Does Information and Communication Technology Trade Openness Matter for China’s Energy Transformation and Environmental Quality?
Abstract
:1. Introduction
2. Literature Review
3. Variable Description and Model Specification
3.1. Variable Description
3.2. Model Specification
4. Results and Discussion
4.1. Unit Root Test
4.2. Cointegration Test
4.3. Effect of CTO on Energy Transformation and Environmental Quality
4.4. Diagnostic Tests
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hao, Y. The relationship between renewable energy consumption, carbon emissions, output, and export in industrial and agricultural sectors: Evidence from China. Environ. Sci. Pollut. Res. 2022, 29, 63081–63098. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wang, Z.; Zhong, Z. CO2 emissions, economic growth, renewable and non-renewable energy production and foreign trade in China. Renew. Energy 2019, 131, 208–216. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, J.; Lin, Y.; Si, Y.; Huang, C.; Yang, J.; Huang, B.; Li, W. Present situation and future prospect of renewable energy in China. Renew. Sustain. Energy Rev. 2017, 76, 865–871. [Google Scholar] [CrossRef]
- Wang, Q. Effective policies for renewable energy—The example of China’s wind power—Lessons for China’s photovoltaic power. Renew. Sustain. Energy Rev. 2010, 14, 702–712. [Google Scholar] [CrossRef]
- Tyagi, V.V.; Rahim, N.A.; Rahim, N.A.; Jeyraj, A.; Selvaraj, L. Progress in solar PV technology: Research and achievement. Renew. Sustain. Energy Rev. 2013, 20, 443–461. [Google Scholar] [CrossRef]
- Zhang, X.; Kumar, A. Evaluating renewable energy-based rural electrification program in western China: Emerging problems and possible scenarios. Renew. Sustain. Energy Rev. 2011, 15, 773–779. [Google Scholar] [CrossRef]
- Perera, F. Pollution from fossil-fuel combustion is the leading environmental threat to global pediatric health and equity: Solutions exist. Int. J. Environ. Res. Public. Health 2018, 15, 16. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, Z.; Ahmad, M.; Murshed, M.; Shah, M.I.; Mahmood, H.; Abbas, S. How do green energy technology investments, technological innovation, and trade globalization enhance green energy supply and stimulate environmental sustainability in the G7 countries? Gondwana Res. 2022, 112, 105–115. [Google Scholar] [CrossRef]
- He, Y. Investigating the Routes toward Environmental Sustainability: Fresh Insights from Korea. Sustainability 2023, 15, 602. [Google Scholar] [CrossRef]
- He, Y.; Li, X.; Huang, P.; Wang, J. Exploring the Road toward Environmental Sustainability: Natural Resources, Renewable Energy Consumption, Economic Growth, and Greenhouse Gas Emissions. Sustainability 2022, 14, 1579. [Google Scholar] [CrossRef]
- Zahoor, Z.; Khan, I.; Hou, F. Clean energy investment and financial development as determinants of environment and sustainable economic growth: Evidence from China. Environ. Sci. Pollut. Res. 2022, 29, 16006–16016. [Google Scholar] [CrossRef]
- Tan, H.; Iqbal, N.; Wu, Z. Evaluating the impact of stakeholder engagement for renewable energy sources and economic growth for CO2 emission. Renew. Energy 2022, 198, 999–1007. [Google Scholar] [CrossRef]
- Bhattarai, U.; Maraseni, T.; Apan, A. Assay of renewable energy transition: A systematic literature review. Sci. Total Environ. 2022, 833, 155159. [Google Scholar] [CrossRef]
- Luthra, S.; Kumar, S.; Garg, D.; Haleem, A. Barriers to renewable/sustainable energy technologies adoption: Indian perspective. Renew. Sustain. Energy Rev. 2015, 41, 762–776. [Google Scholar] [CrossRef]
- Timilsina, G.R.; Kurdgelashvili, L.; Narbel, P.A. Solar energy: Markets, economics and policies. Renew. Sustain. Energy Rev. 2012, 16, 449–465. [Google Scholar] [CrossRef]
- Simpson, N.P.; Rabenold, C.J.; Sowman, M.; Shearing, C.D. Adoption rationales and effects of off-grid renewable energy access for African youth: A case study from Tanzania. Renew. Sustain. Energy Rev. 2021, 141, 110793. [Google Scholar] [CrossRef]
- Usman, M.; Balsalobre-Lorente, D.; Jahanger, A.; Ahmad, P. Are Mercosur economies going green or going away? An empirical investigation of the association between technological innovations, energy use, natural resources and GHG emissions. Gondwana Res. 2023, 113, 53–70. [Google Scholar] [CrossRef]
- Uhunamure, S.E.; Shale, K. A SWOT Analysis approach for a sustainable transition to renewable energy in South Africa. Sustainability 2021, 13, 3933. [Google Scholar] [CrossRef]
- Hassan, A.A.; El Habrouk, M.; Deghedie, S. Renewable Energy for Robots and Robots for Renewable Energy–A Review. Robotica 2020, 38, 1576–1604. [Google Scholar] [CrossRef]
- Yakubu, I.N.; Kapusuzoglu, A.; Ceylan, N.B. ICT Trade and Energy Transition in the BRICS Economies. In Sustainability in Energy Business and Finance; Springer: Berlin/Heidelberg, Germany, 2022; pp. 13–24. [Google Scholar]
- Nejati, M.; Shah, M.I. How does ICT trade shape environmental impacts across the north-south regions? Intra-regional and Inter-regional perspective from dynamic CGE model. Technol. Forecast. Soc. Chang. 2023, 186, 122168. [Google Scholar] [CrossRef]
- Tzeremes, P.; Dogan, E.; Alavijeh, N.K. Analyzing the nexus between energy transition, environment and ICT: A step towards COP26 targets. J. Environ. Manag. 2023, 326, 116598. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Huang, P. Exploring the Forms of the Economic Effects of Renewable Energy Consumption: Evidence from China. Sustainability 2022, 14, 8212. [Google Scholar] [CrossRef]
- Atsu, F.; Adams, S.; Adjei, J. ICT, energy consumption, financial development, and environmental degradation in South Africa. Heliyon 2021, 7, e07328. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Zhang, Z. Energy and Economic Effects of the COVID-19 Pandemic: Evidence from OECD Countries. Sustainability 2022, 14, 12043. [Google Scholar] [CrossRef]
- Faisal, F.; Tursoy, T.; Pervaiz, R. Does ICT lessen CO2 emissions for fast-emerging economies? An application of the heterogeneous panel estimations. Environ. Sci. Pollut. Res. 2020, 27, 10778–10789. [Google Scholar] [CrossRef]
- Zhou, X.; Hang, Y.; Zhou, D.; Ang, B.W.; Wang, Q.; Su, B.; Zhou, P. Carbon-economic inequality in global ICT trade. Iscience 2022, 25, 105604. [Google Scholar] [CrossRef]
- Evans, O.; Mesagan, E.P. ICT-trade and pollution in Africa: Do governance and regulation matter? J. Policy Model. 2022, 44, 511–531. [Google Scholar] [CrossRef]
- Ma, Q.; Tariq, M.; Mahmood, H.; Khan, Z. The nexus between digital economy and carbon dioxide emissions in China: The moderating role of investments in research and development. Technol. Soc. 2022, 68, 101910. [Google Scholar] [CrossRef]
- Usman, A.; Ozturk, I.; Ullah, S.; Hassan, A. Does ICT have symmetric or asymmetric effects on CO2 emissions? Evidence from selected Asian economies. Technol. Soc. 2021, 67, 101692. [Google Scholar] [CrossRef]
- Higón, D.A.; Gholami, R.; Shirazi, F. ICT and environmental sustainability: A global perspective. Telemat. Inform. 2017, 34, 85–95. [Google Scholar] [CrossRef]
- Zhang, C.; Khan, I.; Dagar, V.; Saeed, A.; Zafar, M.W. Environmental impact of information and communication technology: Unveiling the role of education in developing countries. Technol. Forecast. Soc. Chang. 2022, 178, 121570. [Google Scholar] [CrossRef]
- Khan, N.; Baloch, M.A.; Saud, S.; Fatima, T. The effect of ICT on CO2 emissions in emerging economies: Does the level of income matters? Environ. Sci. Pollut. Res. 2018, 25, 22850–22860. [Google Scholar]
- Zhang, C.; Liu, C. The impact of ICT industry on CO2 emissions: A regional analysis in China. Renew. Sustain. Energy Rev. 2015, 44, 12–19. [Google Scholar] [CrossRef]
- Nath, H.K.; Liu, L. Information and communications technology (ICT) and services trade. Inf. Econ. Policy 2017, 41, 81–87. [Google Scholar] [CrossRef] [Green Version]
- Azam, A.; Rafiq, M.; Shafique, M.; Yuan, J. An empirical analysis of the non-linear effects of natural gas, nuclear energy, renewable energy and ICT-Trade in leading CO2 emitter countries: Policy towards CO2 mitigation and economic sustainability. J. Environ. Manag. 2021, 286, 112232. [Google Scholar] [CrossRef]
- Adeleye, B.N.; Adedoyin, F.; Nathaniel, S. The criticality of ICT-trade nexus on economic and inclusive growth. Inf. Technol. Dev. 2021, 27, 293–313. [Google Scholar] [CrossRef]
- Tian, J.; Yu, L.; Xue, R.; Zhuang, S.; Shan, Y. Global low-carbon energy transition in the post-COVID-19 era. Appl. Energy 2022, 307, 118205. [Google Scholar] [CrossRef]
- Ritchie, H.; Roser, M.; Rosado, P.; CO2 and Greenhouse Gas Emissions. Our World Data. 2020. Available online: https://ourworldindata.org/co2-and-greenhouse-gas-emissions (accessed on 3 January 2023).
- Asadnabizadeh, M. Critical findings of the sixth assessment report (AR6) of working Group I of the intergovernmental panel on climate change (IPCC) for global climate change policymaking a summary for policymakers (SPM) analysis. Int. J. Clim. Chang. Strateg. Manag. 2022; ahead of print. [Google Scholar] [CrossRef]
- Gagnon, L.; Belanger, C.; Uchiyama, Y. Life-cycle assessment of electricity generation options: The status of research in year 2001. Energy Policy 2002, 30, 1267–1278. [Google Scholar] [CrossRef]
- Capurso, T.; Stefanizzi, M.; Torresi, M.; Camporeale, S.M. Perspective of the role of hydrogen in the 21st century energy transition. Energy Convers. Manag. 2022, 251, 114898. [Google Scholar] [CrossRef]
- Derkenbaeva, E.; Vega, S.H.; Hofstede, G.J.; Van Leeuwen, E. Positive energy districts: Mainstreaming energy transition in urban areas. Renew. Sustain. Energy Rev. 2022, 153, 111782. [Google Scholar] [CrossRef]
- Wahlund, M.; Palm, J. The role of energy democracy and energy citizenship for participatory energy transitions: A comprehensive review. Energy Res. Soc. Sci. 2022, 87, 102482. [Google Scholar] [CrossRef]
- Johnson, D.L.; Ambrose, S.H.; Bassett, T.J.; Bowen, M.L.; Crummey, D.E.; Isaacson, J.S.; Johnson, D.N.; Lamb, P.; Saul, M.; Winter-Nelson, A.E. Meanings of environmental terms. J. Environ. Qual. 1997, 26, 581–589. [Google Scholar] [CrossRef]
- Van Kamp, I.; Leidelmeijer, K.; Marsman, G.; De Hollander, A. Urban environmental quality and human well-being: Towards a conceptual framework and demarcation of concepts; A literature study. Landsc. Urban Plan. 2003, 65, 5–18. [Google Scholar] [CrossRef]
- Alola, A.A.; Kirikkaleli, D. The nexus of environmental quality with renewable consumption, immigration, and healthcare in the US: Wavelet and gradual-shift causality approaches. Environ. Sci. Pollut. Res. 2019, 26, 35208–35217. [Google Scholar] [CrossRef]
- Wada, I.; Faizulayev, A.; Bekun, F.V. Exploring the role of conventional energy consumption on environmental quality in Brazil: Evidence from cointegration and conditional causality. Gondwana Res. 2021, 98, 244–256. [Google Scholar] [CrossRef]
- Tan, F.; Lean, H.H.; Khan, H. Growth and environmental quality in Singapore: Is there any trade-off? Ecol. Indic. 2014, 47, 149–155. [Google Scholar] [CrossRef]
- Charfeddine, L.; Al-Malk, A.Y.; Al Korbi, K. Is it possible to improve environmental quality without reducing economic growth: Evidence from the Qatar economy. Renew. Sustain. Energy Rev. 2018, 82, 25–39. [Google Scholar] [CrossRef]
- Zhang, C.; Zhou, X. Does foreign direct investment lead to lower CO2 emissions? Evidence from a regional analysis in China. Renew. Sustain. Energy Rev. 2016, 58, 943–951. [Google Scholar] [CrossRef]
- Shahbaz, M.; Balsalobre-Lorente, D.; Sinha, A. Foreign direct Investment–CO2 emissions nexus in Middle East and North African countries: Importance of biomass energy consumption. J. Clean. Prod. 2019, 217, 603–614. [Google Scholar] [CrossRef] [Green Version]
- Salahuddin, M.; Alam, K.; Ozturk, I.; Sohag, K. The effects of electricity consumption, economic growth, financial development and foreign direct investment on CO2 emissions in Kuwait. Renew. Sustain. Energy Rev. 2018, 81, 2002–2010. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Zuo, Z.; Cheng, Y.; Cheng, J.; Xu, D. Towards a decoupling between regional economic growth and CO2 emissions in China’s mining industry: A comprehensive decomposition framework. Resour. Policy 2023, 80, 103271. [Google Scholar] [CrossRef]
- González-Álvarez, M.; Montañés, A. CO2 emissions, energy consumption, and economic growth: Determining the stability of the 3E relationship. Econ. Model. 2023, 121, 106195. [Google Scholar] [CrossRef]
- Chen, X.; Rahaman, M.A.; Murshed, M.; Mahmood, H.; Hossain, M.A. Causality analysis of the impacts of petroleum use, economic growth, and technological innovation on carbon emissions in Bangladesh. Energy 2023, 267, 126565. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, Y.; Zhou, L.; Zhang, Y.; Qin, B.; Spencer, R.G.; Brookes, J.D.; Jeppesen, E.; Weyhenmeyer, G.A.; Wu, F. Urbanization in developing countries overrides catchment productivity in fueling inland water CO2 emissions. Glob. Chang. Biol. 2023, 29, 1–4. [Google Scholar] [CrossRef]
- Liu, H.; Wong, W.-K.; Cong, P.T.; Nassani, A.A.; Haffar, M.; Abu-Rumman, A. Linkage among Urbanization, energy Consumption, economic growth and carbon Emissions. Panel data analysis for China using ARDL model. Fuel 2023, 332, 126122. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, W.; Huo, T.; Streets, D.G.; Wang, C. Investigating the spatio-temporal influences of urbanization and other socioeconomic factors on city-level industrial NOx emissions: A case study in China. Environ. Impact Assess. Rev. 2023, 99, 106998. [Google Scholar] [CrossRef]
- Rasoulinezhad, E.; Taghizadeh-Hesary, F.; Sung, J.; Panthamit, N. Geopolitical risk and energy transition in russia: Evidence from ARDL bounds testing method. Sustainability 2020, 12, 2689. [Google Scholar] [CrossRef] [Green Version]
- He, K.; Ramzan, M.; Awosusi, A.A.; Ahmed, Z.; Ahmad, M.; Altuntaş, M. Does globalization moderate the effect of economic complexity on CO2 emissions? Evidence from the top 10 energy transition economies. Front. Environ. Sci. 2021, 9, 778088. [Google Scholar] [CrossRef]
- Udemba, E.N.; Tosun, M. Energy transition and diversification: A pathway to achieve sustainable development goals (SDGs) in Brazil. Energy 2022, 239, 122199. [Google Scholar] [CrossRef]
- Charemza, W.W.; Deadman, D.F. New Directions in Econometric Practice; Edward Elgar Publishing: Cheltenham, UK, 1997; Number 1139; Available online: https://www.amazon.com/Directions-Econometric-Practice-Cointegration-Autoregression/dp/1858986036 (accessed on 3 January 2023).
- Pesaran, M.H.; Shin, Y.; Smith, R.J. Bounds testing approaches to the analysis of level relationships. J. Appl. Econom. 2001, 16, 289–326. [Google Scholar] [CrossRef]
- Pesaran, M.H.; Shin, Y.; Smith, R.P. Pooled mean group estimation of dynamic heterogeneous panels. J. Am. Stat. Assoc. 1999, 94, 621–634. [Google Scholar] [CrossRef]
- Barış-Tüzemen, Ö.; Tüzemen, S.; Çelik, A.K. Does an N-shaped association exist between pollution and ICT in Turkey? ARDL and quantile regression approaches. Environ. Sci. Pollut. Res. 2020, 27, 20786–20799. [Google Scholar] [CrossRef] [PubMed]
- Amri, F. Carbon dioxide emissions, total factor productivity, ICT, trade, financial development, and energy consumption: Testing environmental Kuznets curve hypothesis for Tunisia. Environ. Sci. Pollut. Res. 2018, 25, 33691–33701. [Google Scholar] [CrossRef] [PubMed]
- Jin, C.; Shahzad, M.; Zafar, A.U.; Suki, N.M. Socio-economic and environmental drivers of green innovation: Evidence from nonlinear ARDL. Econ. Res.-Ekon. Istraživanja 2022, 35, 1–21. [Google Scholar] [CrossRef]
- Rehman, A.; Ma, H.; Ahmad, M.; Ozturk, I.; Işık, C. Estimating the connection of information technology, foreign direct investment, trade, renewable energy and economic progress in Pakistan: Evidence from ARDL approach and cointegrating regression analysis. Environ. Sci. Pollut. Res. 2021, 28, 50623–50635. [Google Scholar] [CrossRef]
- Caglar, A.E.; Mert, M.; Boluk, G. Testing the role of information and communication technologies and renewable energy consumption in ecological footprint quality: Evidence from world top 10 pollutant footprint countries. J. Clean. Prod. 2021, 298, 126784. [Google Scholar] [CrossRef]
- Shahzad, K.; Jianqiu, Z.; Hashim, M.; Nazam, M.; Wang, L. Impact of using information and communication technology and renewable energy on health expenditure: A case study from Pakistan. Energy 2020, 204, 117956. [Google Scholar] [CrossRef]
- Lu, W.-C. The impacts of information and communication technology, energy consumption, financial development, and economic growth on carbon dioxide emissions in 12 Asian countries. Mitig. Adapt. Strateg. Glob. Chang. 2018, 23, 1351–1365. [Google Scholar] [CrossRef]
- Sharma, G.D.; Rahman, M.M.; Jain, M.; Chopra, R. Nexus between energy consumption, information and communications technology, and economic growth: An enquiry into emerging Asian countries. J. Public Aff. 2021, 21, e2172. [Google Scholar] [CrossRef]
- Weili, L.; Khan, H.; Han, L. The impact of information and communication technology, financial development, and energy consumption on carbon dioxide emission: Evidence from the Belt and Road countries. Environ. Sci. Pollut. Res. 2022, 29, 27703–27718. [Google Scholar] [CrossRef]
- Park, Y.; Meng, F.; Baloch, M.A. The effect of ICT, financial development, growth, and trade openness on CO2 emissions: An empirical analysis. Environ. Sci. Pollut. Res. 2018, 25, 30708–30719. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Pham, T.A.T.; Tram, H.T.X. Role of information and communication technologies and innovation in driving carbon emissions and economic growth in selected G-20 countries. J. Environ. Manag. 2020, 261, 110162. [Google Scholar] [CrossRef]
- Aldakhil, A.M.; Zaheer, A.; Younas, S.; Nassani, A.A.; Abro, M.M.Q.; Zaman, K. Efficiently managing green information and communication technologies, high-technology exports, and research and development expenditures: A case study. J. Clean. Prod. 2019, 240, 118164. [Google Scholar] [CrossRef]
- Lee, C.-C.; Yuan, Z.; Wang, Q. How does information and communication technology affect energy security? International evidence. Energy Econ. 2022, 109, 105969. [Google Scholar] [CrossRef]
- Haldar, A.; Sethi, N. Environmental effects of Information and Communication Technology-Exploring the roles of renewable energy, innovation, trade and financial development. Renew. Sustain. Energy Rev. 2022, 153, 111754. [Google Scholar] [CrossRef]
- Irfan, M.; Chen, Z.; Adebayo, T.S.; Al-Faryan, M.A.S. Socio-economic and technological drivers of sustainability and resources management: Demonstrating the role of information and communications technology and financial development using advanced wavelet coherence approach. Resour. Policy 2022, 79, 103038. [Google Scholar] [CrossRef]
- Murshed, M.; Chadni, M.H.; Ferdaus, J. Does ICT trade facilitate renewable energy transition and environmental sustainability? Evidence from Bangladesh, India, Pakistan, Sri Lanka, Nepal and Maldives. Energy Ecol. Environ. 2020, 5, 470–495. [Google Scholar] [CrossRef]
Variable | Form | Definition |
---|---|---|
Renewable energy consumption | new | Ratio of renewable energy consumption to total energy consumption |
Energy intensity | eni | Energy intensity level of primary energy (MJ/$2017 PPP GDP) in log |
Carbon dioxide emissions | cde | Carbon dioxide emissions (billion tons) in log |
Communication technology trade openness | cto | Ratio of information and communication technology goods imports to total goods imports |
Economic growth | gro | GDP (constant 2015 US; unit: billion) in log |
Urbanization | urb | Proportion of population in towns and cities to total population |
Foreign direct investment | fdi | The ratio of actual amount of FDI in GDP |
Variable | Level | First Difference | Result |
---|---|---|---|
cde | −1.426 | −3.559 * | |
new | 0.705 | −4.835 *** | |
eni | −1.408 | −0.010 ** | |
cto | −2.105 | −4.172 ** | |
gro | 1.443 | −4.636 *** | |
urb | −0.650 | −6.010 *** | |
fdi | 2.329 | −4.472 *** |
Equation | F-Statistic Value | Significant Level | ||
---|---|---|---|---|
7.058 *** | 1% | 3.29 | 4.37 | |
5% | 2.56 | 3.49 | ||
10% | 2.20 | 3.09 | ||
22.375 *** | 1% | 4.09 | 5.53 | |
5% | 2.95 | 4.08 | ||
10% | 2.46 | 5.532 | ||
6.562 *** | 1% | 4.28 | 5.84 | |
5% | 3.06 | 4.22 | ||
10% | 2.52 | 3.56 |
Carbon Dioxide Emissions | Renewable Energy | Energy Intensity | |||
---|---|---|---|---|---|
Variable | Coefficient | Variable | Coefficient | Variable | Coefficient |
0.395 *** (6.349) | 0.466 *** (11.387) | −0.717 *** (−4.239) | |||
−0.231 *** (−6.258) | 0.099 *** (4.242) | −0.634 *** (−4.844) | |||
0.028 *** (8.940) | 0.084 ** (2.346) | 0.008 * (1.987) | |||
0.028 ** (2.614) | 0.007 * (1.632) | 0.027 *** (4.876) | |||
0.011 * (0.721) | 0.012 * (1.801) | 0.042 ** (2.665) | |||
0.020 * (1.708) | |||||
ecm−1 | −0.069 *** (−6.178) | ecm−1 | −0.017 *** (−5.483) | ecm−1 | −0.186 *** (−9.161) |
Carbon Dioxide Emissions | Renewable Energy | Energy Intensity | |||
---|---|---|---|---|---|
cto | −0.235 ** (−3.263) | cto | 0.150 ** (2.059) | cto | −0.499 *** (−5.371) |
gro | 0.744 *** (2.547) | gro | 0.635 *** (3.945) | gro | −0.144 ** (−2.190) |
urb | 0.218 * (1.735) | urb | 0.085 * (1.183) | urb | −0.205 * (−1.790) |
fdi | 0.337 *** (4.127) | fdi | 0.099 *** (4.516) | fdi | 0.162 *** (5.004) |
c | −0.076 (−0.174) | c | 0.531 *** (3.3444) | c | 1.232 *** (5.370) |
Statistical Method | Statistical Value | p-Value |
---|---|---|
Carbon dioxide emissions | ||
0.971 | 0.338 | |
2.769 | 0.122 | |
0.614 | 0.453 | |
0.796 | 0.671 | |
CUSUM | Stable | |
CUSUM of squares | Stable | |
Renewable Energy | ||
0.308 | 0.585 | |
2.187 | 0.163 | |
0.277 | 0.608 | |
0.836 | 0.658 | |
CUSUM | Stable | |
CUSUM of squares | Stable | |
Energy Intensity | ||
0.752 | 0.397 | |
0.918 | 0.250 | |
0.033 | 0.860 | |
0.223 | 0.894 | |
CUSUM | Stable | |
CUSUM of squares | Stable |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; He, Y. Does Information and Communication Technology Trade Openness Matter for China’s Energy Transformation and Environmental Quality? Energies 2023, 16, 2016. https://doi.org/10.3390/en16042016
Wang Y, He Y. Does Information and Communication Technology Trade Openness Matter for China’s Energy Transformation and Environmental Quality? Energies. 2023; 16(4):2016. https://doi.org/10.3390/en16042016
Chicago/Turabian StyleWang, Yinhui, and Yugang He. 2023. "Does Information and Communication Technology Trade Openness Matter for China’s Energy Transformation and Environmental Quality?" Energies 16, no. 4: 2016. https://doi.org/10.3390/en16042016
APA StyleWang, Y., & He, Y. (2023). Does Information and Communication Technology Trade Openness Matter for China’s Energy Transformation and Environmental Quality? Energies, 16(4), 2016. https://doi.org/10.3390/en16042016