Morphology Regulated Hierarchical Rods-, Buds-, and Sheets-like CoMoO4 for Electrocatalytic Oxygen Evolution Reaction
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Synthesis of CoMoO4 Nanostructured Materials
2.3. Materials Characterization
2.4. Electrochemical Characterization
3. Results and Discussion
3.1. Phase and Microstructural Analysis
3.2. OER Performance
- The R-CMO catalyst, which has a hierarchical structure made up of a number of rod-like nanostructures, utilizes the Co and Mo ions’ synergistic effect to encourage adequate exposure of a number of active sites to the electrolyte solution, which enhances electrochemical stability and OER performance.
- Rapid ion transportation is made possible by the catalyst’s high electrochemically active surface area, which also offers readily accessible electroactive sites. By reducing electrode resistance, this feature also improves redox diffusion kinetics.
- The R-CMO catalyst’s void space, adorned with many nanostructured rods, increases internal stress and volumetric fluctuations to shield the active material from structural collapse and loosening of the electrical structure during the chronoamperometric stability test.
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sun, H.; Xu, X.; Song, Y.; Zhou, W.; Shao, Z. Designing High-Valence Metal Sites for Electrochemical Water Splitting. Adv. Funct. Mater. 2021, 31, 2009779. [Google Scholar] [CrossRef]
- She, Z.W.; Kibsgaard, J.; Dickens, C.F.; Chorkendorff, I.; Norshov, J.K.; Jaramillo, T.F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998. [Google Scholar]
- Wang, N.; Li, L.; Zhao, D.; Kang, X.; Tang, Z.; Chen, S. Graphene Composites with Cobalt Sulfide: Efficient Trifunctional Electrocatalysts for Oxygen Reversible Catalysis and Hydrogen Production in the Same Electrolyte. Small 2017, 13, 1701025. [Google Scholar] [CrossRef]
- Sun, H.; Xu, X.; Kim, H.; Jung, W.C.; Zhou, W.; Shao, Z. Electrochemical Water Splitting: Bridging the Gaps between Fundamental Research and Industrial Applications. Energy Environ. Mater. 2022, e12441. [Google Scholar] [CrossRef]
- Chi, J.; Yu, H. Water electrolysis based on renewable energy for hydrogen production. Chin. J. Catal. 2018, 39, 390. [Google Scholar] [CrossRef]
- Kou, T.; Wang, S.; Li, Y. Perspective on High-Rate Alkaline Water Splitting. ACS Mater. Lett. 2021, 3, 224. [Google Scholar] [CrossRef]
- Dionigi, F.; Strasser, P. NiFe-Based (Oxy) hydroxide Catalysts for Oxygen Evolution Reaction in Non-Acidic Electrolytes. Adv. Energy Mater. 2016, 6, 1600621. [Google Scholar] [CrossRef]
- Kim, J.S.; Kim, B.; Kim, H.; Kang, K. Recent Progress on Multimetal Oxide Catalysts for the Oxygen Evolution Reaction. Adv. Energy Mater. 2018, 8, 1702774. [Google Scholar] [CrossRef]
- Yang, R.; Zhou, Y.; Xing, Y.; Li, D.; Jiang, D.; Chen, M.; Shi, W.; Yuan, S. Synergistic coupling of CoFe-LDH arrays with NiFe-LDH nanosheet for highly efficient overall water splitting in alkaline media. Appl. Catal. B Environ. 2019, 253, 131. [Google Scholar] [CrossRef]
- Jiang, D.; Ma, W.; Zhou, Y.; Xing, Y.; Quan, B.; Li, D. Coupling Co2P and CoP nanoparticles with copper ions incorporated Co9S8 nanowire arrays for synergistically boosting hydrogen evolution reaction electrocatalysis. J. Colloid Interface Sci. 2019, 550, 10. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, K.; Lin, H.; Li, X.; Chan, H.C.; Yang, L.; Gao, Q. MoS2–Ni3S2 Heteronanorods as Efficient and Stable Bifunctional Electrocatalysts for Overall Water Splitting. ACS Catal. 2017, 7, 2357. [Google Scholar] [CrossRef]
- Chen, S.; Kang, Z.; Hu, X.; Zhang, X.; Wang, H.; Xie, J.; Zheng, X.; Yan, W.; Pan, B.; Xie, Y. Delocalized Spin States in 2D Atomic Layers Realizing Enhanced Electrocatalytic Oxygen Evolution. Adv. Mater. 2017, 29, 1701687. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Liang, H.; Ming, V.; Qi, Z.; Xie, Y.; Wang, Z. Prussian Blue Analogues Derived Penroseite (Ni, Co)Se2 Nanocages Anchored on 3D Graphene Aerogel for Efficient Water Splitting. ACS Catal. 2017, 9, 6394. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Zhang, T.; Li, X.; Liu, D.; Liu, G.; Zhang, X.; Lyu, X.; Cai, W.; Li, Y. Mn doped porous cobalt nitride nanowires with high activity for water oxidation under both alkaline and neutral conditions. Chem. Commun. 2017, 53, 13237. [Google Scholar] [CrossRef]
- Peng, X.; Wang, L.; Hu, L.; Li, Y.; Gao, B.; Song, H.; Huang, C.; Zhang, X.; Fu, J.; Huo, K.; et al. In situ segregation of cobalt nanoparticles on VN nanosheets via nitriding of Co2V2O7 nanosheets as efficient oxygen evolution reaction electrocatalysts. Nano Energy 2017, 34, 1. [Google Scholar] [CrossRef]
- Wang, Y.; Kong, B.; Zhao, D.; Wang, H.; Selomulya, C. Strategies for developing transition metal phosphides as heterogeneous electrocatalysts for water splitting. Nano Today 2017, 15, 26. [Google Scholar] [CrossRef]
- Li, W.; Zhang, S.; Fan, Q.; Zhang, F.; Xu, S. Hierarchically scaffolded CoP/CoP2 nanoparticles: Controllable synthesis and their application as a well-matched bifunctional electrocatalyst for overall water splitting. Nanoscale 2017, 9, 5677. [Google Scholar] [CrossRef] [PubMed]
- Jiang, D.; Xu, Y.; Yang, R.; Li, D.; Meng, S.; Chen, M. CoP3/CoMoP Heterogeneous Nanosheet Arrays as Robust Electrocatalyst for pH-Universal Hydrogen Evolution Reaction. ACS Sustain. Chem. Eng. 2019, 10, 9309. [Google Scholar] [CrossRef]
- Xun, S.; Xu, Y.; He, J.; Jiang, D.; Yang, R.; Li, D.; Chen, M. MOF-derived cobalt oxides nanoparticles anchored on CoMoO4 as a highly active electrocatalyst for oxygen evolution reaction. J. Alloys Compd. 2019, 806, 1097. [Google Scholar] [CrossRef]
- Yu, M.Q.; Jiang, L.X.; Yang, H.G. Ultrathin nanosheets constructed CoMoO4 porous flowers with high activity for electrocatalytic oxygen evolution. Chem. Commun. 2015, 51, 14361. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, S.; Jiang, C.; Lu, Q.; Tang, Z.; Wang, X. Controlled Synthesis of Hollow Co–Mo Mixed Oxide Nanostructures and Their Electrocatalytic and Lithium Storage Properties. Chem. Mater. 2016, 7, 2417. [Google Scholar] [CrossRef]
- Fang, L.; Wang, F.; Zhai, T.; Qiu, Y.; Lan, M.; Huang, K.; Jing, Q. Hierarchical CoMoO4 nanoneedle electrodes for advanced supercapacitors and electrocatalytic oxygen evolution. Electrochim. Acta. 2018, 259, 552. [Google Scholar] [CrossRef]
- Zhang, B.; Liu, G.; Jin, B.; Zhao, L.; Lang, X.; Zhu, Y.; Jiang, Q. CoMoO4/rGO hybrid structure embellished with Cu nanoparticles: An electrocatalyst rich in oxygen vacancies towards enhanced oxygen evolution reaction. Mater. Lett. 2021, 293, 129741. [Google Scholar] [CrossRef]
- Paul, B.; Bhanja, P.; Sharma, S.; Yamauchi, Y.; Alothman, Z.A.; Wang, Z.L.; Bal, R.; Bhaumik, A. Morphologically controlled cobalt oxide nanoparticles for efficient oxygen evolution reaction. J. Colloid Interface Sci. 2021, 582, 3222. [Google Scholar] [CrossRef] [PubMed]
- Lv, X.; Cao, L.; Fu, Y.; Guo, J.; Yang, J.; Huang, Y.; Wang, J. Morphology-controlled synthesis of Cu2S for efficient oxygen evolution reaction. J. Electroanal. Chem. 2022, 907, 116020. [Google Scholar] [CrossRef]
- Xie, W.; Huang, J.; Huang, L.; Geng, S.; Song, S.; Tsiakaras, P.; Wang, Y. Novel fluorine-doped cobalt molybdate nanosheets with enriched oxygen-vacancies for improved oxygen evolution reaction activity. Appl. Catal. B Environ. 2022, 303, 120871. [Google Scholar] [CrossRef]
- Xu, Y.; Xie, L.; Li, D.; Yang, R.; Jiang, D.; Chen, M. Engineering Ni(OH)2 Nanosheet on CoMoO4 Nanoplate Array as Efficient Electrocatalyst for Oxygen Evolution Reaction. ACS Sustain. Chem. Eng. 2018, 6, 12. [Google Scholar] [CrossRef]
- Guan, X.; Yang, L.; Zhu, G.; Wen, H.; Zhang, J.; Sun, X.; Feng, H.; Tian, W.; Chen, X.; Yao, Y. A hierarchical CoMoO4 nanoparticle decorated nanoplate array as an electrocatalyst toward improved alkaline oxygen evolution reaction. Sustain. Energy Fuels 2020, 4, 1595. [Google Scholar] [CrossRef]
- Luo, J.; Wang, X.; Gu, Y.; Wang, D.; Wang, S.; Li, W.; Zhou, Y.; Zhang, J. Constructing hollow nanocages of Co3O4-CoMoO4 heterostructure for efficient electrocatalytic oxygen evolution reaction. Appl. Surf. Sci. 2022, 606, 154562. [Google Scholar] [CrossRef]
- Yang, W.D.; Xiang, J.; Zhao, R.D.; Loy, S.; Li, M.T.; Ma, D.M.; Li, J.; Wu, F.F. Nanoengineering of ZnCo2O4@CoMoO4 heterogeneous structures for supercapacitor and water splitting applications. Ceram. Int. 2023, 49, 4422. [Google Scholar] [CrossRef]
- Xia, L.; Bo, L.; Shi, W.; Zhang, Y.; Shen, Y.; Ji, X.; Guan, X.; Wang, Y.; Tong, J. Defect and interface engineering of templated synthesis of hollow porous Co3O4/CoMoO4 with highly enhanced electrocatalytic activity for oxygen evolution reaction. Chem. Eng. J. 2023, 452, 139250. [Google Scholar] [CrossRef]
- Song, S.; Mu, L.; Jiang, Y.; Sun, J.; Zhang, Y.; Shi, G.; Sun, H. Turning Electrocatalytic Activity Sites for the Oxygen Evolution Reaction on Brownmillerite to Oxyhydroxide. ACS Appl. Mater. Interfaces 2022, 14, 42. [Google Scholar] [CrossRef] [PubMed]
- Du, H.; Pu, W.; Yang, C. Morphology control of Co3O4 with nickel incorporation for highly efficient oxygen evolution reaction. Appl. Surf. Sci. 2021, 541, 148221. [Google Scholar] [CrossRef]
- Vinothkumar, V.; Abinaya, M.; Chen, S.M. Ultrasonic assisted preparation of CoMoO4 nanoparticles modified electrochemical sensor for chloramphenicol determination. J. Solid State Chem. 2021, 302, 122392. [Google Scholar] [CrossRef]
- Priya, M.; Premkumar, V.K.; Vasantharani, P.; Sivakumar, G. Structural and electrochemical properties of ZnCo2O4 nanoparticles synthesized by hydrothermal method. Vacuum 2019, 167, 307. [Google Scholar] [CrossRef]
- Dillip, G.R.; Ramesh, B.; Reddy, C.M.; Mallikarjuna, K.; Ravi, O.; Dhoble, S.J.; Joo, S.W.; Raju, B.D. X-ray analysis and optical studies of Dy3+ doped NaSrB5O9 microstructures for white light generation. J. Alloys Compd. 2014, 615, 719. [Google Scholar] [CrossRef]
- Yan, X.; Tian, L.; Atkins, S.; Liu, Y.; Murowchick, J.; Chen, X. Converting CoMoO4 into CoO/MoOx for Overall Water Splitting by Hydrogenation. ACS Sustain. Chem. Eng. 2016, 4, 3743. [Google Scholar] [CrossRef]
- Hammoodi, O.G.; Tikrity, E.T.B.A.; Hassan, K.H. Sulfur Removal from Iraqi Kerosene by Oxidative Desulfurization Using Cobalt Molybdate-Graphene Composite. World J. Environ. Sci. 2014, 8, 92. [Google Scholar]
- Adabavazeh, H.; Saljooqi, A.; Shamspur, T.; Mostafavi, A. Synthesis of polyaniline decorated with ZnO and CoMoO4 nanoparticles for enhanced photocatalytic degradation of imidacloprid pesticide under visible light. Polyhedron 2021, 198, 115058. [Google Scholar] [CrossRef]
- Qi, J.Q.; Li, S.L.; Sui, Y.W.; He, Y.Z.; Meng, Q.K.; Wei, F.X.; Ren, Y.J.; Jin, Y.X. Solvent dependence on structure and supercapacitor performance of mesoporous NiCo2O4 grown on nickel foam. Mater. Res. Exp. 2017, 4, 106302. [Google Scholar] [CrossRef]
- Prasad, K.; Reddy, G.R.; Manjula, G.; Park, S.H.; Suh, Y.; Reddy, B.P.; Mallikarjuna, K.; Raju, B.D.P. Morphological transformation of rod-like to pebbles-like CoMoO4 microstructures for energy storage devices. Chem. Phys. 2022, 553, 111382. [Google Scholar] [CrossRef]
- Reddy, G.R.; Reddy, N.R.; Dillip, G.R.; Joo, S.W. In Situ Construction of Binder-Free Stable Battery-Type Copper Cobaltite and Copper Oxide Composite Electrodes for All-Solid State Asymmetric Supercapacitors: Cation Concentration and Morphology-Dependent Electrochemical Performance. Energy Fuels 2022, 36, 5965. [Google Scholar] [CrossRef]
- Wang, F.; Zhao, J.; Tian, W.; Hu, Z.; Lv, X.; Zhang, H.; Yue, H.; Zhang, Y.; Ji, J.; Jiang, W. Morphology-controlled synthesis of CoMoO4 nanoarchitectures anchored on carbon cloth for high-efficiency oxygen oxidation reaction. RSC Adv. 2019, 9, 1562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reddy, G.R.; Dillip, G.R.; Manjunath, G.L.; Joo, S.W. Boosting the Electrochemical Performance of Mn-doped CuCo2O4/CuO Heterostructures for All-Solid-State Asymmetric Battery-type Supercapacitors. J. Electrochem. Soc. 2022, 169, 060549. [Google Scholar] [CrossRef]
- Sivakumar, P.; Raj, C.J.; Ramesh, R.; Kulandaive, L.; Park, J.W.; Jung, H. Influence of heat-treatment temperature on the improvement of the electrochemical performance of CoMoO4 nanomaterials for hybrid supercapacitor application. Ceram. Int. 2022, 48, 29018. [Google Scholar] [CrossRef]
- Rajasekhara, R.G.; Sreekanth, T.V.M.; Rajavaram, R.; Borelli, D.P.R.; Dillip, G.R.; Nagajyothi, P.C. Effect of reaction time and PVP contents on morphologies of hierarchical 3D flower-like ZnCo2O4 microstructures for energy storage devices. Int. J. Energy Res. 2020, 44, 11233. [Google Scholar]
- Sivakumar, P.; Jana, M.; Kota, M.; Jung, M.G.; Gedanken, A.; Park, H.S. Controllable synthesis of nanohorn-like architectured cobalt oxide for hybrid supercapacitor application. J. Power Sources 2018, 402, 147. [Google Scholar] [CrossRef]
- Fang, Y.; Li, X.; Hu, Y.; Li, F.; Lin, X.; Tian, M.; An, X.; Fu, Y.; Jin, J.; Ma, J. Ultrasonication-assisted ultrafast preparation of multiwalled carbon nanotubes/Au/Co3O4 tubular hybrids as superior anode materials for oxygen evolution reaction. J. Power Sources 2015, 300, 285. [Google Scholar] [CrossRef]
- Dong, Q.; Wang, Q.; Dai, Z.; Qiu, H.; Dong, X. MOF-Derived Zn-Doped CoSe2 as an Efficient and Stable Free-Standing Catalyst for Oxygen Evolution Reaction. ACS Appl. Mater. Interfaces 2016, 8, 40. [Google Scholar] [CrossRef]
- Akbayrak, M.; Anal, A.M. Metal oxides supported cobalt nanoparticles: Active electrocatalysts for oxygen evolution reaction. Electrochim. Acta 2021, 393, 139053. [Google Scholar] [CrossRef]
- Das, D.; Das, A.; Raghunath, M.; Nanda, K.K. Phosphine-free avenue to Co2P nanoparticle encapsulated N, P co-doped CNTs: A novel non-enzymatic glucose sensor and an efficient electrocatalyst for oxygen evolution reaction. Green Chem. 2017, 19, 1327. [Google Scholar] [CrossRef] [Green Version]
- Han, L.; Yu, X.Y.; Lou, X.W. Formation of Prussian-Blue-Analog Nanocages via a Direct Etching Method and their Conversion into Ni–Co-Mixed Oxide for Enhanced Oxygen Evolution. Adv. Mater. 2016, 28, 4601. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Geng, W.; Wang, Y.; Huang, Y.; Qi, T. NiCo2O4 nanoflakes supported on titanium suboxide as a highly efficient electrocatalyst towards oxygen evolution reaction. Int. J. Hydrog. Energy 2017, 42, 119. [Google Scholar] [CrossRef]
- Liu, M.; Li, J. Cobalt Phosphide Hollow Polyhedron as Efficient Bifunctional Electrocatalysts for the Evolution Reaction of Hydrogen and Oxygen. ACS Appl. Mater. Interfaces 2016, 8, 3. [Google Scholar] [CrossRef]
- Sung, M.C.; Lee, G.H.; Kim, D.W. CeO2/Co(OH)2 hybrid electrocatalysts for efficient hydrogen and oxygen evolution reaction. J. Alloys Compd. 2019, 800, 450. [Google Scholar] [CrossRef]
Catalyst | Substrate | Electrolyte | Overpotential (mV) @ Current Density (mA cm−2) | References |
---|---|---|---|---|
R-CMO | Ni foam | 1.0 M KOH | 349@10 | This work |
MWCNT/Au/Co3O4 | GCE | 1.0 M KOH | 350@10 | [48] |
Zn-CoSe2 Nanosheets | Carbon fabric collector | 1.0 M KOH | 356@10 | [49] |
Co/CeO2 | GCE | 1.0 M KOH | 365@10 | [50] |
B-CMO | Ni foam | 1.0 M KOH | 369@10 | This work |
Co2P/NPCNTs | GCE | 1.0 M KOH | 370@10 | [51] |
Co/ZrO2 | GCE | 1.0 M KOH | 373@10 | [50] |
NiCo Nanocages | GCE | 1.0 M KOH | 380@10 | [52] |
S-CMO | Ni foam | 1.0 M KOH | 384@10 | This work |
Co/TiO2 | GCE | 1.0 M KOH | 390@10 | [50] |
NiCo2O4 Nanoflakes/Ti4O7 | GCE | 1.0 M KOH | 398@10 | [53] |
CoP Hollow polyhedrons | GCE | 1.0 M KOH | 400@10 | [54] |
CeO2/Co(OH)2 | GCE | 1.0 M KOH | 410@10 | [55] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prasad, K.; Mahato, N.; Yoo, K.; Kim, J. Morphology Regulated Hierarchical Rods-, Buds-, and Sheets-like CoMoO4 for Electrocatalytic Oxygen Evolution Reaction. Energies 2023, 16, 2441. https://doi.org/10.3390/en16052441
Prasad K, Mahato N, Yoo K, Kim J. Morphology Regulated Hierarchical Rods-, Buds-, and Sheets-like CoMoO4 for Electrocatalytic Oxygen Evolution Reaction. Energies. 2023; 16(5):2441. https://doi.org/10.3390/en16052441
Chicago/Turabian StylePrasad, Kumcham, Neelima Mahato, Kisoo Yoo, and Jonghoon Kim. 2023. "Morphology Regulated Hierarchical Rods-, Buds-, and Sheets-like CoMoO4 for Electrocatalytic Oxygen Evolution Reaction" Energies 16, no. 5: 2441. https://doi.org/10.3390/en16052441
APA StylePrasad, K., Mahato, N., Yoo, K., & Kim, J. (2023). Morphology Regulated Hierarchical Rods-, Buds-, and Sheets-like CoMoO4 for Electrocatalytic Oxygen Evolution Reaction. Energies, 16(5), 2441. https://doi.org/10.3390/en16052441