A Study on the Control System of Electric Water Heaters for Decarbonization
Abstract
:1. Introduction
- (i)
- A comprehensive hot water consumption profile in terms of time and number of participants was used in the simulation of the single- and dual-tank models;
- (ii)
- Dual-tank and single-tank energy consumptions are calculated at different tank sizes and power ratios and the energy consumptions of the dual tank and single tank are compared;
- (iii)
- GHG emissions of tanks were calculated and compared using dual-tank and single-tank energy consumptions.
2. Materials and Methods
2.1. Hot Water Use Profile
2.2. Single-Tank and Dual-Tank Modeling and Control
2.3. Emission Calculation Using Electricity Consumption
3. Results
3.1. Tank Simulation and Energy Consumption
3.2. Energy Analyses during Heating Period
3.3. Estimation of Greenhouse Gas Emission
4. Discussion
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Swan, L.G.; Ugursal, V.I. Modeling of end-use energy consumption in the residential sector: A review of modeling techniques. Renew. Sustain. Energy Rev. 2009, 13, 1819–1835. [Google Scholar] [CrossRef]
- Tarroja, B.; Chiang, F.; AghaKouchak, A.; Samuelsen, S.; Raghavan, S.V.; Wei, M.; Sun, K.; Hong, T. Translating climate change and heating system electrification impacts on building energy use to future greenhouse gas emissions and electric grid capacity requirements in California. Appl. Energy 2018, 225, 522–534. [Google Scholar] [CrossRef] [Green Version]
- Sakamoto, S.; Nagai, Y.; Sugiyama, M.; Fujimori, S.; Kato, E.; Komiyama, R.; Matsuo, Y.; Oshiro, K.; Silva Herran, D. Demand-side decarbonization and electrification: EMF 35 JMIP study. Sustain. Sci. 2021, 16, 395–410. [Google Scholar] [CrossRef]
- Saidur, R.; Masjuki, H.H.; Jamaluddin, M.; Ahmed, S. Energy and associated greenhouse gas emissions from household appliances in Malaysia. Energy Policy 2007, 35, 1648–1657. [Google Scholar] [CrossRef]
- Greenhouse Gas Emissions by Aggregated Sector. Available online: https://www.eea.europa.eu/data-and-maps/daviz/ghg-emissions-by-aggregated-sector-5#tab-dashboard-02 (accessed on 27 December 2022).
- Agency, I.E. Net Zero by 2050 a Roadmap for the Global Energy Sector; International Energy Agency: Paris, France, 2021. [Google Scholar]
- Dennis, K. Environmentally beneficial electrification: Electricity as the end-use option. Electr. J. 2015, 28, 100–112. [Google Scholar] [CrossRef] [Green Version]
- Munuera, L.; Bradford, J.; Kelly, N.; Hawkes, A. The Role of Energy Efficiency in Decarbonising Heat via Electrification. In Proceedings of the ECEEE 2013 Summer Study on Energy Efficiency, Toulon, France, 3–8 June 2013; pp. 1159–1164. [Google Scholar]
- Wei, M.; Nelson, J.H.; Greenblatt, J.B.; Mileva, A.; Johnston, J.; Ting, M.; Yang, C.; Jones, C.; McMahon, J.E.; Kammen, D.M. Deep carbon reductions in California require electrification and integration across economic sectors. Environ. Res. Lett. 2013, 8, 014038. [Google Scholar] [CrossRef]
- European Parliament, Council of the European Union. Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the Energy Performance of Buildings. 2010. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32010L0031 (accessed on 25 January 2023).
- Yildiz, B.; Bilbao, J.I.; Roberts, M.; Heslop, S.; Dore, J.; Bruce, A.; MacGill, I.; Egan, R.J.; Sproul, A.B. Analysis of electricity consumption and thermal storage of domestic electric water heating systems to utilize excess PV generation. Energy 2021, 235, 121325. [Google Scholar] [CrossRef]
- Deason, J.; Borgeson, M. Electrification of buildings: Potential, challenges, and outlook. Curr. Sustain. /Renew. Energy Rep. 2019, 6, 131–139. [Google Scholar] [CrossRef]
- Leibowicz, B.D.; Lanham, C.M.; Brozynski, M.T.; Vázquez-Canteli, J.R.; Castejón, N.C.; Nagy, Z. Optimal decarbonization pathways for urban residential building energy services. Appl. Energy 2018, 230, 1311–1325. [Google Scholar] [CrossRef]
- Mancini, F.; Nastasi, B. Energy retrofitting effects on the energy flexibility of dwellings. Energies 2019, 12, 2788. [Google Scholar] [CrossRef] [Green Version]
- Thomaßen, G.; Kavvadias, K.; Navarro, J.P.J. The decarbonisation of the EU heating sector through electrification: A parametric analysis. Energy Policy 2021, 148, 111929. [Google Scholar] [CrossRef]
- Liu, W.; Chen, C.; Wu, H.; Guo, C.; Chen, Y.; Liu, W.; Cui, Z. Environmental life cycle assessment and techno-economic analysis of domestic hot water systems in China. Energy Convers. Manag. 2019, 199, 111943. [Google Scholar] [CrossRef]
- Del Mar Casanovas-Rubio, M.; Armengou, J. Decision-making tool for the optimal selection of a domestic water-heating system considering economic, environmental and social criteria: Application to Barcelona (Spain). Renew. Sustain. Energy Rev. 2018, 91, 741–753. [Google Scholar] [CrossRef]
- Raghavan, S.V.; Wei, M.; Kammen, D.M. Scenarios to decarbonize residential water heating in California. Energy Policy 2017, 109, 441–451. [Google Scholar] [CrossRef] [Green Version]
- Keinath, C.M.; Garimella, S. An energy and cost comparison of residential water heating technologies. Energy 2017, 128, 626–633. [Google Scholar] [CrossRef]
- Hohne, P.; Kusakana, K.; Numbi, B. A review of water heating technologies: An application to the South African context. Energy Rep. 2019, 5, 1–19. [Google Scholar] [CrossRef]
- Geglio, T.; Bradley, T.; Williams, T.; Zhou, S.; Watkins, D.; Minakata, D. Water-and Energy-Efficient Appliances for Circular Water Economy: Conceptual Framework Development and Analysis of Greenhouse Gas Emissions and Water Consumption. ACS EST Eng. 2021, 2, 409–422. [Google Scholar] [CrossRef]
- Nehrir, M.H.; Jia, R.; Pierre, D.A.; Hammerstrom, D.J. Power management of aggregate electric water heater loads by voltage control. In Proceedings of the 2007 IEEE Power Engineering Society General Meeting, Tampa, FL, USA, 24–28 June 2007; IEEE: New York, NY, USA, 2007; pp. 1–6. [Google Scholar]
- Roux, M.; Apperley, M.; Booysen, M. Comfort, peak load and energy: Centralised control of water heaters for demand-driven prioritisation. Energy Sustain. Dev. 2018, 44, 78–86. [Google Scholar] [CrossRef] [Green Version]
- Xiang, S.; Chang, L.; Cao, B.; He, Y.; Zhang, C. A novel domestic electric water heater control method. IEEE Trans. Smart Grid 2019, 11, 3246–3256. [Google Scholar] [CrossRef]
- Diao, R.; Lu, S.; Elizondo, M.; Mayhorn, E.; Zhang, Y.; Samaan, N. Electric water heater modeling and control strategies for demand response. In Proceedings of the 2012 IEEE Power and Energy Society General Meeting, San Diego, CA, USA, 22–26 July 2012; IEEE: New York, NY, USA, 2012; pp. 1–8. [Google Scholar]
- Dolan, P.; Nehrir, M.; Gerez, V. Development of a Monte Carlo based aggregate model for residential electric water heater loads. Electr. Power Syst. Res. 1996, 36, 29–35. [Google Scholar] [CrossRef]
- Kondoh, J.; Lu, N.; Hammerstrom, D.J. An evaluation of the water heater load potential for providing regulation service. In Proceedings of the 2011 IEEE Power and Energy Society General Meeting, Detroit, MI, USA, 24–29 July 2011; IEEE: New York, NY, USA, 2011; pp. 1–8. [Google Scholar]
- Engelbrecht, J.; Ritchie, M.J.; Booysen, M. Optimal schedule and temperature control of stratified water heaters. Energy Sustain. Dev. 2021, 62, 67–81. [Google Scholar] [CrossRef]
- Xu, Z.; Diao, R.; Lu, S.; Lian, J.; Zhang, Y. Modeling of electric water heaters for demand response: A baseline PDE model. IEEE Trans. Smart Grid 2014, 5, 2203–2210. [Google Scholar] [CrossRef]
- Tahiri, A.; Smith, K.M.; Thorsen, J.E.; Hviid, C.A.; Svendsen, S. Staged control of domestic hot water storage tanks to support district heating efficiency. Energy 2023, 263, 125493. [Google Scholar] [CrossRef]
- ANSI/ASHRAE Standard 90.2-1993; Energy Efficient Design of Low-Rise Residential Buildings. In Section 8.9.4, Hourly Domestic Hot Water Fraction and Table 8-4, Daily Domestic Hot Water Load Profile; American Society of Heating, Refrigerating and Air-Conditioning Engineers: Atlanta, GA, USA, 1993; pp. 53–54.
- Becker, B.; Stogsdill, K. A domestic hot water use database. ASHRAE J. 1990, 32, 21–25. [Google Scholar]
- Bouchelle, M.P.; Parker, D.S.; Anello, M. Factors Influencing Water Heating Energy Use and Peak Demand in a Large Scale Residential Monitoring Study; Texas A&M University: College Station, TX, USA, 2000. [Google Scholar]
- Perlman, M.; Mills, B. Development of residential hot water use patterns. ASHRAE Trans. 1985, 91, 657–679. [Google Scholar]
- Ahmed, K.; Pylsy, P.; Kurnitski, J. Hourly consumption profiles of domestic hot water for different occupant groups in dwellings. Sol. Energy 2016, 137, 516–530. [Google Scholar] [CrossRef]
- Fuentes, E.; Arce, L.; Salom, J. A review of domestic hot water consumption profiles for application in systems and buildings energy performance analysis. Renew. Sustain. Energy Rev. 2018, 81, 1530–1547. [Google Scholar] [CrossRef]
- Fairey, P.; Parker, D. A Review of Hot Water Draw Profiles Used in Performance Analysis of Residential Domestic Hot Water Systems; Florida Solar Energy Center: Cocoa, FL, USA, 2004; Volume 2. [Google Scholar]
- Abdi Hejazi, S. Sizing a storage type water heating system. ASHRAE J. 1989, 31, 35–41. [Google Scholar]
- Mínguez, J.M. Water-heaters in series. Int. J. Energy Res. 1987, 11, 145–151. [Google Scholar] [CrossRef]
- Feyzioglu, A.; Kar, A.K. Development of Control Strategies and Implementation to Electrical Water Heaters for Energy Conservation. Cybern. Inf. Technol. 2016, 16, 98–112. [Google Scholar] [CrossRef] [Green Version]
- Feyzioglu, A. Development of Control Strategies and Implementation to Electrical Water Heaters for Energy Conservation. Ph.D. Thesis, Marmara University, Istanbul, Turkey, 2012. [Google Scholar]
- Ureden, A.; Ozden, S. Kurumsal karbon ayak izi nasıl hesaplanır: Teorik bir çalışma. Anadolu Orman Araştırmaları Derg. 2018, 4, 98–108. [Google Scholar]
- Holloway, S.; Makoto Akai, A.K.U.; Pipatti, R.; Rypdal, K. 2006 IPCC Guidelines for National Greenhouse Gas Inventories. In Chapter 5 Carbon Dioxide Transport, Injection and Geological Storage; Institute for Global Environmental Strategies (IGES) for the IPCC: Hayama, Japan, 2006. [Google Scholar]
- The Greenhouse Gas Protocol; World Business Council for Sustainable Development, World Resources Institute: Washington, DC, USA, 2015.
- Türkiye Elektrik Üretim-İletim İstatistikleri. Available online: https://www.teias.gov.tr/turkiye-elektrik-uretim-iletim-istatistikleri (accessed on 17 October 2022).
- Türkiye Ulusal Elektrik Şebekesi Emisyon Faktörü; T.C. Enerji ve Tabii Kaynaklar Bakanlığı, Enerji Verimliliği ve Çevre Dairesi Başkanlığı: Ankara, Turkey, 20 September 2022.
Power Rating (W) | Time Waited | Energy Consumption (J) | Power Consumption (kWh) | GHG Emission (kgCO2/Day) |
---|---|---|---|---|
45 | 9.50 | 1704.74 | 4.74 × 10−4 | 7.31 × 10−4 |
50 | 9.15 | 1688.27 | 4.69 × 10−4 | 7.24 × 10−4 |
65 | 8.19 | 1632.84 | 4.54 × 10−4 | 7 × 10−4 |
75 | 7.60 | 1591.79 | 4.42 × 10−4 | 6.83 × 10−4 |
80 | 7.32 | 1570.30 | 4.36 × 10−4 | 6.74 × 10−4 |
Power Rating (W) | Time Waited | Energy Consumption (J) | Power Consumption (kWh) | GHG Emission (kgCO2/Day) |
---|---|---|---|---|
45 | 5.51 | 910.07 | 2.53 × 10−4 | 3.90 × 10−4 |
50 | 5.28 | 899.41 | 2.50 × 10−4 | 3.86 × 10−4 |
65 | 4.66 | 863.86 | 2.40 × 10−4 | 3.71 × 10−4 |
75 | 4.29 | 837.82 | 2.33 × 10−4 | 3.59 × 10−4 |
80 | 4.12 | 824.27 | 2.29 × 10−4 | 3.54 × 10−4 |
Power Rating (W) | Dual Tank Compared to Single Tank |
---|---|
45 | 46.62% less |
50 | 46.73% less |
65 | 47.09% less |
75 | 47.37% less |
80 | 47.51% less |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feyzioglu, A. A Study on the Control System of Electric Water Heaters for Decarbonization. Energies 2023, 16, 2439. https://doi.org/10.3390/en16052439
Feyzioglu A. A Study on the Control System of Electric Water Heaters for Decarbonization. Energies. 2023; 16(5):2439. https://doi.org/10.3390/en16052439
Chicago/Turabian StyleFeyzioglu, Ahmet. 2023. "A Study on the Control System of Electric Water Heaters for Decarbonization" Energies 16, no. 5: 2439. https://doi.org/10.3390/en16052439
APA StyleFeyzioglu, A. (2023). A Study on the Control System of Electric Water Heaters for Decarbonization. Energies, 16(5), 2439. https://doi.org/10.3390/en16052439