Self-Unit Commitment of Combined-Cycle Units with Real Operational Constraints
Abstract
:1. Introduction
1.1. Motivation
1.2. Literature Review
1.3. Contributions
- The introduction of the SEUC model for CCGT hourly dispatch, accommodating individual the minimum uptime/downtime constraints for each gas and steam unit, ramp rates, and operational rules for steam turbines, including the requisite number of gas turbines for optimal steam production.
- The incorporation of steam turbine startup processes in the model, taking into account the thermal state of each unit (hot or cold) and the minimum operation hours required for a gas turbine to initiate a steam turbine.
- The implementation of a load distribution constraint among gas turbines. This feature is crucial for maintaining uniform temperature conditions across the steam turbine rotors, thereby preventing thermal stress and ensuring consistent steam production for the steam turbines.
2. Mathematical Formulation
2.1. Objective Function
2.2. CCGT Operational Constraints
2.2.1. Energy Balance Constraints
2.2.2. Gas Turbines’ Operational Limits
2.2.3. Steam Turbines’ Operational Limits
2.2.4. Combined-Cycle Operational and Commitment Limits
2.3. Constraints Related to The Combined-Cycle Operation
2.3.1. CCGT Output Constraints
2.3.2. Steam–Gas Coupling Operation Constraints
2.3.3. CCGT Auxiliary Consumption
2.4. Minimum Uptime and Downtime Constraints
2.4.1. Gas Turbines Minimum Uptime and Downtime Constraints
2.4.2. Startup and Shutdown Mutually Exclusive Variables
2.4.3. Status to Reach The Minimum Uptime/Downtime
2.4.4. Minimum Uptime and Downtime Condition Constraint
2.5. Ramps’ Constraints
2.5.1. Hot Startup Ramp Constraints
2.5.2. Warm Startup Ramp Constraints
2.5.3. Cold Startup Ramp Constraints
2.5.4. Shutdown Ramp Constraint
2.5.5. Operating Ramp Constraints
2.6. Steam Turbine Startup
2.7. Load Distribution between Gas Turbines’ Constraints
Load Distribution Constraint
3. Results and Discussion
3.1. Case I
3.2. Case II
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations and Nomenclature
Abbreviations: | |
Combined-Cycle Gas Turbine | |
Steam Turbine | |
Gas Turbine | |
Mixed-Integer Programming | |
Unit Commitment | |
Self-Unit Commitment | |
Independent System Operator | |
Indices and Sets: | |
Hourly periods, running from 1 to T hours. | |
Gas turbine, running from 1 to NC turbines | |
Steam turbine, running from 1 to NS turbines | |
Parameters: | |
Number of hours the steam turbine have been online since the previous day | |
Number of hours the gas turbine have been online since the previous day | |
Defines if the unit is online or offline since the previous day | |
Cold steam turbine ramp startup in MW | |
Hot steam turbine ramp startup in MW | |
Production cost a gas turbine unit in USD/MWh | |
Cost of non-served energy USD/MWh | |
Maximum power output of unit c (MW) | |
Minimum power output of unit c (MW) | |
Maximum power output of unit s (MW) | |
Minimum power output of unit s (MW) | |
Maximum power output of combined-cycle unit (MW) | |
Minimum power output of combined-cycle unit (MW) | |
Minimum number of gas units to startup one steam unit | |
Relation of energy between steam and gas turbines (p.u.) | |
Required load for the period t (MW) | |
Number of minutes in one hour | |
Shutdown time in hours to hot/warm/cold startup | |
Number of energy hourly blocks for hot/warm/cold startup condition | |
Energy hourly blocks for hot/warm/cold startup condition (MW) | |
Number of shutdown energy hourly blocks | |
Energy hourly blocks for shutdown condition (MW) | |
Shutdown hours of the combined-cycle unit in the first period | |
Online hours of the combined-cycle unit in the first period | |
Power output at the last period of gas turbine c (MW) | |
Status condition in the first period of turbine c (MW) | |
Minimum uptime in hours | |
Minimum downtime in hours | |
Maximum power output of additional fire for each gas unit (MW) | |
Up ramp rate of the gas turbine c (MW/min) | |
Down ramp rate of the gas turbine c (MW/min) | |
Maximum ramp-up rate (MW/h) | |
Maximum ramp-down rate (MW/h) | |
Startup cost of the gas turbine c (USD) | |
Delta steam turbine cost (USD) | |
Auxiliary consumption of the combined-cycle plant (MW) | |
Auxiliary consumption of gas turbine unit (MW) | |
Auxiliary consumption of steam turbine unit (MW) | |
Minimum hours required online in gas turbines for a steam turbine startup | |
Variables: | |
Positive and Continuous Variables: | |
CCGT power output above the minimum power output (MW) | |
Power output the gas turbine c above the minimum power output (MW) | |
Power output steam turbine s above the minimum power output (MW) | |
Startup power output ramp CCGT below the minimum power output (MW) | |
Shutdown power output ramp CCGT below the minimum power output (MW) | |
Total power output CCGT (MW) | |
Power related to the wasted steam (MW) | |
Slack variable related with non-served power by the gas turbines when the combined-cycle unit is not coupled (MW) | |
Combined-cycle auxiliary consumption in hour t (MW) | |
Non-served energy by combined-cycle in hour t (MW) | |
Power output in hour t of the additional fire of the gas turbine c (MW) | |
Excess supplied power used during SU/SD and ramping (MW) | |
Binary Variables: | |
Auxiliary variable to define if the gas turbine c enable a hot startup | |
Commitment status of the gas turbine c in hour t | |
Commitment status of the steam turbine s in hour t | |
Startup status of the gas turbine c in hour t | |
Hot steam turbine startup | |
Cold steam turbine startup | |
Shutdown status of the gas turbine c in hour t | |
Commitment status of the combined-cycle unit in hour t | |
Startup status of the combined-cycle unit in hour t | |
Shutdown status of the combined-cycle unit in hour t |
References
- Li, D.; Hu, Y.; Li, D.; Wang, J. Combined-cycle gas turbine power plant integration with cascaded latent heat thermal storage for fast dynamic responses. Energy Convers. Manag. 2019, 183, 1–13. [Google Scholar] [CrossRef]
- Fan, L.; Pan, K.; Guan, Y. A strengthened mixed-integer linear programming formulation for combined-cycle units. Eur. J. Oper. Res. 2019, 275, 865–881. [Google Scholar] [CrossRef]
- Troy, N.; Flynn, D.; Omalley, M. Multi-Mode Operation of Combined-Cycle Gas Turbines with Increasing Wind Penetration. IEEE Trans. Power Syst. 2012, 27, 484–492. [Google Scholar] [CrossRef]
- Wogrin, S.; Galbally, D.; Ramos, A. CCGT unit commitment model with first-principle formulation of cycling cost due to the fatigue damage. El Sevier-Energy 2016, 113, 227–247. [Google Scholar] [CrossRef]
- Sławiński, D.; Ziółkowski, P.; Badur, J. Thermal failure of a second rotor stage in heavy duty gas turbine. Eng. Fail. Anal. 2020, 115, 104672. [Google Scholar] [CrossRef]
- Maktouf, W.; Saï, K. An investigation of premature fatigue failures of gas turbine blade. Eng. Fail. Anal. 2015, 47, 89–101. [Google Scholar] [CrossRef]
- Consejo Nacional de Operación. Por el cual se establecen las definiciones de los parámetros técnicos de las unidades y/o plantas térmicas y los formatos para el reporte de esta información. Acuerdo 531 de 2011. April 2011. Available online: https://www.cno.org.co/content/acuerdo-531 (accessed on 1 June 2023).
- Posada, C.; Mario, C. Modelo de Optimización para las Plantas Térmicas de Generación de Ciclo Combinado en el Despacho econóMico. Master’s Thesis, Universidad Nacional de Colombia, Bogotá, Colombia, 2009. [Google Scholar]
- Liu, C.; Shahidehpour, M.; Li, Z.; Fotuhi-Firuzabad, M. Component and Mode Models for the Short-Term Schediling of Combined-Cycle Units. IEEE Trans. Power Syst. 2009, 24, 976–990. [Google Scholar]
- Lu, B.; Shahidehpour, M. Short-term scheduling of combined-cycle units. IEEE Trans. Power Syst. 2004, 19, 1616–1625. [Google Scholar] [CrossRef]
- Cohen, A.; Ostrowski, G. Scheduling units with multiple operating modes in unit commitment. IEEE Trans. Power Syst. 1996, 11, 497–503. [Google Scholar] [CrossRef]
- Bjelogrlic, M. Inclusion of combined cycle plants into optimal resource scheduling. In Proceedings of the 2000 IEEE PES Summer Meeting, Seattle, WA, USA, 16–20 July 2000; pp. 189–195. [Google Scholar]
- Mitra, S.; Sun, L.; Grossmann, I.E. Optimal scheduling of industrial combined heat and power plants under time-sensitive electricity prices. Energy 2013, 54, 194–211. [Google Scholar] [CrossRef]
- Morales-España, G.; Correa-Posada, C.M.; Ramos, A. Tight and Compact MIP Formulation of Configuration-Based Combined-Cycle Units. IEEE Trans. Power Syst. 2015, 31, 1350–1359. [Google Scholar] [CrossRef]
- Morales-España, G.; Latorre, J.M.; Ramos, A. Tight and Compact MILP Formulation of Start-Up and Shut-Down Ramping in Unit Commitment. In Proceedings of the 2013 IEEE Power & Energy Society General Meeting, Vancouver, BC, Canada, 21–25 July 2013; pp. 1288–1296. [Google Scholar]
- Morales-España, G.; Latorre, J.M.; Ramos, A. Tight and Compact MILP formulation for the Thermal Unit Commitment Problem. IEEE Trans. Power Syst. 2013, 28, 4897–4908. [Google Scholar] [CrossRef]
- Li, T.; Shaihidehpour, M. Dynamic Ramping in Unit Commitment. IEEE Trans. Power Syst. 2007, 22, 1379–1381. [Google Scholar] [CrossRef]
- Guan, Y.; Fan, L.; Yu, Y. Unified Formulations for Combined-Cycle Units. IEEE Trans. Power Syst. 2018, 33, 7288–7291. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, L.; Li, J.; Chen, Y.; Wang, F. Towards accurate modeling on configuration transitions and dynamic ramping of combined-cycle units in uc problems. IEEE Trans. Power Syst. 2020, 35, 2200–2211. [Google Scholar] [CrossRef]
- Sun, X.; Luh, P.B.; Bragin, M.A.; Chen, Y.; Wan, J.; Wang, F. A novel decomposition and coordination approach for large day-ahead unit commitment with combined cycle units. IEEE Trans. Power Syst. 2018, 33, 5297–5308. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, F. MIP formulation improvement for large scale security constrained unit commitment with configuration based combined cycle modeling. Electr. Power Syst. Res. 2017, 148, 147–154. [Google Scholar] [CrossRef]
- Tamayo, M.; Yu, X.; Wang, X.; Zhang, J. Configuration based Combined Cycle model in market resource commitment. In Proceedings of the 2013 IEEE Power and Energy Society General Meeting (Pes), Vancouver, BC, Canada, 21–25 July 2013; p. 5. [Google Scholar]
- Dai, C.; Chen, Y.; Wang, F.; Wan, J.; Wu, L. A Configuration-Component-Based Hybrid Model for Combined-Cycle Units in MISO Day-Ahead Market. IEEE Trans. Power Syst. 2019, 34, 883–896. [Google Scholar] [CrossRef]
- Hernandez, G.V. Desarrollo de un Modelo de Programación Óptima de Unidades de Generación de Energía Eléctrica para El Sistema Eléctrico Colombiano; Universidad Tecnológica de Pereira: Pereira, Colombia, 2015. [Google Scholar]
- Comisión de Regulación de Energía y Gas. Por la cual se reglamentan los aspectos comerciales aplicables a las transacciones internacionales de energía, que se realizan en el mercado mayorista de electricidad, como parte integrante del Reglamento de Operación. Resolución 112 de 1998. September 1998. Available online: https://gestornormativo.creg.gov.co/gestor/entorno/docs/resolucion_creg_0112_1998.htm (accessed on 1 June 2023).
Variable | Value | Unit |
---|---|---|
800 | MW | |
210 | MW | |
15 | MW | |
5 | MW | |
0.45 | MW | |
2 | MW | |
335 | MWh | |
120 | USD/MWh | |
500 | USD/MWh | |
15,000 | USD | |
2 | p.u. | |
0.613 | p.u. | |
5 | p.u. | |
2 | p.u. | |
t 16 | Hours | |
16 < t 30 | Hours | |
t > 30 | Hours | |
3 | Hours |
Hour | H-Startup | W-Startup | C-Startup | Shutdown |
---|---|---|---|---|
H1 | 50 | 50 | 50 | 210 |
H2 | 100 | 100 | 100 | 100 |
H3 | 150 | 100 | 100 | 50 |
H4 | 210 | 150 | 100 | 0 |
H5 | 0 | 210 | 150 | 0 |
H6 | 0 | 0 | 210 | 0 |
Variable | Value | Units |
---|---|---|
100 | MW | |
50 | MW | |
TC | 5 | MW/min |
TD | 5 | MW/min |
Variable | Value | Units |
---|---|---|
170 | MW | |
80 | MW | |
80 | MW | |
30 | MW |
Unit | (Hours) | (MW) |
---|---|---|
GT1 | 8 | 67 |
GT2 | 0 | 0 |
GT3 | 0 | 0 |
GT4 | 0 | 0 |
GT5 | 8 | 67 |
ST1 | 8 | 83 |
ST2 | 0 | 0 |
Unit | (Hours) | (MW) |
---|---|---|
GT1 | 8 | 0 |
GT2 | 8 | 0 |
GT3 | 8 | 0 |
GT4 | 8 | 0 |
GT5 | 8 | 0 |
ST1 | 8 | 0 |
ST2 | 8 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Sierra, M.; Wogrin, S. Self-Unit Commitment of Combined-Cycle Units with Real Operational Constraints. Energies 2024, 17, 51. https://doi.org/10.3390/en17010051
González-Sierra M, Wogrin S. Self-Unit Commitment of Combined-Cycle Units with Real Operational Constraints. Energies. 2024; 17(1):51. https://doi.org/10.3390/en17010051
Chicago/Turabian StyleGonzález-Sierra, Mauro, and Sonja Wogrin. 2024. "Self-Unit Commitment of Combined-Cycle Units with Real Operational Constraints" Energies 17, no. 1: 51. https://doi.org/10.3390/en17010051
APA StyleGonzález-Sierra, M., & Wogrin, S. (2024). Self-Unit Commitment of Combined-Cycle Units with Real Operational Constraints. Energies, 17(1), 51. https://doi.org/10.3390/en17010051