Applications of Agent-Based Methods in Multi-Energy Systems—A Systematic Literature Review
Abstract
:1. Introduction
- What is an intelligent agent?
- What are the state-of-the-art applications of agent-based methods in MES transitions?
- What are the sources, temporal, and thematic distributions of current research?
- What are the key research topics?
- How do agents make decisions?
- How did current studies implement agent-based decision making?
- What are future research directions?
2. Background on Intelligent Agent Concepts
- (1)
- Reactivity: agents are able to collect external environmental information or datasets and execute timely responses to environmental changes with predefined actions.
- (2)
- Autonomy: agents can operate on their own without direct human intervention.
- (3)
- Pro-activeness: agents have an objective function or goal to guide their actions. Such objective-oriented behavior indicates the dynamic behavior of an intelligent agent to fulfill the objective in a dynamic environment.
- (4)
3. Review Methodology
3.1. Literature Identification
3.2. Literature Screening
4. Article Source and Temporal Distributions
4.1. Article Source Distribution
4.2. Article Temporal Distribution
5. Article Thematic Distribution
5.1. Multi-Agent System Applications
5.1.1. Building Energy System Management
5.1.2. District Energy System Management
- District energy system design
- Fully decentralized district energy system control
- Multi-energy micro-grid management
- District energy management with district heating system and heating clusters
5.1.3. Regional Energy System Management
5.2. Agent-Based Modeling Applications
5.2.1. Behavior Simulations
5.2.2. Policymaking
6. Discussion of Agent-Based Method Applications
6.1. Agent-Based Optimization of MESs
- (1)
- Flexibility: Intelligence and rationality enable the agent to learn and adapt to system changes.
- (2)
- Reliability (fault-tolerance): The decentralization brought by MAS makes the system less susceptible to a single-point failure. If one agent fails, the communications among agents are still intact.
- (3)
- Scalability (extensibility): Due to the plug-and-play attribute of MAS, the system could be extended with ease. Instead of redesigning the whole system, the modeler can only design a class of agents and embed such agents into the system.
- (4)
- Privacy protection: The fully decentralized control does not require an agent to collect systemwide information. As a result, each agent can preserve the privacy of classified information.
6.2. MES Social-Technological Simulation with ABM
6.3. Agent Development Environment
7. Future Research Directions
7.1. Multi-Agent Reinforcement Learning Applications
7.2. Synchronization in Agent-Based Control
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chang, M.; Thellufsen, J.Z.; Zakeri, B.; Pickering, B.; Pfenninger, S.; Lund, H.; Østergaard, P.A. Trends in Tools and Approaches for Modelling the Energy Transition. Appl. Energy 2021, 290, 116731. [Google Scholar] [CrossRef]
- Guelpa, E.; Bischi, A.; Verda, V.; Chertkov, M.; Lund, H. Towards Future Infrastructures for Sustainable Multi-Energy Systems: A Review. Energy 2019, 184, 2–21. [Google Scholar] [CrossRef]
- Shabanpour-Haghighi, A.; Seifi, A.R. Effects of District Heating Networks on Optimal Energy Flow of Multi-Carrier Systems. Renew. Sustain. Energy Rev. 2016, 59, 379–387. [Google Scholar] [CrossRef]
- Edmunds, C.; Galloway, S.; Dixon, J.; Bukhsh, W.; Elders, I. Hosting Capacity Assessment of Heat Pumps and Optimised Electric Vehicle Charging on Low Voltage Networks. Appl. Energy 2021, 298, 117093. [Google Scholar] [CrossRef]
- Zhang, X.; Strbac, G.; Shah, N.; Teng, F.; Pudjianto, D. Whole-System Assessment of the Benefits of Integrated Electricity and Heat System. IEEE Trans. Smart Grid 2019, 10, 1132–1145. [Google Scholar] [CrossRef]
- Mancarella, P. MES (Multi-Energy Systems): An Overview of Concepts and Evaluation Models. Energy 2014, 65, 1–17. [Google Scholar] [CrossRef]
- Huang, W.; Zhang, N.; Cheng, Y.; Yang, J.; Wang, Y.; Kang, C. Multienergy Networks Analytics: Standardized Modeling, Optimization, and Low Carbon Analysis. Proc. IEEE 2020, 108, 1411–1436. [Google Scholar] [CrossRef]
- Ishaq, H.; Dincer, I. Exergy Analysis and Performance Evaluation of a Newly Developed Integrated Energy System for Quenchable Generation. Energy 2019, 179, 1191–1204. [Google Scholar] [CrossRef]
- Wang, C.; Lv, C.; Li, P.; Song, G.; Li, S.; Xu, X.; Wu, J. Modeling and Optimal Operation of Community Integrated Energy Systems: A Case Study from China. Appl. Energy 2018, 230, 1242–1254. [Google Scholar] [CrossRef]
- Xiang, Y.; Cai, H.; Gu, C.; Shen, X. Cost-Benefit Analysis of Integrated Energy System Planning Considering Demand Response. Energy 2020, 192, 116632. [Google Scholar] [CrossRef]
- Lund, H.; Østergaard, P.A.; Connolly, D.; Mathiesen, B.V. Smart Energy and Smart Energy Systems. Energy 2017, 137, 556–565. [Google Scholar] [CrossRef]
- Lund, H.; Andersen, A.N.; Østergaard, P.A.; Mathiesen, B.V.; Connolly, D. From Electricity Smart Grids to Smart Energy Systems—A Market Operation Based Approach and Understanding. Energy 2012, 42, 96–102. [Google Scholar] [CrossRef]
- Jin, J.; Gubbi, J.; Marusic, S.; Palaniswami, M. An Information Framework for Creating a Smart City through Internet of Things. IEEE Internet Things J. 2014, 1, 112–121. [Google Scholar] [CrossRef]
- Gubbi, J.; Buyya, R.; Marusic, S.; Palaniswami, M. Internet of Things (IoT): A Vision, Architectural Elements, and Future Directions. Future Gener. Comput. Syst. 2013, 29, 1645–1660. [Google Scholar] [CrossRef] [Green Version]
- Tanjimuddin, M.; Kannisto, P.; Jafary, P.; Filppula, M.; Repo, S.; Hästbacka, D. A Comparative Study on Multi-Agent and Service-Oriented Microgrid Automation Systems from Energy Internet Perspective. Sustain. Energy Grids Netw. 2022, 32, 100856. [Google Scholar] [CrossRef]
- Priyadarshana, H.V.V.; Sandaru, M.A.K.; Hemapala, K.T.M.U.; Wijayapala, W.D.A.S. A Review on Multi-Agent System Based Energy Management Systems for Micro Grids. AIMS Energy 2019, 7, 924–943. [Google Scholar] [CrossRef]
- Coelho, V.N.; Cohen, M.W.; Coelho, I.M.; Liu, N.; Guimarães, F.G. Multi-Agent Systems Applied for Energy Systems Integration: State-of-the-Art Applications and Trends in Microgrids. Appl. Energy 2017, 187, 820–832. [Google Scholar] [CrossRef]
- Hansen, P.; Liu, X.; Morrison, G.M. Agent-Based Modelling and Socio-Technical Energy Transitions: A Systematic Literature Review. Energy Res. Soc. Sci. 2019, 49, 41–52. [Google Scholar] [CrossRef]
- Jahan, N.; Naveed, S.; Zeshan, M.; Tahir, M.A. How to Conduct a Systematic Review: A Narrative Literature Review. Cureus 2016, 8, e864. [Google Scholar] [CrossRef] [Green Version]
- Babatunde, K.A.; Begum, R.A.; Said, F.F. Application of Computable General Equilibrium (CGE) to Climate Change Mitigation Policy: A Systematic Review. Renew. Sustain. Energy Rev. 2017, 78, 61–71. [Google Scholar] [CrossRef]
- Waddington, H.; White, H.; Snilstveit, B.; Hombrados, J.G.; Vojtkova, M.; Davies, P.; Bhavsar, A.; Eyers, J.; Koehlmoos, T.P.; Petticrew, M.; et al. How to Do a Good Systematic Review of Effects in International Development: A Tool Kit. J. Dev. Eff. 2012, 4, 359–387. [Google Scholar] [CrossRef] [Green Version]
- Wooldridge, M.; Jennings, N.R. Intelligent Agents: Theory and Practice. Knowl. Eng. Rev. 1995, 10, 115–152. [Google Scholar] [CrossRef] [Green Version]
- Russell, S.; Norvig, P. Artificial Intelligence: A Modern Approach, 3rd ed.; Norvig, P., Ed.; Prentice Hall Series in Artificial Intelligence; Pearson: Boston, MA, USA, 2016; ISBN 9781292153971. [Google Scholar]
- Maes, P. Artificial Life Meets Entertainment Life like Autonomous Agents. Commun. ACM 1995, 38, 108–114. [Google Scholar] [CrossRef]
- Finin, T.; Fritzson, R.; Mckay, D.; McEntire, R. KQML as an Agent Communication Language. In Proceedings of the CIKM94: Conference on Information and Knowledge Management, Gaithersburg, MD, USA, 29 November–2 December 1994; pp. 456–463. [Google Scholar] [CrossRef]
- Foundation for Intelligent Physical Agents FIPA ACL Message Structure Specification. Available online: http://www.fipa.org/specs/fipa00061/SC00061G.html (accessed on 10 March 2022).
- Dorri, A.; Kanhere, S.S.; Jurdak, R. Multi-Agent Systems: A Survey. IEEE Access 2018, 6, 28573–28593. [Google Scholar] [CrossRef]
- Sim, K.M. Agent-Based Cloud Computing. IEEE Transations Serv. Comput. 2011, 5, 564–577. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.; Juneja, D.; Malhotra, M. Autonomous Agent Based Load Balancing Algorithm in Cloud Computing. Procedia Comput. Sci. 2015, 45, 832–841. [Google Scholar] [CrossRef] [Green Version]
- de la Prieta, F.; Rodríguez-González, S.; Chamoso, P.; Corchado, J.M.; Bajo, J. Survey of Agent-Based Cloud Computing Applications. Future Gener. Comput. Syst. 2019, 100, 223–236. [Google Scholar] [CrossRef]
- Gutierrez-Garcia, J.O.; Sim, K.M. Agent-Based Cloud Service Composition. Appl. Intell. 2013, 38, 436–464. [Google Scholar] [CrossRef] [Green Version]
- Duan, Y.; Cui, B.X.; Xu, X.H. A Multi-Agent Reinforcement Learning Approach to Robot Soccer. Artif. Intell. Rev. 2012, 38, 193–211. [Google Scholar] [CrossRef]
- Iigo-Blasco, P.; Diaz-Del-Rio, F.; Romero-Ternero, M.C.; Cagigas-Muiz, D.; Vicente-Diaz, S. Robotics Software Frameworks for Multi-Agent Robotic Systems Development. Robot. Auton. Syst. 2012, 60, 803–821. [Google Scholar] [CrossRef]
- Ota, J. Multi-Agent Robot Systems as Distributed Autonomous Systems. Adv. Eng. Inform. 2006, 20, 59–70. [Google Scholar] [CrossRef]
- McArthur, S.D.J.; Davidson, E.M.; Catterson, V.M.; Dimeas, A.L.; Hatziargyriou, N.D.; Ponci, F.; Funabashi, T. Multi-Agent Systems for Power Engineering Applications—Part I: Concepts, Approaches, and Technical Challenges. IEEE Trans. Power Syst. 2007, 22, 1743–1752. [Google Scholar] [CrossRef] [Green Version]
- McArthur, S.D.J.; Davidson, E.M.; Catterson, V.M.; Dimeas, A.L.; Hatziargyriou, N.D.; Ponci, F.; Funabashi, T. Multi-Agent Systems for Power Engineering Applications—Part II: Technologies, Standards, and Tools for Building Multi-Agent Systems. IEEE Trans. Power Syst. 2007, 22, 1753–1759. [Google Scholar] [CrossRef] [Green Version]
- Foundation for Intelligent Physical Agents Welcome to the Foundation for Intelligent Physical Agents. Available online: http://www.fipa.org/ (accessed on 11 March 2022).
- Labeodan, T.; Aduda, K.; Boxem, G.; Zeiler, W. On the Application of Multi-Agent Systems in Buildings for Improved Building Operations, Performance and Smart Grid Interaction—A Survey. Renew. Sustain. Energy Rev. 2015, 50, 1405–1414. [Google Scholar] [CrossRef]
- Bale, C.S.E.; Varga, L.; Foxon, T.J. Energy and Complexity: New Ways Forward. Appl. Energy 2015, 138, 150–159. [Google Scholar] [CrossRef] [Green Version]
- De Almeida, S.J.; Martins Ferreira, R.P.; Eiras, Á.E.; Obermayr, R.P.; Geier, M. Multi-Agent Modeling and Simulation of an Aedes Aegypti Mosquito Population. Environ. Model. Softw. 2010, 25, 1490–1507. [Google Scholar] [CrossRef]
- Ringler, P.; Keles, D.; Fichtner, W. Agent-Based Modelling and Simulation of Smart Electricity Grids and Markets—A Literature Review. Renew. Sustain. Energy Rev. 2016, 57, 205–215. [Google Scholar] [CrossRef]
- Kamioka, H. Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols (Prisma-p) 2015 Statement. Jpn. Pharmacol. Ther. 2019, 47, 1177–1185. [Google Scholar]
- Jackson, J. Are US Utility Standby Rates Inhibiting Diffusion of Customer-Owned Generating Systems? Energy Policy 2007, 35, 1896–1908. [Google Scholar] [CrossRef]
- Kotzur, L.; Nolting, L.; Hoffmann, M.; Groß, T.; Smolenko, A.; Priesmann, J.; Büsing, H.; Beer, R.; Kullmann, F.; Singh, B.; et al. A Modeler’s Guide to Handle Complexity in Energy Systems Optimization. Adv. Appl. Energy 2021, 4, 100063. [Google Scholar] [CrossRef]
- Skyttner, L. General Systems Theory: Origin and Hallmarks. Kybernetes 1996, 25, 16–22. [Google Scholar] [CrossRef]
- Ahmad, M.W.; Mourshed, M.; Yuce, B.; Rezgui, Y. Computational Intelligence Techniques for HVAC Systems: A Review. Build. Simul. 2016, 9, 359–398. [Google Scholar] [CrossRef] [Green Version]
- Howell, S.; Rezgui, Y.; Hippolyte, J.-L.; Jayan, B.; Li, H. Towards the next Generation of Smart Grids: Semantic and Holonic Multi-Agent Management of Distributed Energy Resources. Renew. Sustain. Energy Rev. 2017, 77, 193–214. [Google Scholar] [CrossRef]
- Khan, M.W.; Wang, J. The Research on Multi-Agent System for Microgrid Control and Optimization. Renew. Sustain. Energy Rev. 2017, 80, 1399–1411. [Google Scholar] [CrossRef]
- Vázquez-Canteli, J.R.; Nagy, Z. Reinforcement Learning for Demand Response: A Review of Algorithms and Modeling Techniques. Appl. Energy 2019, 235, 1072–1089. [Google Scholar] [CrossRef]
- Ma, Z.; Schultz, M.J.; Christensen, K.; Værbak, M.; Demazeau, Y.; Jørgensen, B.N. The Application of Ontologies in Multi-Agent Systems in the Energy Sector: A Scoping Review. Energies 2019, 12, 3200. [Google Scholar] [CrossRef] [Green Version]
- Conte, G.; Morganti, G.; Perdon, A.M.; Scaradozzi, D. Multi-Agent System Theory for Resource Management in Home Automation Systems. J. Phys. Agents 2009, 3, 15–19. [Google Scholar] [CrossRef] [Green Version]
- Zhao, P.; Suryanarayanan, S.; Simoes, M.G. An Energy Management System for Building Structures Using a Multi-Agent Decision-Making Control Methodology. IEEE Trans. Ind. Appl. 2013, 49, 322–330. [Google Scholar] [CrossRef]
- IBM ILOG CPLEX Optimization Studio IBM. Available online: https://www.ibm.com/products/ilog-cplex-optimization-studio (accessed on 12 November 2021).
- Wang, Z.; Zhang, C.; Li, H.; Zhao, Y. A Multi Agent-Based Optimal Control Method for Combined Cooling and Power Systems with Thermal Energy Storage. Build. Simul. 2021, 14, 1709–1723. [Google Scholar] [CrossRef]
- Ahrens, M.; Kern, F.; Schmeck, H. Strategies for an Adaptive Control System to Improve Power Grid Resilience with Smart Buildings. Energies 2021, 14, 4472. [Google Scholar] [CrossRef]
- Devia, W.; Agbossou, K.; Cardenas, A. An Evolutionary Approach to Modeling and Control of Space Heating and Thermal Storage Systems. Energy Build. 2021, 234, 110674. [Google Scholar] [CrossRef]
- Vanhoudt, D.; Geysen, D.; Claessens, B.; Leemans, F.; Jespers, L.; van Bael, J. An Actively Controlled Residential Heat Pump: Potential on Peak Shaving and Maximization of Self-Consumption of Renewable Energy. Renew. Energy 2014, 63, 531–543. [Google Scholar] [CrossRef]
- Franceschelli, M.; Pilloni, A.; Gasparri, A. Multi-Agent Coordination of Thermostatically Controlled Loads by Smart Power Sockets for Electric Demand Side Management. IEEE Trans. Control. Syst. Technol. 2021, 29, 731–743. [Google Scholar] [CrossRef] [Green Version]
- Yu, L.; Sun, Y.; Xu, Z.; Shen, C.; Yue, D.; Jiang, T.; Guan, X. Multi-Agent Deep Reinforcement Learning for HVAC Control in Commercial Buildings. IEEE Trans. Smart Grid 2021, 12, 407–419. [Google Scholar] [CrossRef]
- González-Briones, A.; Prieto, J.; De La Prieta, F.; Herrera-Viedma, E.; Corchado, J.M. Energy Optimization Using a Case-Based Reasoning Strategy. Sensors 2018, 18, 865. [Google Scholar] [CrossRef] [Green Version]
- Cai, J.; Kim, D.; Jaramillo, R.; Braun, J.E.; Hu, J. A General Multi-Agent Control Approach for Building Energy System Optimization. Energy Build. 2016, 127, 337–351. [Google Scholar] [CrossRef] [Green Version]
- Boyd, S.; Parikh, N.; Chu, E.; Peleato, B.; Eckstein, J. Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers. Found. Trends Mach. Learn. 2010, 3, 1–122. [Google Scholar] [CrossRef]
- Li, W.; Li, H.; Wang, S. An Event-Driven Multi-Agent Based Distributed Optimal Control Strategy for HVAC Systems in IoT-Enabled Smart Buildings. Autom. Constr. 2021, 132, 103919. [Google Scholar] [CrossRef]
- Liu, D.; Wu, J.; Lin, K.; Wu, M. Planning of Multi Energy-Type Micro Energy Grid Based on Improved Kriging Model. IEEE Access 2019, 7, 14569–14580. [Google Scholar] [CrossRef]
- Lekvan, A.A.; Habibifar, R.; Moradi, M.; Khoshjahan, M.; Nojavan, S.; Jermsittiparsert, K. Robust Optimization of Renewable-Based Multi-Energy Micro-Grid Integrated with Flexible Energy Conversion and Storage Devices. Sustain. Cities Soc. 2021, 64, 102532. [Google Scholar] [CrossRef]
- Zhang, C.; Xu, Y.; Dong, Z.Y. Robustly Coordinated Operation of a Multi-Energy Micro-Grid in Grid-Connected and Islanded Modes under Uncertainties. IEEE Trans. Sustain. Energy 2020, 11, 640–651. [Google Scholar] [CrossRef]
- Kyriakarakos, G.; Piromalis, D.D.; Dounis, A.I.; Arvanitis, K.G.; Papadakis, G. Intelligent Demand Side Energy Management System for Autonomous Polygeneration Microgrids. Appl. Energy 2013, 103, 39–51. [Google Scholar] [CrossRef]
- Karavas, C.S.; Kyriakarakos, G.; Arvanitis, K.G.; Papadakis, G. A Multi-Agent Decentralized Energy Management System Based on Distributed Intelligence for the Design and Control of Autonomous Polygeneration Microgrids. Energy Convers. Manag. 2015, 103, 166–179. [Google Scholar] [CrossRef]
- Karavas, C.S.; Arvanitis, K.; Papadakis, G. A Game Theory Approach to Multi-Agent Decentralized Energy Management of Autonomous Polygeneration Microgrids. Energies 2017, 10, 1756. [Google Scholar] [CrossRef] [Green Version]
- Nash, J.F. Equilibrium Points in N-Person Games. Proc. Natl. Acad. Sci. USA 1950, 36, 48–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Zhang, C.; Li, K.; Ma, X. Game Theory-Based Multi-Agent Capacity Optimization for Integrated Energy Systems with Compressed Air Energy Storage. Energy 2021, 221, 119777. [Google Scholar] [CrossRef]
- Shapley, L.S. Cores of Convex Games. Int. J. Game Theory 1971, 1, 11–26. [Google Scholar] [CrossRef]
- Jin, S.; Wang, S.; Fang, F. Game Theoretical Analysis on Capacity Configuration for Microgrid Based on Multi-Agent System. Int. J. Electr. Power Energy Syst. 2021, 125, 106485. [Google Scholar] [CrossRef]
- Harb, H.; Paprott, J.-N.; Matthes, P.; Schütz, T.; Streblow, R.; Müller, D. Decentralized Scheduling Strategy of Heating Systems for Balancing the Residual Load. Build. Environ. 2015, 86, 132–140. [Google Scholar] [CrossRef]
- Dantzig, G.B.; Wolfe, P. The Decomposition Algorithm for Linear Programs. Econom. J. Econom. Soc. 1961, 29, 767–778. [Google Scholar] [CrossRef]
- Nemhauser, G.; Wolsey, L. Integer and Combinatorial Optimization; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1988; ISBN 9781118627372. [Google Scholar]
- Blaauwbroek, N.; Nguyen, P.H.; Konsman, M.J.; Shi, H.; Kamphuis, R.I.G.; Kling, W.L. Decentralized Resource Allocation and Load Scheduling for Multicommodity Smart Energy Systems. IEEE Trans. Sustain. Energy 2015, 6, 1506–1514. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.-S.; Zhang, H.-G.; Huang, B.-N.; Teng, F. Distributed Optimal Economic Dispatch Based on Multi-Agent System Framework in Combined Heat and Power Systems. Appl. Sci. 2016, 6, 308. [Google Scholar] [CrossRef] [Green Version]
- Olfati-Saber, R.; Fax, J.A.; Murray, R.M. Consensus and Cooperation in Networked Multi-Agent Systems. Proc. IEEE 2007, 95, 215–233. [Google Scholar] [CrossRef] [Green Version]
- Henwood, T.G.M.I. An Algorithm for Combined Heat and Power Economic Dispatch. IEEE Trans. Power Syst. 1996, 11, 1778–1784. [Google Scholar] [CrossRef]
- Nguyen, D.H.; Ishihara, T. Distributed Peer-to-Peer Energy Trading for Residential Fuel Cell Combined Heat and Power Systems. Int. J. Electr. Power Energy Syst. 2021, 125, 106533. [Google Scholar] [CrossRef]
- Alishavandi, A.M.; Moghaddas-Tafreshi, S.M. Interactive Decentralized Operation with Effective Presence of Renewable Energies Using Multi-Agent Systems. Int. J. Electr. Power Energy Syst. 2019, 112, 36–48. [Google Scholar] [CrossRef]
- Bertsekas, D.P. Nonlinear Programming. J. Oper. Res. Soc. 1997, 48, 334. [Google Scholar] [CrossRef]
- Shabani, M.J.; Moghaddas-Tafreshi, S.M. Fully-Decentralized Coordination for Simultaneous Hydrogen, Power, and Heat Interaction in a Multi-Carrier-Energy System Considering Private Ownership. Electr. Power Syst. Res. 2020, 180, 106099. [Google Scholar] [CrossRef]
- Samadi, E.; Badri, A.; Ebrahimpour, R. Decentralized Multi-Agent Based Energy Management of Microgrid Using Reinforcement Learning. Int. J. Electr. Power Energy Syst. 2020, 122, 106211. [Google Scholar] [CrossRef]
- Bowling, M.; Veloso, M. Multiagent Learning Using a Variable Learning Rate. Artif. Intell. 2002, 136, 215–250. [Google Scholar] [CrossRef] [Green Version]
- Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; Adaptive Computation and Machine Learning; MIT Press: Cambridge, MA, USA, 2018; ISBN 0262193981. [Google Scholar]
- Kumari, A.; Tanwar, S. Multiagent-Based Secure Energy Management for Multimedia Grid Communication Using Q-Learning. Multimed. Tools Appl. 2021, 81, 36645–36665. [Google Scholar] [CrossRef]
- Dong, J.; Wang, H.; Yang, J.; Lu, X.; Gao, L.; Zhou, X. Optimal Scheduling Framework of Electricity-Gas-Heat Integrated Energy System Based on Asynchronous Advantage Actor-Critic Algorithm. IEEE Access 2021, 9, 139685–139696. [Google Scholar] [CrossRef]
- Mnih, V.; Badia, A.P.; Mirza, M.; Graves, A.; Lillicrap, T.P.; Harley, T.; Silver, D.; Kavukcuoglu, K. Asynchronous Methods for Deep Reinforcement Learning. In Proceedings of the ICML 2016, New York, NY, USA, 19–24 June 2016; Volume 48, pp. 1928–1937. [Google Scholar]
- Anvari-Moghaddam, A.; Rahimi-Kian, A.; Mirian, M.S.; Guerrero, J.M. A Multi-Agent Based Energy Management Solution for Integrated Buildings and Microgrid System. Appl. Energy 2017, 203, 41–56. [Google Scholar] [CrossRef] [Green Version]
- Firouzi, H.; Ahmadabadi, M.N.; Araabi, B.N.; Amizadeh, S.; Mirian, M.S.; Siegwart, R. Interactive Learning in Continuous Multimodal Space: A Bayesian Approach to Action-Based Soft Partitioning and Learning. IEEE Trans. Auton. Ment. Dev. 2012, 4, 124–138. [Google Scholar] [CrossRef]
- Wei, Q.; Liu, D.; Shi, G. A Novel Dual Iterative Q-Learning Method for Optimal Battery Management in Smart Residential Environments. IEEE Trans. Ind. Electron. 2015, 62, 2509–2518. [Google Scholar] [CrossRef]
- Sheikhi, A.; Rayati, M.; Ranjbar, A.M. Dynamic Load Management for a Residential Customer; Reinforcement Learning Approach. Sustain. Cities Soc. 2016, 24, 42–51. [Google Scholar] [CrossRef]
- Kolen, S.; Molitor, C.; Wagner, L.; Monti, A. Two-Level Agent-Based Scheduling for a Cluster of Heating Systems. Sustain. Cities Soc. 2017, 30, 273–281. [Google Scholar] [CrossRef]
- Hutty, T.D.T.D.; Dong, S.; Brown, S. Suitability of Energy Storage with Reversible Solid Oxide Cells for Microgrid Applications. Energy Convers. Manag. 2020, 226, 113499. [Google Scholar] [CrossRef]
- Moghaddas-Tafreshi, S.M.; Mohseni, S.; Karami, M.E.; Kelly, S. Optimal Energy Management of a Grid-Connected Multiple Energy Carrier Micro-Grid. Appl. Therm. Eng. 2019, 152, 796–806. [Google Scholar] [CrossRef]
- Jabbari-Sabet, R.; Moghaddas-Tafreshi, S.M.; Mirhoseini, S.S. Microgrid Operation and Management Using Probabilistic Reconfiguration and Unit Commitment. Int. J. Electr. Power Energy Syst. 2016, 75, 328–336. [Google Scholar] [CrossRef]
- Nikmehr, N.; Najafi-Ravadanegh, S.; Khodaei, A. Probabilistic Optimal Scheduling of Networked Microgrids Considering Time-Based Demand Response Programs under Uncertainty. Appl. Energy 2017, 198, 267–279. [Google Scholar] [CrossRef]
- Li, C.; Jia, X.; Zhou, Y.; Li, X. A Microgrids Energy Management Model Based on Multi-Agent System Using Adaptive Weight and Chaotic Search Particle Swarm Optimization Considering Demand Response. J. Clean. Prod. 2020, 262, 121247. [Google Scholar] [CrossRef]
- Liu, H.; Li, J.; Ge, S. Research on Hierarchical Control and Optimisation Learning Method of Multi-energy Microgrid Considering Multi-agent Game. IET Smart Grid 2020, 3, 479–489. [Google Scholar] [CrossRef]
- Hu, J.; Wellman, M.P. Nash Q-Learning for General-Sum Stochastic Games. J. Mach. Learn. Res. 2003, 4, 1039–1069. [Google Scholar]
- Khan, M.W.; Wang, J.; Xiong, L. Optimal Energy Scheduling Strategy for Multi-Energy Generation Grid Using Multi-Agent Systems. Int. J. Electr. Power Energy Syst. 2021, 124, 106400. [Google Scholar] [CrossRef]
- Farinis, G.; Kanellos, F.D. Integrated Energy Management System for Microgrids of Building Prosumers. Electr. Power Syst. Research 2021, 198, 107357. [Google Scholar] [CrossRef]
- Lin, H.; Liu, Y.; Sun, Q.; Xiong, R.; Li, H.; Wennersten, R. The Impact of Electric Vehicle Penetration and Charging Patterns on the Management of Energy Hub—A Multi-Agent System Simulation. Appl. Energy 2018, 230, 189–206. [Google Scholar] [CrossRef]
- Zeng, C.; Jiang, Y.; Liu, Y.; Tan, Z.; He, Z.; Wu, S. Optimal Dispatch of Integrated Energy System Considering Energy Hub Technology and Multi-Agent Interest Balance. Energies 2019, 12, 3112. [Google Scholar] [CrossRef] [Green Version]
- Yi, J.H.; Xing, L.N.; Wang, G.G.; Dong, J.; Vasilakos, A.V.; Alavi, A.H.; Wang, L. Behavior of Crossover Operators in NSGA-III for Large-Scale Optimization Problems. Inf. Sci. 2020, 509, 470–487. [Google Scholar] [CrossRef]
- Han, L.; Wang, S.; Wang, D.; Fan, X. Optimal Planning of Distributed Generations with the Combination of Genetic Algorithm and Interval Numbers TOPSIS. In Proceedings of the IEEE Power and Energy Society General Meeting, Vancouver, BC, Canada, 21–25 July 2013. [Google Scholar]
- Haque, A.N.M.M.; Nguyen, P.H.; Vo, T.H.; Bliek, F.W. Agent-Based Unified Approach for Thermal and Voltage Constraint Management in LV Distribution Network. Electr. Power Syst. Res. 2017, 143, 462–473. [Google Scholar] [CrossRef] [Green Version]
- Bünning, F.; Wetter, M.; Fuchs, M.; Müller, D. Bidirectional Low Temperature District Energy Systems with Agent-Based Control: Performance Comparison and Operation Optimization. Appl. Energy 2018, 209, 502–515. [Google Scholar] [CrossRef] [Green Version]
- Nelder, J.A.; Mead, R. A Simplex Method for Function Minimization. Comput. J. 1965, 7, 308–313. [Google Scholar] [CrossRef]
- Claessens, B.J.; Vanhoudt, D.; Desmedt, J.; Ruelens, F. Model-Free Control of Thermostatically Controlled Loads Connected to a District Heating Network. Energy Build. 2018, 159, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Ruiz, N.; Cobelo, I.; Oyarzabal, J. A Direct Load Control Model for Virtual Power Plant Management. IEEE Trans. Power Syst. 2009, 24, 959–966. [Google Scholar] [CrossRef]
- Behboodi, S.; Chassin, D.P.; Djilali, N.; Crawford, C. Transactive Control of Fast-Acting Demand Response Based on Thermostatic Loads in Real-Time Retail Electricity Markets. Appl. Energy 2018, 210, 1310–1320. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, X.; Gao, P. Research on Heat and Electricity Coordinated Dispatch Model for Better Integration of Wind Power Based on Electric Boiler with Thermal Storage. IET Gener. Transm. Distrib. 2018, 12, 3736–3743. [Google Scholar] [CrossRef]
- Gao, Y.; Ai, Q. Hierarchical Coordination Control for Interconnected Operation of Electric-Thermal-Gas Integrated Energy System with Micro-Energy Internet Clusters. IEEE J. Emerg. Sel. Top. Power Electron. 2018, 6777. [Google Scholar] [CrossRef]
- Zhang, X.; Yu, T. Fast Stackelberg Equilibrium Learning for Real-Time Coordinated Energy Control of a Multi-Area Integrated Energy System. Appl. Therm. Eng. 2019, 153, 225–241. [Google Scholar] [CrossRef]
- Geidl, M.; Andersson, G. Optimal Power Flow of Multiple Energy Carriers. IEEE Trans. Power Syst. 2007, 22, 145–155. [Google Scholar] [CrossRef]
- Geidl, M.; Andersson, G. Integrated Modeling and Optimization of Multi-Carrier Energy Systems. Ph.D. Thesis, Power Systems Laboratory, Zurich, Switzerland, 2007; p. 143. [Google Scholar]
- De Durana, J.M.G.; Barambones, O.; Kremers, E.; Varga, L. Agent Based Modeling of Energy Networks. Energy Convers. Manag. 2014, 82, 308–319. [Google Scholar] [CrossRef] [Green Version]
- Bergen, A.R.; Vittal, V. Power Systems Analysis, 2nd ed.; Pearson: London, UK, 2000. [Google Scholar]
- Loose, N.; Thommessen, C.; Mehlich, J.; Derksen, C.; Eicker, S. Unified Energy Agents for Combined District Heating and Electrical Network Simulation. Sustainability 2020, 12, 9301. [Google Scholar] [CrossRef]
- Skarvelis-Kazakos, S.; Papadopoulos, P.; Unda, I.G.; Gorman, T.; Belaidi, A.; Zigan, S. Multiple Energy Carrier Optimisation with Intelligent Agents. Appl. Energy 2016, 167, 323–335. [Google Scholar] [CrossRef]
- Zhang, N.; Sun, Q.; Wang, J.; Yang, L. Distributed Adaptive Dual Control via Consensus Algorithm in the Energy Internet. IEEE Trans. Ind. Inform. 2021, 17, 4848–4860. [Google Scholar] [CrossRef]
- Farshidian, B.; Rajabi-Ghahnavieh, A.; Haghi, E. Planning of Multi-Hub Energy System by Considering Competition Issue. Int. J. Sustain. Energy Plan. Manag. 2021, 30, 5–20. [Google Scholar] [CrossRef]
- Mohamed, M.A.; Jin, T.; Su, W. Multi-Agent Energy Management of Smart Islands Using Primal-Dual Method of Multipliers. Energy 2020, 208, 118306. [Google Scholar] [CrossRef]
- Sherson, T.; Heusdens, R.; Kleijn, W.B. Derivation and Analysis of the Primal-Dual Method of Multipliers Based on Monotone Operator Theory. IEEE Trans. Signal Inf. Process. Over Netw. 2017, 5, 334–347. [Google Scholar] [CrossRef] [Green Version]
- Xi, L.; Yu, L.; Xu, Y.; Wang, S.; Chen, X. A Novel Multi-Agent DDQN-AD Method-Based Distributed Strategy for Automatic Generation Control of Integrated Energy Systems. IEEE Trans. Sustain. Energy 2020, 11, 2417–2426. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, L. Coordinated Scheduling of Integrated Energy Microgrid with Multi-Energy Hubs Based on MADDPG and Two-Layer Game. J. Renew. Sustain. Energy 2021, 13, 065502. [Google Scholar] [CrossRef]
- Li, G.; Bie, Z.; Kou, Y.; Jiang, J.; Bettinelli, M. Reliability Evaluation of Integrated Energy Systems Based on Smart Agent Communication. Appl. Energy 2016, 167, 397–406. [Google Scholar] [CrossRef]
- Petcu, A.; Faltings, B. A Scalable Method for Multiagent Constraint Optimization. In Proceedings of the Nineteenth International Joint Conference on Artificial Intelligence, Edinburgh, Scotland, 30 July–5 August 2005. [Google Scholar]
- Kou, Y.; Bie, Z.; Li, G.; Liu, F.; Jiang, J. Reliability Evaluation of Multi-Agent Integrated Energy Systems with Fully Distributed Communication. Energy 2021, 224, 120123. [Google Scholar] [CrossRef]
- Kou, Y.; Wang, Y.; Bie, Z.; Wang, X.; Ding, T. Distributed Accelerated Descent Algorithm for Energy Resource Coordination in Multi-Agent Integrated Energy Systems. IET Gener. Transm. Distrib. 2021, 15, 1884–1896. [Google Scholar] [CrossRef]
- Zhu, J.; Jing, Z.; Ji, T.; Larik, N.A. Energy-Economy Coupled Simulation Approach and Simulator Based on Invididual-Based Model. Energies 2020, 13, 2771. [Google Scholar] [CrossRef]
- Deb, C.; Zhang, F.; Yang, J.; Lee, S.E.; Shah, K.W. A Review on Time Series Forecasting Techniques for Building Energy Consumption. Renew. Sustain. Energy Rev. 2017, 74, 902–924. [Google Scholar] [CrossRef]
- Hong, T.; Taylor-Lange, S.C.; D’Oca, S.; Yan, D.; Corgnati, S.P. Advances in Research and Applications of Energy-Related Occupant Behavior in Buildings. Energy Build. 2016, 116, 694–702. [Google Scholar] [CrossRef] [Green Version]
- Turner, C.; Frankel, M. Energy Performance of LEED® for New Construction Buildings; New Buildings Institute: White Salmon, WA, USA, 2008. [Google Scholar]
- Eguaras-Martínez, M.; Vidaurre-Arbizu, M.; Martín-Gómez, C. Simulation and Evaluation of Building Information Modeling in a Real Pilot Site. Appl. Energy 2014, 114, 475–484. [Google Scholar] [CrossRef] [Green Version]
- Pfenninger, S.; Hawkes, A.; Keirstead, J. Energy Systems Modeling for Twenty-First Century Energy Challenges. Renew. Sustain. Energy Rev. 2014, 33, 74–86. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, H.; Guan, J.; Rao, Z. Agent-Based Modeling and Simulation of Stochastic Heat Pump Usage Behavior in Residential Communities. Build. Simul. 2020, 13, 803–821. [Google Scholar] [CrossRef]
- Chingcuanco, F.; Miller, E.J. A Microsimulation Model of Urban Energy Use: Modelling Residential Space Heating Demand in ILUTE. Comput. Environ. Urban. Syst. 2012, 36, 186–194. [Google Scholar] [CrossRef]
- Tian, S.; Lu, Y.; Ge, X.; Zheng, Y. An Agent-Based Modeling Approach Combined with Deep Learning Method in Simulating Household Energy Consumption. J. Build. Eng. 2021, 43, 103210. [Google Scholar] [CrossRef]
- Zhang, Z.; Jing, R.; Lin, J.; Wang, X.; van Dam, K.H.; Wang, M.; Meng, C.; Xie, S.; Zhao, Y. Combining Agent-Based Residential Demand Modeling with Design Optimization for Integrated Energy Systems Planning and Operation. Appl. Energy 2020, 263, 114623. [Google Scholar] [CrossRef]
- Chakrabarti, A.; Proeglhoef, R.; Turu, G.B.; Lambert, R.; Mariaud, A.; Acha, S.; Markides, C.N.; Shah, N. Optimisation and Analysis of System Integration between Electric Vehicles and UK Decentralised Energy Schemes. Energy 2019, 176, 805–815. [Google Scholar] [CrossRef]
- Faber, A.; Valente, M.; Janssen, P. Exploring Domestic Micro-Cogeneration in the Netherlands: An Agent-Based Demand Model for Technology Diffusion. Energy Policy 2010, 38, 2763–2775. [Google Scholar] [CrossRef]
- Grubic, T.; Varga, L.; Hu, Y.; Tewari, A. Micro-Generation Technologies and Consumption of Resources: A Complex Systems’ Exploration. J. Clean Prod. 2020, 247, 119091. [Google Scholar] [CrossRef]
- Sorda, G.; Sunak, Y.; Madlener, R. An Agent-Based Spatial Simulation to Evaluate the Promotion of Electricity from Agricultural Biogas Plants in Germany. Ecol. Econ. 2013, 89, 43–60. [Google Scholar] [CrossRef]
- Schnuelle, C.; Kisjes, K.; Stuehrmann, T.; Thier, P.; Nikolic, I.; von Gleich, A.; Goessling-Reisemann, S. From Niche to Market-an Agent-Based Modeling Approach for the Economic Uptake of Electro-Fuels (Power-to-Fuel) in the German Energy System. Energies 2020, 13, 5522. [Google Scholar] [CrossRef]
- Boudon, R. Beyond Rational Choice Theory. Annu. Rev. Sociol. 2003, 29, 1–21. [Google Scholar] [CrossRef]
- Allen, P.; Varga, L. Modelling Sustainable Energy Futures for the UK. Futures 2014, 57, 28–40. [Google Scholar] [CrossRef] [Green Version]
- Walzberg, J.; Dandres, T.; Merveille, N.; Cheriet, M.; Samson, R. Should We Fear the Rebound Effect in Smart Homes? Renew. Sustain. Energy Rev. 2020, 125, 109798. [Google Scholar] [CrossRef]
- Byrka, K.; Jedrzejewski, A.; Sznajd-Weron, K.; Weron, R. Difficulty Is Critical: The Importance of Social Factors in Modeling Diffusion of Green Products and Practices. Renew. Sustain. Energy Rev. 2016, 62, 723–735. [Google Scholar] [CrossRef] [Green Version]
- Then, D.; Hein, P.; Kneiske, T.M.T.M.; Braun, M. Analysis of Dependencies between Gas and Electricity Distribution Grid Planning and Building Energy Retrofit Decisions. Sustainability 2020, 12, 5315. [Google Scholar] [CrossRef]
- Hodge, B.M.S.; Huang, S.; Siirola, J.D.; Pekny, J.F.; Reklaitis, G.V. A Multi-Paradigm Modeling Framework for Energy Systems Simulation and Analysis. Comput. Chem. Eng. 2011, 35, 1725–1737. [Google Scholar] [CrossRef]
- Boyd, S.P.; Vandenberghe, L. Convex Optimization; Cambridge University Press: Cambridge, UK, 2004; ISBN 9780521833783. [Google Scholar]
- Galiana, F.D.; Conejo, A.J. Economics of Electricity Generation. In Electric Energy Systems, Analysis and Operation; Gómez-Expósito, A., Conejo, A.J., Cañizares, C., Eds.; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Tsitsiklis, J.; Bertsekas, D.; Athans, M. Distributed Asynchronous Deterministic and Stochastic Gradient Optimization Algorithms. IEEE Trans. Automat. Control 1986, 31, 803–812. [Google Scholar] [CrossRef] [Green Version]
- Bertsekas, D.P.; Tsitsiklis, J.N. Parallel and Distributed Computation: Numerical Methods; Athena Scientific: Nashua, NH, USA, 1989. [Google Scholar]
- Khan, M.W.; Wang, J.; Ma, M.; Xiong, L.; Li, P.; Wu, F. Optimal Energy Management and Control Aspects of Distributed Microgrid Using Multi-Agent Systems. Sustain. Cities Soc. 2019, 44, 855–870. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R. Particle Swarm Optimization. In Proceedings of the ICNN’95—International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; IEEE: Piscataway, NJ, USA, 1995; Volume 4, pp. 1942–1948. [Google Scholar]
- Zhang, Y.; Balochian, S.; Agarwal, P.; Bhatnagar, V.; Housheya, O.J. Artificial Intelligence and Its Applications. Math. Probl. Eng. 2014, 2014, 840491. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Wang, S.; Ji, G. A Comprehensive Survey on Particle Swarm Optimization Algorithm and Its Applications. Math. Probl. Eng. 2015, 2015, 931256. [Google Scholar] [CrossRef] [Green Version]
- Thomsen, J.; Hussein, N.S.; Senkpiel, C.; Hartmann, N.; Schlegl, T. An Optimized Energy System Planning and Operation on Distribution Grid Level—The Decentralized Market Agent as a Novel Approach. Sustain. Energy Grids Netw. 2017, 12, 40–56. [Google Scholar] [CrossRef]
- Bellifemine, F.; Bergenti, F.; Caire, G.; Poggi, A. Jade—A Java Agent Development Framework. In Multi-Agent Programming; Springer: Berlin/Heidelberg, Germany, 2005; pp. 125–147. [Google Scholar] [CrossRef] [Green Version]
- Bellifemine, F.L.; Caire, G.; Greenwood, D. Developing Multi-Agent Systems with JADE; Wiley Series in Agent Technology; Wiley: Hoboken, NJ, USA, 2007; ISBN 9780470057476. [Google Scholar]
- Anylogic AnyLogic: Simulation Modeling Software Tools & Solutions for Business. Available online: https://www.anylogic.com/ (accessed on 12 November 2021).
- Masad, D.; Kazil, J. Mesa: An Agent-Based Modeling Framework. In Proceedings of the 14th Python in Science Conference, Austin, TX, USA, 6–12 July 2015; Huff, K., Bergstra, J., Eds.; SciPy: Austin, TX, USA, 2015; pp. 51–58. [Google Scholar]
- MathWorks What Is an S-Function?—MATLAB & Simulink—MathWorks United Kingdom. Available online: https://uk.mathworks.com/help/simulink/sfg/what-is-an-s-function.html (accessed on 2 August 2022).
- Robinson, C.R.; Mendham, P.; Clarke, T. MACSimJX: A Tool for Enabling Agent Modelling with Simulink Using JADE. J. Phys. Agents 2010, 4, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Abar, S.; Theodoropoulos, G.K.; Lemarinier, P.; O’Hare, G.M.P. Agent Based Modelling and Simulation Tools: A Review of the State-of-Art Software. Comput. Sci. Rev. 2017, 24, 13–33. [Google Scholar] [CrossRef]
- Bellman, R. On the Theory of Dynamic Programming. Proc. Natl. Acad. Sci. USA 1952, 38, 716–719. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Puterman, M.L. Markov Decision Problems; Wiley: New York, NY, USA, 1994. [Google Scholar]
- White, D.J. Dynamic Programming; Holden-Day: San Francisco, CA, USA, 1969. [Google Scholar]
- Whittle, P. Optimization Over Time; Wiley: New York, NY, USA, 1982; Volume 1. [Google Scholar]
- Whittle, P. Optimization Over Time; Wiley: New York, NY, USA, 1983; Volume 2. [Google Scholar]
- Watkins, C.J.C.H.; Dayan, P. Technical Note Q-Learning. Mach. Learn. 1992, 8, 279–292. [Google Scholar] [CrossRef]
- Peng, J.; Williams, R.J. Incremental Multi-Step Q-Learning; Kluwer Academic Publishers: Boston, MA, USA, 1996; Volume 22. [Google Scholar]
- He, J.; Li, Y.; Li, H.; Tong, H.; Yuan, Z.; Yang, X.; Huang, W. Application of Game Theory in Integrated Energy System Systems: A Review. IEEE Access 2020, 8, 93380–93397. [Google Scholar] [CrossRef]
- Busoniu, L.; Babuska, R.; De Schutter, B.; Ernst, D. Reinforcement Learning and Dynamic Programming Using Function Approximators, 1st ed.; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]
- Bertsekas, D.P.; Tsitsiklis, J.N. Neuro-Dynamic Programming: An Overview. In Proceedings of the 1995 34th IEEE Conference on Decision and Control, New Orleans, LA, USA, 13–15 December 1995; IEEE: Piscataway, NJ, USA, 1995; Volume 1, pp. 560–564. [Google Scholar]
- Ernst, D.; Geurts, P.; Wehenkel, L. Tree-Based Batch Mode Reinforcement Learning. J. Mach. Learn. Res. 2005, 6, 503–556. [Google Scholar]
- Geurts, P.; Ernst, D.; Wehenkel, L. Extremely Randomized Trees. Mach. Learn. 2006, 63, 3–42. [Google Scholar] [CrossRef] [Green Version]
- Jendoubi, I.; Bouffard, F. Data-Driven Sustainable Distributed Energy Resources’ Control Based on Multi-Agent Deep Reinforcement Learning. Sustain. Energy Grids Netw. 2022, 32, 100919. [Google Scholar] [CrossRef]
- Hasan, K.N.; Preece, R.; Milanović, J. Application of Game Theoretic Approaches for Identification of Critical Parameters Affecting Power System Small-Disturbance Stability. Int. J. Electr. Power Energy Syst. 2018, 97, 344–352. [Google Scholar] [CrossRef]
A | B | C | D |
---|---|---|---|
Modeling method | Primary energy carrier | Other energy carrier | System description |
agent-based | electricity | Heat * | multi-energy |
multi-agent | power | gas | integrated energy |
Web of Science | Scopus | |
---|---|---|
Search results | 353 | 642 |
Records after removing duplicates | 590 |
Inclusion | Exclusion | |
---|---|---|
Records type | Peer-reviewed journal articles | Conference review, conference proceedings, letter, book chapter |
Language | English | Non-English |
Inclusion | Exclusion | |
---|---|---|
Topic screening | subject: multi-energy system or integrated energy system method: multi-agent methodology | subject: energy systems with only one energy carrier methods: methods other than the multi-agent methodology |
2007 | 08 | 09 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | Total | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AIMS Energy | 1 | 1 | |||||||||||||||
Applied Energy | 1 | 2 | 2 | 3 | 1 | 1 | 10 | ||||||||||
Applied Science (Switzerland) | 1 | 1 | |||||||||||||||
Applied Thermal Engineering | 2 | 2 | |||||||||||||||
Building and Environment | 1 | 1 | |||||||||||||||
Building Services Engineering Research and Technology | 1 | 1 | |||||||||||||||
Building Simulation | 1 | 1 | 1 | 3 | |||||||||||||
Computers and Chemical Engineering | 1 | 1 | |||||||||||||||
Computers Environment and Urban Systems | 1 | 1 | |||||||||||||||
Ecological Economics | 1 | 1 | |||||||||||||||
Electric Power Components and Systems | 1 | 1 | |||||||||||||||
Electric Power Systems Research | 1 | 1 | 2 | ||||||||||||||
Energies | 1 | 2 | 3 | 6 | |||||||||||||
Energy | 1 | 1 | 1 | 3 | |||||||||||||
Energy and Buildings | 1 | 1 | 1 | 3 | |||||||||||||
Energy Conversion and Management | 1 | 1 | 1 | 3 | |||||||||||||
Energy Policy | 1 | 1 | 2 | ||||||||||||||
Environmental Impact Assessment Review | 1 | 1 | |||||||||||||||
Futures | 1 | 1 | |||||||||||||||
IEEE Journal of Emerging and Selected Topics in Power Electronics | 1 | 1 | |||||||||||||||
IEEE Transactions on Control Systems Technology | 1 | 1 | |||||||||||||||
IEEE Transactions on Industrial Informatics | 1 | 1 | |||||||||||||||
IEEE Transactions on Industry Applications | 1 | 1 | |||||||||||||||
IEEE Transactions on Smart Grid | 1 | 1 | |||||||||||||||
IEEE Transactions on Sustainable Energy | 1 | 1 | 2 | ||||||||||||||
IET Generation, Transmission and Distribution | 1 | 1 | |||||||||||||||
IET SMART GRID | 1 | 1 | |||||||||||||||
International Journal of Electrical Power and Energy Systems | 1 | 1 | 1 | 3 | 6 | ||||||||||||
Journal of Cleaner Production | 2 | 1 | 3 | ||||||||||||||
Journal of Physical Agents | 1 | 1 | |||||||||||||||
Proceedings of the IEEE | 1 | 1 | |||||||||||||||
Renewable and Sustainable Energy Reviews | 1 | 2 | 1 | 4 | |||||||||||||
Renewable Energy | 1 | 1 | |||||||||||||||
Sensors | 1 | 1 | |||||||||||||||
Sustainability (Switzerland) | 2 | 2 | |||||||||||||||
Sustainable Cities and Society | 1 | 1 |
Source | Year | Review Focus |
---|---|---|
Labeodan et al. [38] | 2015 | MAS applications in the building energy management system |
Ahmad et al. [46] | 2016 | Computational intelligence in HVAC systems |
Howell et al. [47] | 2017 | Energy system transitions and multi-agent management |
Khan and Wang [48] | 2017 | MAS control and optimization in micro-grids |
Coelho et al. [17] | 2017 | MAS applications in micro-grids |
Vázquez-Canteli and Nagy [49] | 2019 | Reinforcement learning applications in demand response program |
Priyadarshana et al. [16] | 2019 | MAS applications in micro-grids |
Ma et al. [50] | 2019 | The MAS application of ontologies in the energy system |
Author | Year | Energy Carrier | Storage Type | Focused Topic | Approach | Platform | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Electricity | Heating | Cooling | Gas | Hydrogen | EV | ||||||
District level design | |||||||||||
Kyriakarakos et al. [67] | 2013 | ✓ | ✓ | ✓ | ✓ | Electric storage and hydrogen storage | Optimal design of multi-energy micro-grid with demand-side management | PSO | TRNSYS, MATLAB, and GenOpt | ||
Karavas et al. [68] | 2015 | ✓ | ✓ | Electric storage and hydrogen storage | Decentralized energy management and component sizing of multi-energy micro-grid | PSO | TRNSYS, MATLAB and GenOpt | ||||
Karavas et al. [69] | 2017 | ✓ | ✓ | Electric storage and hydrogen storage | Game theory-based multi-energy micro-grid optimal component sizing | PSO | TRNSYS, MATLAB and GenOpt | ||||
Wang et al. [71] | 2021 | ✓ | ✓ | Electric storage and thermal storage (CAES) | Game theory-based capacity optimization of multi-energy district system with CAES | PSO | Not mentioned | ||||
Jin et al. [73] | 2021 | ✓ | ✓ | None | Game theory-based component optimization method for multi-energy micro-grid | PSO | Not mentioned | ||||
Decentralized control | |||||||||||
Blaauwbroek et al. [77] | 2015 | ✓ | ✓ | ✓ | Electric storage and thermal storage | Decentralized multi-energy microgrid control | Mixed-integer quadratic programming | JADE, MATLAB | |||
Harb et al. [74] | 2015 | ✓ | ✓ | Thermal storage | Decentralized control of multi-energy micro-grid | Gurobi optimizer | JADE | ||||
Li et al. [78] | 2016 | ✓ | ✓ | Electric storage and thermal storage | Decentralized control of electricity and heating coupled system | Consensus theory | Not mentioned | ||||
Alishavandi and Moghaddas-Tafreshi [82] | 2019 | ✓ | ✓ | ✓ | ✓ | Electric storage and thermal storage | Decentralized multi-energy micro-grid management for cost and emission minimization | Gradient projection | Anylogic | ||
Shabani and Moghaddas-Tafreshi [84] | 2019 | ✓ | ✓ | ✓ | Electric storage, thermal storage, and hydrogen storage | Fully decentralized multi-energy micro-grid control with an interactive clearing price | Gradient projection algorithm | Anylogic | |||
Samadi et al. [85] | 2020 | ✓ | ✓ | Electric storage and thermal storage | The decentralized control of multi-energy micro-grid with reinforcement learning | Q-learning | MATLAB | ||||
Nguyen and Ishihara [81] | 2021 | ✓ | ✓ | ✓ | ✓ | Hydrogen storage | Distributed P2P trading with fuel cells | ADMM | MATLAB | ||
Kumari and Tanwar [88] | 2021 | ✓ | ✓ | ✓ | ✓ | None | Multi-energy micro-grid management with blockchain-based communication | Q-Learning | Not mentioned | ||
Dong et al. [89] | 2021 | ✓ | ✓ | ✓ | Electric storage, thermal storage, and gas storage | Multi-energy micro-grid optimization | Asynchronous advantage actor-critic algorithm | Open AI | |||
Micro-grid management | |||||||||||
Anvari-Moghaddam et al. [91] | 2017 | ✓ | ✓ | Electric storage and thermal storage | Optimal management of building integrated micro-grid | BRL | JADE and MATLAB | ||||
Kolen et al. [95] | 2017 | ✓ | ✓ | ✓ | Thermal storage | Decentralized control for clusters of electro-thermal heating devices for switch event and peak-to-valley distance optimization | CPLEX | MESCOS | |||
Yang et al. [115] | 2018 | ✓ | ✓ | Thermal storage | Optimal dispatch of CHP units | Newton–Raphson | MATLAB | ||||
Lin et al. [105] | 2018 | ✓ | ✓ | ✓ | ✓ | ✓ | Electric storage | EV impact on EH management | Taboo search | Anylogic | |
Moghaddas-Tafreshi et al. [97] | 2019 | ✓ | ✓ | ✓ | ✓ | Electric storage, thermal storage, and hydrogen storage | Multi-energy micro-grid optimization | PSO | MATLAB | ||
Zeng et al. [106] | 2019 | ✓ | ✓ | ✓ | Electric storage and thermal storage | Optimal dispatch scheme of an energy hub with integrated demand response | NSGA-III | Not mentioned | |||
Li et al. [100] | 2020 | ✓ | ✓ | Electric storage and thermal storage | Multi-energy micro-grid optimization | Chaotic search PSO | JADE and MATLAB | ||||
Liu et al. [101] | 2020 | ✓ | ✓ | ✓ | ✓ | ✓ | Electric storage and thermal storage | Hierarchical control of multi-energy micro-grid with RL | Q-learning | Not mentioned | |
Hutty et al. [96] | 2020 | ✓ | ✓ | Hydrogen storage | Feasibility study with reversible solid oxide cells | Greedy algorithm | Anylogic | ||||
Khan et al. [103] | 2021 | ✓ | ✓ | ✓ | ✓ | ✓ | Electric Storage | Multi-energy micro-grid optimization | Generalized pattern search algorithm | JADE and MATLAB | |
Farinis and Kanellos [104] | 2021 | ✓ | ✓ | ✓ | ✓ | Electric storage and EV | Multi-energy micro-grid optimization | PSO | Not mentioned | ||
With heating network and clusters | |||||||||||
Haque et al. [109] | 2017 | ✓ | ✓ | None | Network congestion and voltage control | Active power curtailment mechanism | JADE and MATLAB | ||||
Claessens et al. [112] | 2018 | ✓ | ✓ | None | Optimal control of TCL and district heating network with RL | Batch reinforcement learning | Not mentioned | ||||
Behboodi et al. [114] | 2018 | ✓ | ✓ | None | Transactive control of TCL with DR | Market bidding | Not mentioned | ||||
Bünning et al. [110] | 2018 | ✓ | ✓ | ✓ | None | Distributed control of bidirectional low-temperature network | Simplex Nelder–Mead method and market bidding | Python and Modelica |
Source | Year | Energy Carrier | Storage Type | Focused Topic | Approach | Platform | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Electricity | Heating | Cooling | Gas | Hydrogen | EV | ||||||
Durana et al. [120] | 2014 | ✓ | ✓ | ✓ | None | Multi-energy flow calculation | Gauss–Seidel algorithm | Anylogic | |||
Li et al. [130] | 2016 | ✓ | ✓ | ✓ | ✓ | Electricity storage | IES reliability evaluation with agent-based modeling | K-1 algorithm to evaluate fault occurrence | Anylogic | ||
Skarvelis-Kazakos et al. [123] | 2016 | ✓ | ✓ | ✓ | ✓ | Electric storage | Energy hub network optimization | Java optimization modeler | JADE and JOM | ||
Gao and Ai [116] | 2018 | ✓ | ✓ | ✓ | Electricity storage and thermal storage | Multi-level hierarchical control of IES with multiple micro-grids | Multi-energy network control | PSCAD and EMTDC | |||
Zhang and Yu [117] | 2019 | ✓ | ✓ | ✓ | Gas storage | Real-time coordinated control of multi-area IES | Solve fast Stackelberg equilibrium with Q-learning | MATLAB | |||
Zhu et al. [134] | 2020 | ✓ | ✓ | ✓ | None | Novel simulation framework with multi-energy economy coupled system | Linear programming | JADE | |||
Loose et al. [122] | 2020 | ✓ | ✓ | None | Unified multi-energy network simulation | Newton–Raphson | Agent.Workbench and JADE | ||||
Mohamed et al. [126] | 2020 | ✓ | ✓ | ✓ | ✓ | Electric storage | Smart island management | PDMM | Not mentioned | ||
Xi et al. [128] | 2020 | ✓ | ✓ | ✓ | ✓ | Fly wheel storage | Multi-energy network automatic generation control | DDQN-AD | Not mentioned | ||
Zhang et al. [124] | 2021 | ✓ | ✓ | ✓ | None | Multi-energy network control | Adaptive dual and consensus algorithm | Not mentioned | |||
Farshidian and Ghahnavieh [125] | 2021 | ✓ | ✓ | ✓ | Electric storage | Multi-EH planning | GAMS | GAMS | |||
Kou et al. [132] | 2021 | ✓ | ✓ | ✓ | Electric storage and gas storage | Reliability evaluation of multi-energy network | ADMM | MATLAB and MOSEK | |||
Kou et al. [133] | 2021 | ✓ | ✓ | ✓ | None | Multi-energy network coordination | Distributed accelerated descent | MATLAB | |||
Wang and Zhang [129] | 2021 | ✓ | ✓ | ✓ | Electric storage | Multi-EH coordination | DDPG | Python TensorFlow |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, R.; Hu, Y.; Varga, L. Applications of Agent-Based Methods in Multi-Energy Systems—A Systematic Literature Review. Energies 2023, 16, 2456. https://doi.org/10.3390/en16052456
Yao R, Hu Y, Varga L. Applications of Agent-Based Methods in Multi-Energy Systems—A Systematic Literature Review. Energies. 2023; 16(5):2456. https://doi.org/10.3390/en16052456
Chicago/Turabian StyleYao, Ruiqiu, Yukun Hu, and Liz Varga. 2023. "Applications of Agent-Based Methods in Multi-Energy Systems—A Systematic Literature Review" Energies 16, no. 5: 2456. https://doi.org/10.3390/en16052456
APA StyleYao, R., Hu, Y., & Varga, L. (2023). Applications of Agent-Based Methods in Multi-Energy Systems—A Systematic Literature Review. Energies, 16(5), 2456. https://doi.org/10.3390/en16052456