth(m) | Formation | Porosity(%) | Permeability(mD) |
---|---|---|---|---|---|
1 | Well A | 3600.72 | H3 | 10.84 | 11.88 |
2 | 3961.62 | H4 | 5.13 | 0.17 | |
3 | 3980.48 | H4 | 8.61 | 0.96 | |
4 | Well B | 3742.45 | H3 | 12.84 | 23.49 |
5 | 3792.35 | H3 | 12.69 | 54.82 | |
6 | Well C | 3126.45 | H3 | 15.82 | 14.29 |
7 | 3132.47 | H3 | 16.08 | 5.37 |
Sample | Well | Depth (m) | RQI (μm) | Maximum Radius (μm) | Average Radius (μm) | Entry Pressure (MPa) | Median Pressure (MPa) | Relative Sorting Factor | Maximum Mercury Saturation (%) |
---|---|---|---|---|---|---|---|---|---|
1 | Well A | 3600.72 | 1.05 | 13.35 | 3.12 | 0.06 | 4.39 | 2.44 | 67.41 |
2 | Well A | 3961.62 | 0.18 | 1.10 | 0.22 | 0.67 | 17.42 | 15.91 | 73.88 |
3 | Well A | 3980.48 | 0.33 | 2.80 | 0.70 | 0.26 | 1.52 | 4.19 | 94.82 |
4 | Well B | 3742.45 | 1.35 | 13.36 | 4.54 | 0.06 | 0.27 | 1.01 | 88.85 |
5 | Well B | 3792.35 | 2.08 | 21.37 | 6.28 | 0.03 | 0.12 | 0.49 | 98.16 |
6 | Well C | 3126.45 | 0.95 | 6.68 | 1.47 | 0.11 | 2.59 | 4.05 | 70.70 |
7 | Well C | 3132.47 | 0.58 | 2.81 | 0.89 | 0.26 | 1.23 | 3.41 | 90.08 |
Sample | NMR Porosity (%) | T2peak (ms) | T2gm (ms) | T2cutoff (ms) | Swi (%) | Movable-Fluid Porosity (%) | Bound-Fluid Porosity (%) |
---|---|---|---|---|---|---|---|
1 | 11.28 | 67.48 | 13.56 | 3.41 | 30.19 | 7.87 | 3.40 |
2 | 5.24 | 0.85 | 2.38 | 2.25 | 56.87 | 2.26 | 2.98 |
3 | 9.12 | 18.04 | 5.67 | 5.54 | 49.78 | 4.58 | 4.54 |
4 | 9.80 | 51.11 | 10.33 | 2.58 | 28.85 | 6.97 | 2.83 |
5 | 13.65 | 77.53 | 19.65 | 4.50 | 24.75 | 10.27 | 3.38 |
6 | 16.95 | 109.70 | 33.39 | 36.12 | 47.64 | 8.88 | 8.08 |
7 | 16.63 | 31.44 | 17.90 | 19.34 | 50.91 | 8.17 | 8.47 |
Sample | Water Saturation (%) | ||
---|---|---|---|
1000 r/min | 2000 r/min | 3000 r/min | |
1 | 63.01 | 42.51 | 30.19 |
2 | 80.19 | 62.47 | 56.87 |
3 | 83.07 | 65.88 | 49.78 |
4 | 51.97 | 38.42 | 28.85 |
5 | 41.54 | 31.17 | 24.75 |
6 | 76.21 | 59.93 | 47.64 |
7 | 84.63 | 64.10 | 50.91 |
Sample | 1000 r/min | 2000 r/min | 3000 r/min | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Ds | R2 | Dl | R2 | Ds | R2 | Dl | R2 | Ds | R2 | Dl | R2 | |
1 | 2.05 | 0.96 | 2.84 | 0.99 | 2.03 | 0.95 | 2.92 | 0.99 | 2.13 | 0.93 | 2.96 | 0.99 |
2 | 2.08 | 0.95 | 2.91 | 0.92 | 2.08 | 0.94 | 2.96 | 0.83 | 2.10 | 0.94 | 2.97 | 0.82 |
3 | 2.36 | 0.92 | 2.84 | 0.97 | 2.35 | 0.91 | 2.88 | 0.97 | 2.34 | 0.89 | 2.91 | 0.97 |
4 | 2.04 | 0.96 | 2.87 | 0.98 | 2.05 | 0.95 | 2.94 | 0.97 | 2.09 | 0.94 | 2.96 | 0.97 |
5 | 2.14 | 0.94 | 2.89 | 0.97 | 2.19 | 0.92 | 2.89 | 0.99 | 2.26 | 0.92 | 2.90 | 0.99 |
6 | 2.39 | 0.98 | 2.78 | 0.98 | 2.39 | 0.97 | 2.81 | 0.99 | 2.38 | 0.96 | 2.86 | 0.99 |
7 | 2.31 | 0.98 | 2.80 | 0.98 | 2.28 | 0.97 | 2.82 | 0.99 | 2.32 | 0.96 | 2.88 | 0.98 |
Sample | 1000 r/min | 2000 r/min | 3000 r/min | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Ds | R2 | Dl | R2 | Ds | R2 | Dl | R2 | Ds | R2 | Dl | R2 | |
1 | 2.05 | 0.96 | 2.84 | 0.99 | 2.03 | 0.95 | 2.92 | 0.99 | 2.13 | 0.93 | 2.96 | 0.99 |
2 | 2.08 | 0.95 | 2.91 | 0.92 | 2.08 | 0.94 | 2.96 | 0.83 | 2.10 | 0.94 | 2.97 | 0.82 |
3 | 2.36 | 0.92 | 2.84 | 0.97 | 2.35 | 0.91 | 2.88 | 0.97 | 2.34 | 0.89 | 2.91 | 0.97 |
4 | 2.04 | 0.96 | 2.87 | 0.98 | 2.05 | 0.95 | 2.94 | 0.97 | 2.09 | 0.94 | 2.96 | 0.97 |
5 | 2.14 | 0.94 | 2.89 | 0.97 | 2.19 | 0.92 | 2.89 | 0.99 | 2.26 | 0.92 | 2.90 | 0.99 |
6 | 2.39 | 0.98 | 2.78 | 0.98 | 2.39 | 0.97 | 2.81 | 0.99 | 2.38 | 0.96 | 2.86 | 0.99 |
7 | 2.31 | 0.98 | 2.80 | 0.98 | 2.28 | 0.97 | 2.82 | 0.99 | 2.32 | 0.96 | 2.88 | 0.98 |
Sample | Bound-Fluid Pores | Movable-Fluid Pores | ||
---|---|---|---|---|
Dbnd | R2 | Dmov | R2 | |
1 | 2.168 | 0.968 | 2.725 | 0.993 |
2 | 2.109 | 0.959 | 2.870 | 0.952 |
3 | 2.359 | 0.930 | 2.803 | 0.974 |
4 | 2.158 | 0.976 | 2.697 | 0.997 |
5 | 2.272 | 0.975 | 2.660 | 0.992 |
6 | 2.393 | 0.980 | 2.741 | 0.980 |
7 | 2.315 | 0.984 | 2.762 | 0.978 |
Sample | Small Pores | Transitional Pores | Large Pores | |||
---|---|---|---|---|---|---|
Ds | R2 | Dt | R2 | Dl | R2 | |
1 | 2.910 | 0.984 | 2.844 | 0.999 | 2.984 | 0.987 |
2 | 2.717 | 0.999 | 2.815 | 0.998 | 2.987 | 0.784 |
3 | 2.476 | 0.995 | 2.614 | 0.994 | 2.987 | 0.959 |
4 | 2.753 | 0.992 | 2.803 | 0.990 | 2.969 | 0.831 |
5 | 2.404 | 0.983 | 2.720 | 0.987 | 2.967 | 0.787 |
6 | 2.888 | 0.942 | 2.774 | 0.992 | 2.985 | 0.975 |
7 | 2.706 | 0.997 | 2.620 | 0.996 | 2.988 | 0.993 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, J.; Huang, Z.; Chen, J.; Li, T.; Zhao, J.; Pan, Y.; Qu, T. Pore Structure and Fractal Characteristics of Tight Sandstone: A Case Study for Huagang Formation in the Xihu Sag, East China Sea Basin, China. Energies 2023, 16, 2013. https://doi.org/10.3390/en16042013
Dong J, Huang Z, Chen J, Li T, Zhao J, Pan Y, Qu T. Pore Structure and Fractal Characteristics of Tight Sandstone: A Case Study for Huagang Formation in the Xihu Sag, East China Sea Basin, China. Energies. 2023; 16(4):2013. https://doi.org/10.3390/en16042013
Chicago/Turabian StyleDong, Jin, Zhilong Huang, Jinlong Chen, Tianjun Li, Jing Zhao, Yongshuai Pan, and Tong Qu. 2023. "Pore Structure and Fractal Characteristics of Tight Sandstone: A Case Study for Huagang Formation in the Xihu Sag, East China Sea Basin, China" Energies 16, no. 4: 2013. https://doi.org/10.3390/en16042013
APA StyleDong, J., Huang, Z., Chen, J., Li, T., Zhao, J., Pan, Y., & Qu, T. (2023). Pore Structure and Fractal Characteristics of Tight Sandstone: A Case Study for Huagang Formation in the Xihu Sag, East China Sea Basin, China. Energies, 16(4), 2013. https://doi.org/10.3390/en16042013