Imprecise P-Box Sensitivity Analysis of an Aero-Engine Combustor Performance Simulation Model Considering Correlated Variables
Abstract
:1. Introduction
2. One-Dimensional Calculation Method for Combustion Chambers
2.1. Calculation of Parameters along the Combustion Chamber
- Assume 1D steady flow;
- Ignore the internal friction and heat dissipation loss of the flame cylinder, but include the friction in the two channels (the channel between the flame cylinder and the casing) and the sudden expansion loss of the jet through the wall;
- Assume the respective calculation section is in front of each row, and the effect of the flow rate of the row is not covered in the calculation of the aerodynamic and thermodynamic parameters of the i-th section;
- Assume that the air entering the flame cylinder through the main combustion hole or the blending hole on section i completes the chemical reaction and mixing in the closed system composed of sections i to i + 1.
2.2. Combustion Chamber Performance Calculation Method
2.2.1. Combustion Efficiency
2.2.2. Total Pressure Recovery Coefficient
2.2.3. Outlet Temperature Distribution Factor
2.2.4. NOx Emission
3. Preliminaries
3.1. Analysis Process
- i.
- Preprocessing: This step aims to construct the relevant variables first and then construct the uncertainty domain to represent the relevant features. Moreover, an affine coordinate system is introduced to transform the correlated variables into independent variables to lay a solid foundation for sensitivity analysis.
- ii.
- System uncertainty analysis: The input and output of the system are quantified using a p-box. The relevant and independent situations are analyzed and then compared. The area of the region between the upper and lower boundaries of the p-box is defined as the uncertainty metric.
- iii.
- Imprecise sensitivity analysis: The sensitivity calculation is biased due to the effect of epistemic uncertainty. The average value of the sensitivity index serves as the criterion to measure the final sensitivity analysis so as to reduce the effect of bias.
3.2. Pre-Processing
3.3. Uncertainty Domain
3.4. Affine Transformation
4. Probability Bound Analysis
4.1. Source of Uncertainty
4.2. Probability Box
4.3. Sensitivity Analysis
- (i)
- Use a specific probability distribution to replace the uncertainty input parameters; the specific probability distribution method only eliminates the epistemic uncertainty of the parameter, and does not affect its aleatory uncertainty;
- (ii)
- Use the fixed value to replace the uncertainty input parameter; the fixed value method eliminates the aleatory uncertainty and epistemic uncertainty of the parameter at the same time;
- (iii)
- Use the zero-variance interval method to replace the uncertainty input parameter; the zero-variance interval method only eliminates the aleatory uncertainty, and preserves the effects of epistemic uncertainty.
5. Applications
5.1. Four-Dimensional Function
5.1.1. Problem Statement
5.1.2. Uncertainty Domain
5.1.3. Sensitivity Analysis
5.2. The Outlet Temperature Distribution Factor
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhu, H.; Xiao, M.; Zhang, J.; Cai, G. Uncertainty design and optimization of a hybrid rocket motor with mixed random-interval uncertainties. Aerosp. Sci. Technol. 2022, 128, 107791. [Google Scholar] [CrossRef]
- Zhou, J.; Song, F.; Xu, S.; Yang, X.; Zheng, Y. Investigation of Rotating Detonation Fueled by Liquid Kerosene. Energies 2022, 15, 4483. [Google Scholar] [CrossRef]
- Mehdi, G.; Bonuso, S.; De Giorgi, M.G. Effects of nanosecond repetitively pulsed discharges timing for aeroengines ignition at low temperature conditions by needle-ring plasma actuator. Energies 2021, 14, 5814. [Google Scholar] [CrossRef]
- Guan, P.; Ai, Y.T.; Fei, C.W. An enhanced flow-thermo-structural modeling and validation for the integrated analysis of a film cooling nozzle guide vane. Energies 2019, 12, 2775. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.B.; Jiang, C.; Jia, X.Y.; Long, X.Y.; Zhang, Z.; Guan, F.J. A new uncertainty propagation method for problems with parameterized probability-boxes. Reliab. Eng. Syst. Saf. 2018, 172, 64–73. [Google Scholar] [CrossRef]
- Niu, X.P.; Wang, R.Z.; Liao, D.; Zhu, S.P.; Zhang, X.C.; Keshtegar, B. Probabilistic modeling of uncertainties in fatigue reliability analysis of turbine bladed disks. Int. J. Fatigue 2021, 142, 105912. [Google Scholar] [CrossRef]
- Guo, M.; Wang, W.; Chen, R.; Li, Y. Research on bi-level model power dispatch considering the uncertainty of source and load. Sustain. Energy Technol. Assess. 2022, 53, 102689. [Google Scholar] [CrossRef]
- Qiu, Z.; Yang, D.; Elishakoff, I. Probabilistic interval reliability of structural systems. Int. J. Solids Struct. 2008, 45, 2850–2860. [Google Scholar] [CrossRef] [Green Version]
- Du, X. Interval reliability analysis. In Proceedings of the ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Las Vegas, NV, USA, 4–7 September 2007; pp. 1103–1109. [Google Scholar]
- Faes, M.; Moens, D. Recent trends in the modeling and quantification of non-probabilistic uncertainty. Arch. Comput. Methods Eng. 2020, 27, 633–671. [Google Scholar] [CrossRef]
- Luo, Y.; Zhan, J.; Xing, J.; Kang, Z. Non-probabilistic uncertainty quantification and response analysis of structures with a bounded field model. Comput. Methods Appl. Mech. Eng. 2019, 347, 663–678. [Google Scholar] [CrossRef]
- Jiang, C.; Han, X.; Lu, G.Y.; Liu, J.; Zhang, Z. Correlation analysis of non-probabilistic convex model and corresponding structural reliability technique. Comput. Methods Appl. Mech. Eng. 2011, 200, 2528–2546. [Google Scholar] [CrossRef]
- Jiang, C.; Zhang, Q.F.; Han, X.; Liu, J.; Hu, D.A. Multidimensional parallelepiped model—A new type of non-probabilistic convex model for structural uncertainty analysis. Int. J. Numer. Methods Eng. 2015, 103, 31–59. [Google Scholar] [CrossRef]
- Ouyang, H.; Liu, J.; Han, X.; Liu, G.; Ni, B.; Zhang, D. Correlation propagation for uncertainty analysis of structures based on a non-probabilistic ellipsoidal model. Appl. Math. Model. 2020, 88, 190–207. [Google Scholar] [CrossRef]
- Jetti, H.V.; Salicone, S. A Possibilistic Kalman Filter for the Reduction of the Final Measurement Uncertainty, in Presence of Unknown Systematic Errors. Metrology 2021, 1, 39–51. [Google Scholar] [CrossRef]
- Enderle, B.; Rauch, B.; Grimm, F.; Eckel, G.; Aigner, M. Non-intrusive uncertainty quantification in the simulation of turbulent spray combustion using polynomial chaos expansion: A case study. Combust. Flame 2020, 213, 26–38. [Google Scholar] [CrossRef]
- Tomlin, A.S. The role of sensitivity and uncertainty analysis in combustion modelling. Proc. Combust. Inst. 2013, 34, 159–176. [Google Scholar] [CrossRef]
- Avdonin, A.; Polifke, W. Quantification of the impact of uncertainties in operating conditions on the flame transfer function with nonintrusive polynomial chaos expansion. J. Eng. Gas Turbines Power 2019, 141, 011020. [Google Scholar] [CrossRef]
- Rizk, N.; Mongia, H. Gas turbine combustor design methodology. In Proceedings of the 22nd Joint Propulsion Conference, Huntsville, AL, USA, 16–18 June 1986. [Google Scholar]
- Topal, A.; Catori, C.; Cagan, L.; Uslu, S.; Turan, O.; Piskin, A. One-Dimensional Heat Transfer Analysis and Experimental Investigation of a Gas Turbine Combustor. In Proceedings of the CONV-14: International Symposium on Convective Heat and Mass Transfer, Kusadasi, Turkey, 8–13 June 2014; pp. 319–333. [Google Scholar]
- Greenhough, V.W.; Lefebvre, A.H. Some applications of combustion theory to gas turbine development. Symp. Combust. 1957, 6, 858–869. [Google Scholar] [CrossRef]
- Lefebvre, A.H.; Halls, G.A. Some experiences in combustion scaling. In Advanced Aero Engine Testing; Pergamon Press: Oxford, UK, 1959; p. 177. [Google Scholar]
- Zhao, S.L.; Fan, Y.X. Analysis of flow resistance and combustion characteristics in the combined application of step and strut. Aerosp. Sci. Technol. 2020, 98, 105676. [Google Scholar]
- Zeng, Z.; Wang, H.; Wang, Z. Analysis of cooling performance and combustion flow in advanced vortex combustor with guide vane. Aerosp. Sci. Technol. 2018, 72, 542–552. [Google Scholar] [CrossRef]
- Lefebvre, A.H. Fuel effects on gas turbine combustion-liner temperature, pattern factor, and pollutant emissions. J. Aircr. 1984, 21, 887–898. [Google Scholar] [CrossRef]
- Liang, H.; Mi, J.; Bai, L.; Cheng, Y. Imprecise sensitivity analysis of system reliability based on the Bayesian network and probability box. Maint. Reliab. 2020, 22, 508–519. [Google Scholar] [CrossRef]
- Jiang, C.; Zhang, Q.F.; Han, X.; Qian, Y.H. A non-probabilistic structural reliability analysis method based on a multidimensional parallelepiped convex model. Acta Mech. 2014, 225, 383–395. [Google Scholar] [CrossRef]
- Oberkampf, W.L.; Roy, C.J. Verification and Validation in Scientific Computing; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Roy, C.J.; Oberkampf, W.L. A comprehensive framework for verification, validation, and uncertainty quantification in scientific computing. Comput. Methods Appl. Mech. Eng. 2011, 200, 2131–2144. [Google Scholar] [CrossRef]
- Roache, P.J. Fundamentals of Verification and Validation; Hermosa Publishers: Socorro, NM, USA, 2009. [Google Scholar]
- Roache, P.J. Perspective: A method for uniform reporting of grid refinement studies. ASME. J. Fluids Eng. 1994, 116, 405–413. [Google Scholar] [CrossRef]
- Li, R.; Chen, Z.; Li, H.; Tang, Y. A new distance-based total uncertainty measure in Dempster-Shafer evidence theory. Appl. Intell. 2022, 52, 1209–1237. [Google Scholar] [CrossRef]
- Yang, J.; Huang, H.Z.; He, L.P.; Zhu, S.P.; Wen, D.W. Risk evaluation in failure mode and effects analysis of aircraft turbine rotor blades using Dempster–Shafer evidence theory under uncertainty. Eng. Fail. Anal. 2011, 18, 2084–2092. [Google Scholar] [CrossRef]
- Molchanov, I.; Mühlemann, A. Nonlinear expectations of random sets. Financ. Stoch. 2021, 25, 5–41. [Google Scholar] [CrossRef]
- Lin, S.S.; Shen, S.L.; Zhou, A.; Xu, Y.S. Risk assessment and management of excavation system based on fuzzy set theory and machine learning methods. Autom. Constr. 2021, 122, 103490. [Google Scholar] [CrossRef]
- Caylak, I.; Penner, E.; Mahnken, R. Mean-field and full-field homogenization with polymorphic uncertain geometry and material parameters. Comput. Methods Appl. Mech. Eng. 2021, 373, 113439. [Google Scholar] [CrossRef]
- Majidi, M.; Mohammadi-Ivatloo, B.; Soroudi, A. Application of information gap decision theory in practical energy problems: A comprehensive review. Appl. Energy 2019, 249, 157–165. [Google Scholar] [CrossRef] [Green Version]
- Tucker, W.T.; Ferson, S. Probability Bounds Analysis in Environmental Risk Assessment; Applied Biomathematics: Setauket, NY, USA, 2003. [Google Scholar]
- Sun, X. Uncertainty quantification of material properties in ballistic impact of magnesium alloys. Materials 2022, 15, 6961. [Google Scholar] [CrossRef]
- Choudhary, A.; Voyles, I.T.; Roy, C.J.; Oberkampf, W.L.; Patil, M. Probability bounds analysis applied to the Sandia verification and validation challenge problem. J. Verif. Valid. Uncertain. Quantif. 2016, 1, 11003. [Google Scholar] [CrossRef]
- Enderle, B. Uncertainty Quantification in the Simulation of Turbulent Spray Combustion; University of Stuttgart: Stuttgart, Germany, 2021. [Google Scholar]
- Feng, G. Sensitivity analysis for systems under epistemic uncertainty with probability bounds analysis. Int. J. Comput. Appl. 2018, 179, 1–6. [Google Scholar] [CrossRef]
- Oberguggenberger, M.; King, J.; Schmelzer, B. Classical and imprecise probability methods for sensitivity analysis in engineering: A case study. Int. J. Approx. Reason. 2009, 50, 680–693. [Google Scholar] [CrossRef] [Green Version]
- Ferson, S.; Tucker, W.T. Sensitivity analysis using probability bounding. Reliab. Eng. Syst. Saf. 2006, 91, 1435–1442. [Google Scholar] [CrossRef]
- Pedroni, N.; Zio, E. Hybrid uncertainty and sensitivity analysis of the model of a twin-jet aircraft. J. Aerosp. Inf. Syst. 2015, 12, 73–96. [Google Scholar] [CrossRef]
- Bi, S.; Broggi, M.; Wei, P.; Beer, M. The Bhattacharyya distance: Enriching the P-box in stochastic sensitivity analysis. Mech. Syst. Signal Process. 2019, 129, 265–281. [Google Scholar] [CrossRef]
- Bera, S. Application of Pinching Method to Quantify Sensitivity of Reactivity Coefficients on Power Defect; Springer: Chams, Switzerland, 2021; Volume 623, pp. 263–272. [Google Scholar]
- Schöbi, R.; Sudret, B. Global sensitivity analysis in the context of imprecise probabilities (p-boxes) using sparse polynomial chaos expansions. Reliab. Eng. Syst. Saf. 2019, 187, 129–141. [Google Scholar] [CrossRef] [Green Version]
- Lye, A.; Kitahara, M.; Broggi, M.; Patelli, E. Robust optimization of a dynamic Black-box system under severe uncertainty: A distribution-free framework. Mech. Syst. Signal Process. 2022, 167, 108522. [Google Scholar] [CrossRef]
- Wei, P.; Lu, Z.; Song, J. A new variance-based global sensitivity analysis technique. Comput. Phys. Commun. 2013, 184, 2540–2551. [Google Scholar] [CrossRef]
Rank | Uncertain Category | Distribution | Uncertainty Characteristics | Correlation |
---|---|---|---|---|
X1 | Hybrid | Normal | 0.2 ≤ μ(·) ≤ 1, σ = 1 | ρ12 = 0.9 ρ34 = 0.9 |
X2 | Hybrid | Normal | 0.2 ≤ μ(·) ≤ 1, σ = 1 | |
X3 | Hybrid | Normal | 0.2 ≤ μ(·) ≤ 1, σ = 1 | |
X4 | Hybrid | Normal | 0.2 ≤ μ(·) ≤ 1, σ = 1 |
Variable | Initial Parameter Space | Affine Space | ||||
---|---|---|---|---|---|---|
Initial Area | Pinched Area | S | Initial Area | Pinched Area | S | |
X1 | 7.9005 | 7.0111 | 11.26% | 7.7287 | 6.7280 | 12.94% |
X2 | 4.8742 | 38.31% | 5.4194 | 29.88% | ||
X3 | 3.8483 | 51.29% | 6.6003 | 14.60% | ||
X4 | 1.5677 | 80.16% | 5.2212 | 32.44% |
Variable | Uncertain Category | Distribution | Mean | Std. | Correlation |
---|---|---|---|---|---|
LL (mm) | Hybrid | Normal | 0.2167 | [0.0108, 0.0433] | ρ12 = 0.7 ρ34 = 0.8 ρ56 = 0.8 |
DL (mm) | Hybrid | Normal | 0.4790 | [0.0239, 0.0958] | |
Pt3 (MPa) | Hybrid | Normal | 1,960,000 | [98,000, 392,000] | |
Pt4 (MPa) | Hybrid | Normal | 1,860,200 | [93,010, 372,040] | |
Ρ (kg/m3) | Hybrid | Normal | 7.8116 | [0.3906, 1.5623] | |
V (m/s) | Hybrid | Normal | 40 | [2, 8] |
Variable | Initial Parameter Space | Affine Space | ||||
---|---|---|---|---|---|---|
Initial Area | Pinched Area | S | Initial Area | Pinched Area | S | |
LL | 0.2047 | 0.2010 | 1.81% | 0.2811 | 0.2720 | 3.24% |
DL | 0.1992 | 2.69% | 0.2731 | 2.85% | ||
Pt3 | 0.1734 | 15.29% | 0.1795 | 36.14% | ||
Pt4 | 0.1825 | 10.85% | 0.1711 | 39.13% | ||
ρ | 0.1986 | 2.98% | 0.2714 | 3.45% | ||
v | 0.1947 | 4.89% | 0.2699 | 3.98% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, H.; Zhang, S.; Li, J.; Kong, L.; Zhang, B.; Xing, F.; Luo, H. Imprecise P-Box Sensitivity Analysis of an Aero-Engine Combustor Performance Simulation Model Considering Correlated Variables. Energies 2023, 16, 2362. https://doi.org/10.3390/en16052362
Tang H, Zhang S, Li J, Kong L, Zhang B, Xing F, Luo H. Imprecise P-Box Sensitivity Analysis of an Aero-Engine Combustor Performance Simulation Model Considering Correlated Variables. Energies. 2023; 16(5):2362. https://doi.org/10.3390/en16052362
Chicago/Turabian StyleTang, Hongjie, Shicheng Zhang, Jinhui Li, Lingwei Kong, Baoqiang Zhang, Fei Xing, and Huageng Luo. 2023. "Imprecise P-Box Sensitivity Analysis of an Aero-Engine Combustor Performance Simulation Model Considering Correlated Variables" Energies 16, no. 5: 2362. https://doi.org/10.3390/en16052362
APA StyleTang, H., Zhang, S., Li, J., Kong, L., Zhang, B., Xing, F., & Luo, H. (2023). Imprecise P-Box Sensitivity Analysis of an Aero-Engine Combustor Performance Simulation Model Considering Correlated Variables. Energies, 16(5), 2362. https://doi.org/10.3390/en16052362