Robust Control Based on Observed States Designed by Means of Linear Matrix Inequalities for Grid-Connected Converters
Abstract
:1. Introduction
- In contrast to previous LMI-based works [20,21,22,23,37,38], which use the feedback of the entire state vector of the LCL filter, here, only the feedback of the grid currents is used to implement state feedback control laws. This represents a lower cost for control implementation without harming performance;
- In contrast to other works on observer applied to LCL filter [26,27,28,29,30,31,32,33], here a formal proof of the stability of the closed-loop system with observed states in the control law is given, using LMIs (Appendix B) that were not explored in power electronics yet. This allows for enlarging estimates of the guaranteed stability regions.
2. System Modelling under Time-Varying Parameters
3. Proposed Design Based on LMIs
3.1. Robust Control Design
3.2. Observer Design and Implementation
3.3. Robust Stability Analysis Based on Less Conservative LMIs
Summary with the steps of the proposed procedure. |
•Design of control and observer gains (executed off-line): |
1: choose and solve the LMIs in (24) to obtain control gain ; |
2: choose and solve the LMIs in (27) to obtain |
observer gain in (28); |
3: choose a fixed value , compute , and |
and certify the robust stability of in (34) by means of |
the LMIs (A1) in Appendix B. |
4. Design Example: Case Study
Comparison with Nonrobust Observer
5. Experimental Results
6. Analysis of Guaranteed Stability Regions
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Observer Stability Analysis
Appendix B. Less Conservative LMIs for Stability Analysis of the Complete System under Time-Varying Parameters
References
- Rick, R.; Berton, L. Energy forecasting model based on CNN-LSTM-AE for many time series with unequal lengths. Eng. Appl. Artif. Intell. 2022, 113, 104998. [Google Scholar] [CrossRef]
- Wang, Y.; He, X.; Zhang, L.; Ma, X.; Wu, W.; Nie, R.; Chi, P.; Zhang, Y. A novel fractional time-delayed grey Bernoulli forecasting model and its application for the energy production and consumption prediction. Eng. Appl. Artif. Intell. 2022, 110, 104683. [Google Scholar] [CrossRef]
- Hoffert, M.I.; Caldeira, K.; Benford, G.; Criswell, D.R.; Green, C.; Herzog, H.; Jain, A.K.; Kheshgi, H.S.; Lackner, K.S.; Lewis, J.S.; et al. Advanced technology paths to global climate stability: Energy for a greenhouse planet. Science 2002, 298, 981–987. [Google Scholar] [CrossRef] [Green Version]
- Babatunde, O.M.; Munda, J.L.; Hamam, Y. Power system flexibility: A review. Energy Rep. 2020, 6, 101–106. [Google Scholar] [CrossRef]
- Ram, M.; Child, M.; Aghahosseini, A.; Bogdanov, D.; Lohrmann, A.; Breyer, C. A comparative analysis of electricity generation costs from renewable, fossil fuel and nuclear sources in G20 countries for the period 2015–2030. J. Clean. Prod. 2018, 199, 687–704. [Google Scholar] [CrossRef]
- Akaev, A.A.; Davydova, O.I. A mathematical description of selected energy transition scenarios in the 21st century, intended to realize the main goals of the paris climate agreement. Energies 2021, 14, 2558. [Google Scholar] [CrossRef]
- Chapman, A.J.; McLellan, B.C.; Tezuka, T. Prioritizing mitigation efforts considering co-benefits, equity and energy justice: Fossil fuel to renewable energy transition pathways. Appl. Energy 2018, 219, 187–198. [Google Scholar] [CrossRef]
- Zappa, W.; Junginger, M.; Van Den Broek, M. Is a 100% renewable European power system feasible by 2050? Appl. Energy 2019, 233, 1027–1050. [Google Scholar] [CrossRef]
- Diesendorf, M.; Elliston, B. The feasibility of 100% renewable electricity systems: A response to critics. Renew. Sustain. Energy Rev. 2018, 93, 318–330. [Google Scholar] [CrossRef]
- Nam, K.; Hwangbo, S.; Yoo, C. A deep learning-based forecasting model for renewable energy scenarios to guide sustainable energy policy: A case study of Korea. Renew. Sustain. Energy Rev. 2020, 122, 109725. [Google Scholar] [CrossRef]
- Gidwani, L.; Tiwari, H.; Bansal, R. Improving power quality of wind energy conversion system with unconventional power electronic interface. Int. J. Electr. Power Energy Syst. 2013, 44, 445–453. [Google Scholar] [CrossRef]
- Fuso Nerini, F.; Tomei, J.; To, L.S.; Bisaga, I.; Parikh, P.; Black, M.; Borrion, A.; Spataru, C.; Castán Broto, V.; Anandarajah, G.; et al. Mapping synergies and trade-offs between energy and the Sustainable Development Goals. Nat. Energy 2018, 3, 10–15. [Google Scholar] [CrossRef] [Green Version]
- Chung, H.S.; He, Y.; Huang, M.; Wu, W.; Blaabjerg, F. Robust Hybrid Damper Design for LCL/LLCL-Filtered Grid-Connected Inverter. In Control and Filter Design of Single-Phase Grid-Connected Converters; Wiley Online Library: New York, NY, USA, 2023; pp. 139–162. [Google Scholar] [CrossRef]
- Chen, W.; Zhang, Y.; Tu, Y.; Guan, Y.; Shen, K.; Liu, J. Unified Active Damping Strategy Based on Generalized Virtual Impedance in LCL-Type Grid-Connected Inverter. IEEE Trans. Ind. Electron. 2023, 1–11. [Google Scholar] [CrossRef]
- Cai, Y.; He, Y.; Zhang, H.; Zhou, H.; Liu, J. Integrated Design of Filter and Controller Parameters for Low-Switching-Frequency Grid-Connected Inverter Based on Harmonic State-Space Model. IEEE Trans. Power Electron. 2023, 1–19. [Google Scholar] [CrossRef]
- DeConto, R.M.; Pollard, D.; Alley, R.B.; Velicogna, I.; Gasson, E.; Gomez, N.; Sadai, S.; Condron, A.; Gilford, D.M.; Ashe, E.L.; et al. The Paris Climate Agreement and future sea-level rise from Antarctica. Nature 2021, 593, 83–89. [Google Scholar] [CrossRef]
- Rehman, A.; Rauf, A.; Ahmad, M.; Chandio, A.A.; Deyuan, Z. The effect of carbon dioxide emission and the consumption of electrical energy, fossil fuel energy, and renewable energy, on economic performance: Evidence from Pakistan. Environ. Sci. Pollut. Res. 2019, 26, 21760–21773. [Google Scholar] [CrossRef]
- Boyd, S.; El Ghaoui, L.; Feron, E.; Balakrishnan, V. Linear Matrix Inequalities in System and Control Theory; SIAM Studies in Applied Mathematics: Philadelphia, PA, USA, 1994. [Google Scholar]
- Sturm, J.F. Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optim. Methods Softw. 1999, 11–12, 625–653. Available online: http://sedumi.mcmaster.ca/ (accessed on 15 February 2023). [CrossRef]
- Maccari, L.A., Jr.; Massing, J.R.; Schuch, L.; Rech, C.; Pinheiro, H.; Oliveira, R.C.L.F.; Montagner, V.F. LMI-Based Control for Grid-Connected Converters With LCL Filters Under Uncertain Parameters. IEEE Trans. Power Electron. 2014, 29, 3776–3785. [Google Scholar] [CrossRef]
- Maccari, L.A., Jr.; Pinheiro, H.; Oliveira, R.C.L.F.; Montagner, V.F. Robust Pole Location with Experimental Validation for Three-Phase Grid-Connected Converters. Control Eng. Pract. 2017, 59, 16–26. [Google Scholar] [CrossRef]
- Koch, G.G.; Maccari, L.A., Jr.; Oliveira, R.C.L.F.; Montagner, V.F. Robust ∞ State Feedback Controllers based on LMIs applied to Grid-Connected Converters. IEEE Trans. Ind. Electron. 2019, 66, 6021–6031. [Google Scholar] [CrossRef]
- Osório, C.R.D.; Koch, G.G.; Oliveira, R.C.L.F.; Montagner, V.F. A practical design procedure for robust 2 controllers applied to grid-connected inverters. Control Eng. Pract. 2019, 92, 104157. [Google Scholar] [CrossRef]
- Luenberger, D.G. Introduction to Dynamic Systems. Theory, Models & Apllications; John Wiley & Sons: New York, NY, USA, 1979. [Google Scholar]
- García, P.; Sumner, M.; Navarro-Rodríguez, Á.; Guerrero, J.M.; García, J. Observer-Based Pulsed Signal Injection for Grid Impedance Estimation in Three-Phase Systems. IEEE Trans. Ind. Electron. 2018, 65, 7888–7899. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Wu, W.; Shuai, Z.; Luo, A.; Chung, H.S.; Blaabjerg, F. Robust Control Parameters Design of PBC Controller for LCL-Filtered Grid-Tied Inverter. IEEE Trans. Power Electron. 2020, 35, 8102–8115. [Google Scholar] [CrossRef]
- Miskovic, V.; Blasko, V.; Jahns, T.; Smith, A.; Romenesko, C. Observer-Based Active Damping of LCL Resonance in Grid-Connected Voltage Source Converters. IEEE Trans. Ind. Appl. 2014, 50, 3977–3985. [Google Scholar] [CrossRef]
- Kukkola, J.; Hinkkanen, M.; Zenger, K. Observer-Based State-Space Current Controller for a Grid Converter Equipped With an LCL Filter: Analytical Method for Direct Discrete-Time Design. IEEE Trans. Ind. Appl. 2015, 51, 4079–4090. [Google Scholar] [CrossRef] [Green Version]
- Rahman, F.M.M.; Riaz, U.; Kukkola, J.; Routimo, M.; Hinkkanen, M. Observer-Based Current Control for Converters with an LCL Filter: Robust Design for Weak Grids. In Proceedings of the 2018 IEEE 9th International Symposium on Sensorless Control for Electrical Drives (SLED), Helsinki, Finland, 13–14 September 2018; pp. 36–41. [Google Scholar] [CrossRef] [Green Version]
- Tang, X.; Chen, W.; Zhang, M. A Current Decoupling Control Scheme for LCL-Type Single-Phase Grid-Connected Converter. IEEE Access 2020, 8, 37756–37765. [Google Scholar] [CrossRef]
- Zhang, H.; Xian, J.; Shi, J.; Wu, S.; Ma, Z. High Performance Decoupling Current Control by Linear Extended State Observer for Three-Phase Grid-Connected Inverter With an LCL Filter. IEEE Access 2020, 8, 13119–13127. [Google Scholar] [CrossRef]
- Su, M.; Cheng, B.; Sun, Y.; Tang, Z.; Guo, B.; Yang, Y.; Blaabjerg, F.; Wang, H. Single-Sensor Control of LCL-Filtered Grid-Connected Inverters. IEEE Access 2019, 7, 38481–38494. [Google Scholar] [CrossRef]
- Zhang, B.; Zhou, X.; Ma, Y. Improved Linear Active Disturbance Rejection Control of Photovoltaic Grid Connected Inverter Based on Filter Function. IEEE Access 2021, 9, 141725–141737. [Google Scholar] [CrossRef]
- Lien, C.H. Robust observer-based control of systems with state perturbations via LMI approach. IEEE Trans. Autom. Control 2004, 49, 1365–1370. [Google Scholar] [CrossRef]
- Kheloufi, H.; Zemouche, A.; Bedouhene, F.; Boutayeb, M. On LMI conditions to design observer-based controllers for linear systems with parameter uncertainties. Automatica 2013, 49, 3700–3704. [Google Scholar] [CrossRef]
- Peaucelle, D.; Ebihara, Y. LMI results for robust control design of observer-based controllers, the discrete-time case with polytopic uncertainties. In Proceedings of the 19th World Congress The International Federation of Automatic Control, Cape Town, South Africa, 24–29 August 2014; pp. 6527–6532. [Google Scholar]
- Koch, G.G.; Maccari, L.A.; Massing, J.R.; Pinheiro, H.; Oliveira, R.C.L.F.; Montagner, V.F. Robust control based on state observer applied to grid-connected converters. In Proceedings of the 2016 12th IEEE International Conference on Industry Applications (INDUSCON), Curitiba, Brazil, 20–23 November 2016; pp. 1–6. [Google Scholar]
- Maccari, L.A.; Santini, C.L.A.; Pinheiro, H.; Oliveira, R.C.L.F.; Montagner, V.F. Robust optimal current control for grid-connected three-phase pulse-width modulated converters. IET Power Electron. 2015, 8, 1490–1499. [Google Scholar] [CrossRef]
- Lee, J.W. On uniform stabilization of discrete-time linear parameter-varying control systems. IEEE Trans. Autom. Control 2006, 51, 1714–1721. [Google Scholar] [CrossRef]
- Daafouz, J.; Bernussou, J. Parameter dependent Lyapunov functions for discrete time systems with time varying parameter uncertainties. Syst. Control Lett. 2001, 43, 355–359. [Google Scholar] [CrossRef]
- Liu, Q.; Caldognetto, T.; Buso, S. Stability Analysis and Auto-Tuning of Interlinking Converters Connected to Weak Grids. IEEE Trans. Power Electron. 2019, 34, 9435–9446. [Google Scholar] [CrossRef]
- Duesterhoeft, W.; Schulz, M.W.; Clarke, E. Determination of Instantaneous Currents and Voltages by Means of Alpha, Beta, and Zero Components. Trans. Am. Inst. Electr. Eng. 1951, 70, 1248–1255. [Google Scholar] [CrossRef]
- Oliveira, R.C.L.F.; Peres, P.L.D. Parameter-dependent LMIs in robust analysis: Characterization of homogeneous polynomially parameter-dependent solutions via LMI relaxations. IEEE Trans. Autom. Control 2007, 52, 1334–1340. [Google Scholar] [CrossRef]
- Labit, Y.; Peaucelle, D.; Henrion, D. SeDuMi interface 1.02: A tool for solving LMI problems with SeDuMi. In Proceedings of the 12th IEEE International Symposium on Computer Aided Control System Design, Glasgow, UK, 20 September 2002; pp. 272–277. [Google Scholar]
- Ogata, K. Discrete-Time Control Systems; Prentice Hall: Upper Saddle River, NJ, USA, 1995. [Google Scholar]
- Chen, C.T. Linear System Theory and Design, 3rd ed.; Oxford University Press: New York, NY, USA, 1999. [Google Scholar]
- Teodorescu, R.; Liserre, M.; Rodríguez, P. Grid Converters for Photovoltaic and Wind Power Systems; John Wiley & Sons: New York, NY, USA, 2011. [Google Scholar]
- Teodorescu, R.; Blaabjerg, F.; Liserre, M.; Loh, P. Proportional-resonant controllers and filters for grid-connected voltage-source converters. IEE Proc. Electr. Power Appl. 2006, 153, 750–762. [Google Scholar] [CrossRef] [Green Version]
- Cardoso, R.; de Camargo, R.F.; Pinheiro, H.; Gründling, H.A. Kalman filter based synchronisation methods. Gener. Transm. Distrib. IET 2008, 2, 542–555. [Google Scholar] [CrossRef]
- Blanchini, F.; Miani, S. Stabilization of LPV Systems: State Feedback, State Estimation, and Duality. SIAM J. Control Optim. 2003, 42, 76–97. [Google Scholar] [CrossRef] [Green Version]
- Bertolin, A.L.J.; Peres, P.L.D.; Oliveira, R.C.L.F. Robust stability,2 and ∞ guaranteed costs for discrete time-varying uncertain linear systems with constrained parameter variations. In Proceedings of the 2019 American Control Conference, Philadelphia, PA, USA, 10–12 July 2019; pp. 4541–4546. [Google Scholar]
- Avis, D.; Fukuda, K. A pivoting algorithm for convex hulls and vertex enumeration of arrangements and polyhedra. Discret. Comput. Geom. 1992, 8, 295–313. [Google Scholar] [CrossRef] [Green Version]
- Herceg, M.; Kvasnica, M.; Jones, C.N.; Morari, M. Multi-Parametric Toolbox 3.0. In Proceedings of the 2013 European Control Conference, Zürich, Switzerland, 17–19 July 2013; pp. 502–510. [Google Scholar]
- de Oliveira, M.C.; Skelton, R.E. Stability tests for constrained linear systems. In Perspectives in Robust Control; Reza Moheimani, S.O., Ed.; Lecture Notes in Control and Information Science; Springer: New York, NY, USA, 2001; Volume 268, pp. 241–257. [Google Scholar]
- Agulhari, C.M.; Felipe, A.; Oliveira, R.C.L.F.; Peres, P.L.D. Algorithm 998: The Robust LMI Parser—A toolbox to construct LMI conditions for uncertain systems. ACM Trans. Math. Softw. 2019, 45, 36. Available online: http://rolmip.github.io (accessed on 15 February 2023). [CrossRef]
Converter inductance | 1 mH |
Filter capacitor | 62 H |
Grid-side inductance | 0.3 mH |
Interval for the grid inductance | [0 mH; 1 mH] |
Sampling frequency | 1/20,040 s |
Switching frequency | 1/10,020 s |
Grid phase voltage | 127 Vrms; 60 Hz |
DC-link | 400 V |
Resonant frequencies | 60, 180, 300 and 420 Hz |
Resonant damping factor | 0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koch, G.G.; Osório, C.R.D.; Oliveira, R.C.L.F.; Montagner, V.F. Robust Control Based on Observed States Designed by Means of Linear Matrix Inequalities for Grid-Connected Converters. Energies 2023, 16, 2047. https://doi.org/10.3390/en16042047
Koch GG, Osório CRD, Oliveira RCLF, Montagner VF. Robust Control Based on Observed States Designed by Means of Linear Matrix Inequalities for Grid-Connected Converters. Energies. 2023; 16(4):2047. https://doi.org/10.3390/en16042047
Chicago/Turabian StyleKoch, Gustavo G., Caio R. D. Osório, Ricardo C. L. F. Oliveira, and Vinícius F. Montagner. 2023. "Robust Control Based on Observed States Designed by Means of Linear Matrix Inequalities for Grid-Connected Converters" Energies 16, no. 4: 2047. https://doi.org/10.3390/en16042047
APA StyleKoch, G. G., Osório, C. R. D., Oliveira, R. C. L. F., & Montagner, V. F. (2023). Robust Control Based on Observed States Designed by Means of Linear Matrix Inequalities for Grid-Connected Converters. Energies, 16(4), 2047. https://doi.org/10.3390/en16042047