Method Selection for Analyzing the Mesopore Structure of Shale—Using a Combination of Multifractal Theory and Low-Pressure Gas Adsorption
Abstract
:1. Introduction
2. Geological Description of the Field
3. Samples and Experimental Methods
3.1. Sample Location and Collection Criterion
3.2. Mineralogical and Geochemistry Study
3.3. Low-Pressure Gas Adsorption
3.4. Application of the BJH and DFT Method
3.4.1. BJH Method
3.4.2. DFT Method
3.5. Multifractal Analysis
4. Results
4.1. Geochemical Parameters and Mineral Composition
4.2. Adsorption–Desorption Isothermal Diagrams
4.3. Pore Structure Parameters from Different Methods
4.4. Pore Size Distribution from Different Methods
4.5. Multifractal Characteristics from Different Methods
4.5.1. Multifractal Spectra from Different Methods
4.5.2. Multifractal Parameters from Different Methods
5. Discussion
5.1. Comparison of BJH and DFT in Pore Characterization
5.2. Model Selection and Comparison
5.3. The Workflow of N2 Adsorption Method Selection
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Lm | the thickness of the monolayer of liquid sorbent |
VL | the molar volume of the liquid sorbent |
GAI | generalized adsorption isotherm |
Wmin | the minimum pore sizes in the kernel |
Wmax | the maximum pore sizes in the kernel |
P/P0 | relative pressure |
f(W) | pore size distribution |
N(P/P0) | adsorption isotherm data |
W | pore width |
D0 | capacity dimension |
D1 | information dimension |
D2 | correlation dimension |
Dq | generalized fractal dimension |
f(α) | multifractal spectra |
f(αmin) | multifractal spectra |
f(αmax) | multifractal spectra |
BJH-AD | Barret–Joyner–Halenda adsorption |
BJH-DE | Barret–Joyner–Halenda desorption |
DFT | density functional theory |
SEM | scanning electron microscopy |
AFM | atomic force microscopy |
HPMI | high-pressure mercury injection pore measurement |
USANS | ultra-small-angle neutron scattering |
NMR | nuclear magnetic resonance |
SA | surface area |
PV | pore volume |
MC | Monte Carlo simulation method |
HK | Horvath–Kawazoe |
BET | Brunauer–Emmett–Teller |
DA | Dubinin–Astakhow |
DR | Dubinin–Radushkevich |
SF | Saito–Foley |
PSD | pore size distribution |
References
- Loucks, R.G.; Ruppel, S.C. Mississippian Barnett Shale: Lithofacies and depositional setting of a deep-water shale-gas succession in the Fort Worth Basin, Texas. AAPG Bull. 2007, 91, 579–601. [Google Scholar] [CrossRef] [Green Version]
- Slatt, R.M.; O’Brien, N.R. Pore types in the Barnett and Woodford gas shales: Contribution to understanding gas storage and migration pathways in fine-grained rocks. AAPG Bull. 2011, 95, 2017–2030. [Google Scholar] [CrossRef]
- Jia, C.; Zheng, M.; Zhang, Y. Unconventional hydrocarbon resources in China and the prospect of exploration and development. Pet. Explor. Dev. 2012, 39, 139–146. [Google Scholar] [CrossRef]
- Zou, C.; Zhao, Q.; Dong, D.; Yang, Z.; Qiu, Z.; Liang, F.; Wang, N.; Huang, Y.; Duan, A.; Zhang, Q.; et al. Geological characteristics, main challenges and future prospect of shale gas. J. Nat. Gas Geosci. 2017, 2, 273–288. [Google Scholar] [CrossRef]
- Ma, Y.; Cai, X.; Zhao, P. China’s shale gas exploration and development: Understanding and practice. Pet. Explor. Dev. 2018, 45, 561–574. [Google Scholar] [CrossRef]
- Curtis, M.E.; Sondergeld, C.H.; Ambrose, R.J.; Rai, C.S. Microstructural investigation of gas shales in two and three dimensions using nanometer-scale resolution imaging Microstructure of Gas Shales. AAPG Bull. 2012, 96, 665–677. [Google Scholar] [CrossRef]
- Wang, S.; Dong, D.; Wang, Y.; Li, X.; Huang, J.; Guan, Q. A comparative study of the geological feature of marine shale gas between China and the United States. Nat. Gas Geol. 2015, 26, 1666–1678. [Google Scholar]
- Bustin, R.M.; Bustin, A.M.M.; Cui, A.; Ross, D.J.K.; Murthy Pathi, V.S. Impact of Shale Properties on Pore Structure and Storage Characteristics. In Proceedings of the SPE Shale Gas Production Conference, Fort Worth, TX, USA, 16–18 November 2008; OnePetro: Richardson, TX, USA, 2008. [Google Scholar]
- Ross, D.J.K.; Bustin, R.M. The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs. Mar. Petrol. Geol. 2009, 26, 916–927. [Google Scholar] [CrossRef]
- Middleton, R.; Viswanathan, H.; Currier, R.; Gupta, R. CO2 as a fracturing fluid: Potential for commercial-scale shale gas production and CO2 sequestration. Energy Procedia 2014, 63, 7780–7784. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Jiang, Z.; Liu, K.; Tan, J.; Gao, F.; Wang, P. Pore structure characterization for organic-rich Lower Silurian shale in the Upper Yangtze Platform, South China: A possible mechanism for pore development. J. Nat. Gas Sci. Eng. 2017, 46, 1–15. [Google Scholar] [CrossRef]
- Tripathy, A.; Srinivasan, V.; Singh, T.N. A comparative study on the pore size distribution of different Indian shale gas reservoirs for gas production and potential CO2 sequestration. Energy Fuel 2018, 32, 3322–3334. [Google Scholar] [CrossRef]
- Li, X.; Jiang, Z.; Jiang, S.; Li, Z.; Song, Y.; Jiang, H.; Cao, X.; Qiu, H.; Huang, Y.; Ming, W.; et al. Characteristics of matrix-related pores associated with various lithofacies of marine shales inside of Guizhong Basin, South China. J. Pet. Sci. Eng. 2020, 185, 106671. [Google Scholar] [CrossRef]
- Huang, H.; Li, R.; Jiang, Z.; Li, J.; Chen, L. Investigation of variation in shale gas adsorption capacity with burial depth: Insights from the adsorption potential theory. J. Nat. Gas Sci. Eng. 2020, 73, 103043. [Google Scholar] [CrossRef]
- Li, Z.; Liang, Z.; Jiang, Z.; Gao, F.; Zhang, Y.; Yu, H.; Xiao, L.; Yang, Y. The impacts of matrix compositions on nanopore structure and fractal characteristics of lacustrine shales from the Changling fault depression, Songliao Basin, China. Minerals 2019, 9, 127. [Google Scholar] [CrossRef] [Green Version]
- Liang, Z.; Jiang, Z.; Li, Z.; Song, Y.; Gao, F.; Liu, X.; Xiang, S. Nanopores Structure and Multifractal Characterization of Bulk Shale and Isolated Kerogen—An Application in Songliao Basin, China. Energy Fuel 2021, 35, 5818–5842. [Google Scholar] [CrossRef]
- Tang, X.; Jiang, Z.; Li, Z.; Gao, Z.; Bai, Y.; Zhao, S.; Feng, J. The effect of the variation in material composition on the heterogeneous pore structure of high-maturity shale of the Silurian Longmaxi formation in the southeastern Sichuan Basin, China. J. Nat. Gas Sci. Eng. 2015, 23, 464–473. [Google Scholar] [CrossRef]
- Gao, F.; Song, Y.; Li, Z.; Xiong, F.; Chen, L.; Zhang, Y.; Liang, Z.; Zhang, X.; Chen, Z.; Joachim, M. Lithofacies and reservoir characteristics of the lower cretaceous continental shahezi shale in the changling fault depression of Songliao Basin, NE China. Mar. Pet. Geol. 2018, 98, 401–421. [Google Scholar] [CrossRef]
- Tang, L.; Song, Y.; Jiang, Z.; Jiang, S.; Li, Q. Pore structure and fractal characteristics of distinct thermally mature shales. Energy Fuels 2019, 33, 5116–5128. [Google Scholar] [CrossRef]
- Chang, J.; Fan, X.; Jiang, Z.; Wang, X.; Chen, L.; Li, J.; Zhu, L.; Wan, C.; Chen, Z. Differential impact of clay minerals and organic matter on pore structure and its fractal characteristics of marine and continental shales in China. Appl. Clay Sci. 2022, 216, 106334. [Google Scholar] [CrossRef]
- Wei, W.; Gao, Z.; Jiang, Z.; Duan, L. The comparative study of shale pore structure between outcrop and core samples of Ziliujing Formation shale from the northeastern Sichuan Basin in China. Energy Rep. 2022, 8, 8618–8629. [Google Scholar] [CrossRef]
- Loucks, R.G.; Reed, R.M.; Ruppel, S.C.; Javie, D.M. Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett Shale. J. Sediment. Res. 2009, 79, 848–861. [Google Scholar] [CrossRef] [Green Version]
- Loucks, R.G.; Reed, R.M.; Ruppel, S.C.; Hammes, U. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores. AAPG Bull. 2012, 96, 1071–1098. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Yao, G.; Cai, J.; Huang, Y.; Yuan, X. Fractal and multifractal analysis of different hydraulic flow units based on micro-CT images. J. Nat. Gas Sci. Eng. 2017, 48, 145–156. [Google Scholar] [CrossRef]
- Liu, K.; Ostadhassan, M.; Sun, L.; Zou, J.; Yuan, Y.; Gentzis, T.; Zhang, Y.; Carvajal-Ortiz, H.; Rezaee, R. A comprehensive pore structure study of the Bakken Shale with SANS, N2 adsorption and mercury intrusion. Fuel 2019, 245, 274–285. [Google Scholar] [CrossRef]
- Zhao, P.; Wang, Z.; Sun, Z.; Cai, J.; Wang, L. Investigation on the pore structure and multifractal characteristics of tight oil reservoirs using NMR measurements: Permian Lucaogou Formation in Jimusaer Sag, Junggar Basin. Mar. Pet. Geol. 2017, 86, 1067–1081. [Google Scholar] [CrossRef]
- Rouquerol, J.; Avnir, D.; Fairbridge, C.W.; Everett, D.H.; Haynes, J.M.; Pernicone, N.; Ramsay, J.D.F.; Sing, K.S.W.; Unger, K.K. Recommendations for the characterization of porous solids (Technical Report). Pure Appl. Chem. 1994, 66, 1739–1758. [Google Scholar] [CrossRef]
- Cychosz, K.A.; Thommes, M. Progress in the physisorption characterization of nanoporous gas storage materials. Engineering-PRC 2018, 4, 559–566. [Google Scholar] [CrossRef]
- Thommes, M.; Cychosz, K.A. Physical adsorption characterization of nanoporous materials: Progress and challenges. Adsorption 2014, 20, 233–250. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef] [Green Version]
- Wei, M.; Zhang, L.; Xiong, Y.; Li, J.; Peng, P. Nanopore structure characterization for organic-rich shale using the non-local-density functional theory by a combination of N2 and CO2 adsorption. Microporous Mesoporous Mater. 2016, 227, 88–94. [Google Scholar] [CrossRef]
- Pang, P.; Han, H.; Hu, L.; Guo, C.; Gao, Y.; Xie, Y. The calculations of pore structure parameters from gas adsorption experiments of shales: Which models are better? J. Nat. Gas Sci. Eng. 2021, 94, 104060. [Google Scholar] [CrossRef]
- Chen, Q.; Kang, Y.L.; You, L.J.; Liu, H.L. Micro-pore structure of gas shale and its effect on gas mass transfer. Nat. Gas Geosci. 2013, 24, 1298–1304. [Google Scholar]
- Mastalerz, M.; Schimmelmann, A.; Drobniak, A.; Chen, Y. Porosity of Devonian and Mississippian New Albany Shale across a maturation gradient: Insights from organic petrology, gas adsorption, and mercury intrusion. AAPG Bull. 2013, 97, 1621–1643. [Google Scholar] [CrossRef]
- Li, J.; Yin, J.; Zhang, Y.; Lu, S.; Wang, W.; Li, J.; Chen, F.; Meng, Y. A comparison of experimental methods for describing shale pore features—A case study in the Bohai Bay Basin of eastern China. Int. J. Coal Geol. 2015, 152, 39–49. [Google Scholar] [CrossRef]
- Chen, Y.; Wei, L.; Mastalerz, M.; Schimmelmann, A. The effect of analytical particle size on gas adsorption porosimetry of shale. Int. J. Coal Geol. 2015, 138, 103–112. [Google Scholar] [CrossRef] [Green Version]
- Liu, K.; Ostadhassan, M.; Zou, J.; Gentzis, T.; Rezaee, R.; Bubach, B.; Carvajal-Ortiz, H. Multifractal analysis of gas adsorption isotherms for pore structure characterization of the Bakken Shale. Fuel 2018, 219, 296–311. [Google Scholar] [CrossRef] [Green Version]
- Liu, K.; Ostadhassan, M.; Kong, L. Multifractal characteristics of Longmaxi Shale pore structures by N2 adsorption: A model comparison. J. Pet. Sci. Eng. 2018, 168, 330–341. [Google Scholar] [CrossRef]
- He, H.; Liu, P.; Xu, L.; Hao, S.; Qiu, X.; Shan, C.; Zhou, Y. Pore structure representations based on nitrogen adsorption experiments and an FHH fractal model: Case study of the block Z shales in the Ordos Basin, China. J. Pet. Sci. Eng. 2021, 203, 108661. [Google Scholar] [CrossRef]
- He, Y.; Chen, Q.; Tian, Y.; Yan, C.; He, Y.; Li, K. Estimation of shale pore-size-distribution from N2 adsorption characteristics employing modified BJH algorithm. Pet. Sci. Technol. 2021, 39, 843–859. [Google Scholar] [CrossRef]
- Han, W.; Zhou, G.; Gao, D.; Zhang, Z.; Wei, Z.; Wang, H.; Yang, H. Experimental analysis of the pore structure and fractal characteristics of different metamorphic coal based on mercury intrusion-nitrogen adsorption porosimetry. Powder Technol. 2020, 362, 386–398. [Google Scholar] [CrossRef]
- Anderson, R.B. Modifications of the Brunauer, Emmett and Teller equation1. J. Am. Chem. Soc. 1946, 68, 686–691. [Google Scholar] [CrossRef]
- Barrett, E.P.; Joyner, L.G.; Halenda, P.P. The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J. Am. Chem. Soc. 1951, 73, 373–380. [Google Scholar] [CrossRef]
- Seaton, N.A.; Walton, J. A new analysis method for the determination of the pore size distribution of porous carbons from nitrogen adsorption measurements. Carbon 1989, 27, 853–861. [Google Scholar] [CrossRef]
- Ravikovitch, P.I.; Vishnyakov, A.; Neimark, A.V. Density functional theories and molecular simulations of adsorption and phase transitions in nanopores. Phys. Rev. E 2001, 64, 11602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ravikovitch, P.I.; Neimark, A.V. Characterization of micro-and mesoporosity in SBA-15 materials from adsorption data by the NLDFT method. J. Phys. Chem. B 2001, 105, 6817–6823. [Google Scholar] [CrossRef]
- Nguyen, C.; Do, D.D. The Dubinin–Radushkevich equation and the underlying microscopic adsorption description. Carbon 2001, 39, 1327–1336. [Google Scholar] [CrossRef]
- Haghighatju, F.; Hashemipour, R.H.; Esmaeilzadeh, F. Estimation of the dimension of micropores and mesopores in single walled carbon nanotubes using the method Horvath–Kawazoe, Saito and Foley and BJH equations. Micro Nano Lett. 2017, 12, 1–5. [Google Scholar] [CrossRef]
- Hazra, B.; Chandra, D.; Singh, A.K.; Varma, A.K.; Mani, D.; Singh, P.K.; Boral, P.; Buragohain, J. Comparative pore structural attributes and fractal dimensions of Lower Permian organic-matter-bearing sediments of two Indian basins: Inferences from nitrogen gas adsorption. Energy Sources Part A 2019, 41, 2975–2988. [Google Scholar] [CrossRef]
- Chandra, D.; Vishal, V.; Debbarma, A.; Banerjee, S.; Pradhan, S.P.; Mishra, M.K. Role of composition and depth on pore attributes of Barakar Formation Gas Shales of Ib Valley, India, using a combination of low-pressure sorption and image analysis. Energy Fuels 2020, 34, 8085–8098. [Google Scholar] [CrossRef]
- Cai, J.; Wei, W.; Hu, X.; Wood, D.A. Electrical conductivity models in saturated porous media: A review. Earth-Sci. Rev. 2017, 171, 419–433. [Google Scholar] [CrossRef]
- Liu, R.; Yu, L.; Jiang, Y. Fractal analysis of directional permeability of gas shale fracture networks: A numerical study. J. Nat. Gas Sci. Eng. 2016, 33, 1330–1341. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Jiang, Z.; Ji, W.; Zhang, C.; Yuan, Y.; Chen, L.; Yin, L. Heterogeneity of intergranular, intraparticle and organic pores in Longmaxi shale in Sichuan Basin, South China: Evidence from SEM digital images and fractal and multifractal geometries. Mar. Pet. Geol. 2016, 72, 122–138. [Google Scholar] [CrossRef]
- Lopes, R.; Betrouni, N. Fractal and multifractal analysis: A review. Med. Image Anal. 2009, 13, 634–649. [Google Scholar] [CrossRef]
- Ge, X.; Fan, Y.; Li, J.; Zahid, M.A. Pore structure characterization and classification using multifractal theory—An application in Santanghu basin of western China. J. Pet. Sci. Eng. 2015, 127, 297–304. [Google Scholar] [CrossRef]
- Wang, Y.; Cheng, H.; Hu, Q.; Liu, L.; Jia, L.; Gao, S.; Wang, Y. Pore structure heterogeneity of Wufeng-Longmaxi shale, Sichuan Basin, China: Evidence from gas physisorption and multifractal geometries. J. Pet. Sci. Eng. 2022, 208, 109313. [Google Scholar] [CrossRef]
- Zhao, Y.; Lin, B.; Liu, T.; Zheng, Y.; Sun, Y.; Zhang, G.; Li, Q. Multifractal analysis of coal pore structure based on NMR experiment: A new method for predicting T2 cutoff value. Fuel 2021, 283, 119338. [Google Scholar] [CrossRef]
- Ferreiro, J.P.; Wilson, M.; Vázquez, E.V. Multifractal description of nitrogen adsorption isotherms. Vadose Zone J. 2009, 8, 209–219. [Google Scholar] [CrossRef]
- Hao, F.; Guo, T.; Zhu, Y.; Cai, X.; Zou, H.; Li, P. Evidence for multiple stages of oil cracking and thermochemical sulfate reduction in the Puguang gas field, Sichuan Basin, China. AAPG Bull. 2008, 92, 611–637. [Google Scholar] [CrossRef]
- Zhao, J.; Jin, Z.; Jin, Z.; Wen, X.; Geng, Y. Origin of authigenic quartz in organic-rich shales of the Wufeng and Longmaxi Formations in the Sichuan Basin, South China: Implications for pore evolution. J. Nat. Gas Sci. Eng. 2017, 38, 21–38. [Google Scholar] [CrossRef]
- Peng, N.; He, S.; Hu, Q.; Zhang, B.; He, X.; Zhai, G.; He, C.; Yang, R. Organic nanopore structure and fractal characteristics of Wufeng and lower member of Longmaxi shales in southeastern Sichuan, China. Mar. Pet. Geol. 2019, 103, 456–472. [Google Scholar] [CrossRef]
- Melchin, M.J.; Mitchell, C.E.; Holmden, C.; Štorch, P. Environmental changes in the Late Ordovician–early Silurian: Review and new insights from black shales and nitrogen isotopes. Bulletin 2013, 125, 1635–1670. [Google Scholar] [CrossRef]
- Roque-Malherbe, R.M.A. Adsorption and Diffusion in Nanoporous Materials; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Bardestani, R.; Patience, G.S.; Kaliaguine, S. Experimental methods in chemical engineering: Specific surface area and pore size distribution measurements—BET, BJH, and DFT. Can. J. Chem. Eng. 2019, 97, 2781–2791. [Google Scholar] [CrossRef]
- Halsey, G. Physical adsorption on non-uniform surfaces. J. Chem. Phys. 1948, 16, 931–937. [Google Scholar] [CrossRef]
- Neimark, A.V.; Lin, Y.; Ravikovitch, P.I.; Peter., I.; Matthias, T. Quenched solid density functional theory and pore size analysis of micro-mesoporous carbons. Carbon 2009, 47, 1617–1628. [Google Scholar] [CrossRef]
- Lastoskie, C.; Gubbins, K.E.; Quirke, N. Pore size distribution analysis of microporous carbons: A density functional theory approach. J. Phys. Chem. C 1993, 97, 4786–4796. [Google Scholar] [CrossRef]
- Neimark, A.V.; Ravikovitch, P.I.; Grün, M.; Schüth, F.; Unger, K.K. Pore size analysis of MCM-41 type adsorbents by means of nitrogen and argon adsorption. J. Colloid Interface Sci. 1998, 207, 159–169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ravikovitch, P.I.; Domhnaill, S.C.Ó.; Neimark, A.V.; Schüth, F.; Unger, K.K. Capillary hysteresis in nanopores: Theoretical and experimental studies of nitrogen adsorption on MCM-41. Langmuir 1995, 11, 4765–4772. [Google Scholar] [CrossRef]
- Ravikovitch, P.I.; Vishnyakov, A.; Russo, R.; Neimark, A.V. Unified approach to pore size characterization of microporous carbonaceous materials from N2, Ar, and CO2 adsorption isotherms. Langmuir 2000, 16, 2311–2320. [Google Scholar] [CrossRef]
- Landers, J.; Gor, G.Y.; Neimark, A.V. Density functional theory methods for characterization of porous materials. Colloids Surf. A 2013, 437, 3–32. [Google Scholar] [CrossRef]
- Rouquerol, J.; Rouquerol, F.; Llewellyn, P.; Maurin, G.; Sing, K.S.W. Adsorption by Powders and Porous Solids: Principles, Methodology and Applications; Academic Press: Cambridge, MA, USA, 2013. [Google Scholar]
- Chhabra, A.; Jensen, R.V. Direct determination of the f(α) singularity spectrum. Phys. Rev. Let. 1989, 62, 1327. [Google Scholar] [CrossRef]
- Posadas, A.N.D.; Giménez, D.; Bittelli, M.; Vaz, C.M.P.; Flury, M. Multifractal characterization of soil particle-size distributions. Soil Sci. Soc. Am. J. 2001, 65, 1361–1367. [Google Scholar] [CrossRef]
- Halsey, T.C.; Jensen, M.H.; Kadanoff, L.P.; Procaccia, I.; Shraiman, B.I. Fractal measures and their singularities: The characterization of strange sets. Phys. Rev. A 1986, 33, 1141. [Google Scholar] [CrossRef]
- Ferreiro, J.; Miranda, J.G.V.; Vidal, V.E. Multifractal analysis of soil porosity based on mercury injection and nitrogen adsorption. Vadose Zone J. 2010, 9, 325–335. [Google Scholar] [CrossRef]
- Brunauer, S.; Deming, L.S.; Deming, W.E.; Teller, E. On a theory of the van der Waals adsorption of gases. J. Am. Chem. Soc. 1940, 62, 1723–1732. [Google Scholar] [CrossRef]
- Sing, K.S.W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl. Chem. 1985, 57, 603–619. [Google Scholar] [CrossRef]
- Groen, J.C.; Peffer, L.A.A.; Pérez-Ramírez, J. Pore size determination in modified micro-and mesoporous materials. Pitfalls and limitations in gas adsorption data analysis. Microporous Mesoporous Mater. 2003, 60, 1–17. [Google Scholar] [CrossRef]
- Zeng, Y.; Fan, C.; Do, D.; Nicholson, D. Evaporation from an ink-bottle pore: Mechanisms of adsorption and desorption. Ind. Eng. Chem. Res. 2014, 53, 15467–15474. [Google Scholar] [CrossRef]
- Ausloos, M. Generalized Hurst exponent and multifractal function of original and translated texts mapped into frequency and length time series. Phys. Rev. E 2012, 86, 31108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bertier, P.; Schweinar, K.; Stanjek, H.; Ghanizadeh, A.; Clarkson, C.R.; Busch, A.; Kampman, N.; Prinz, D.; Amann-Hildenbrand, A.; Krooss, B.M.; et al. On the use and abuse of N2 physisorption for the characterization of the pore structure of shales. CMS Workshop Lect. 2016, 21, 151–161. [Google Scholar]
- Muller, J. Characterization of pore space in chalk by multifractal analysis. J. Hyd. 1996, 187, 215–222. [Google Scholar] [CrossRef]
- Tavakol, M.; Dennick, R. Making sense of Cronbach’s alpha. Int. J. Med. Educ. 2011, 2, 53. [Google Scholar] [CrossRef] [PubMed]
Sample ID | Well | Lithofacies | Depth (m) | Quartz (%) | Feldspar (%) | Plagioclase (%) | Calcite (%) | Dolomite (%) | Pyrite (%) | Clar (%) | TOC (%) |
---|---|---|---|---|---|---|---|---|---|---|---|
M-1 | N16 | M | 2321.9 | 45.1 | 1.0 | 2.1 | 11.5 | 12.5 | 3.0 | 24.3 | 5.2 |
M-2 | NX2 | M | 3920.3 | 32.7 | 0.5 | 4.9 | 5.4 | 8.8 | 4.7 | 43.0 | 4.8 |
M-3 | NX2 | M | 3926.8 | 41.4 | 0.4 | 2.6 | 6.6 | 17.9 | 4.4 | 26.7 | 4.3 |
Q-1 | N11 | Q | 2346.2 | 70.4 | 0.8 | 2.1 | 4.7 | 4.7 | 1.7 | 15.1 | 6.1 |
Q-2 | NX2 | Q | 3923.3 | 52.1 | 2.0 | 9.5 | 19.6 | 2.5 | 14.3 | 4.6 | |
Q-3 | NX2 | Q | 3923.3 | 50.1 | 0.5 | 2.7 | 4.2 | 7.7 | 4.6 | 30.2 | 5.2 |
A-1 | N16 | A | 2290.7 | 9.8 | 2.9 | 4.4 | 7.2 | 7.7 | 2.1 | 65.6 | 0.5 |
A-2 | NX2 | A | 3812.7 | 28.0 | 3.8 | 4.9 | 1.6 | 58.2 | 0.5 | ||
C-1 | N16 | C | 2322.4 | 18.5 | 1.4 | 4.0 | 36.2 | 21.1 | 2.6 | 16.0 | 4.1 |
C-2 | NX2 | C | 3941.7 | 13.1 | 1.0 | 27.8 | 45.7 | 4.5 | 7.9 | 3.3 |
Number | BJH (m2/g) | DFT (m2/g) | MultiPoint BET (m2/g) | t-plot External (m2/g) | Langmuir Surface Area (m2/g) | |
---|---|---|---|---|---|---|
Adsorption | Desorption | |||||
M-1 | 9.065 | 18.62 | 32.741 | 27 | 15.78 | 22.65 |
M-2 | 9.286 | 16.22 | 26.689 | 27.12 | 17.26 | 21.78 |
M-3 | 6.658 | 12.66 | 26.837 | 21.99 | 12.58 | 18.4 |
Q-1 | 10.1 | 23.73 | 32.658 | 27.1 | 17.17 | 22.05 |
Q-2 | 6.082 | 12.8 | 24.35 | 19.69 | 11.88 | 16.18 |
Q-3 | 8.261 | 17.76 | 35.34 | 28.8 | 16.11 | 24.08 |
A-1 | 5.336 | 10.22 | 16.446 | 14.39 | 10.36 | 11.57 |
A-2 | 4.251 | 6.44 | 11.986 | 11.17 | 8.675 | 8.572 |
C-1 | 8.079 | 12 | 18.195 | 17.12 | 13.84 | 12.73 |
C-2 | 4.266 | 8.505 | 14.197 | 12.69 | 8.562 | 9.501 |
Number | BJH (m2/g) | DFT Pore Volume (cm3/g) | t-Method Micropore Volume (cm3/g) | Micropore Volume (cm3/g) | ||
---|---|---|---|---|---|---|
Adsorption Pore Volume | Desorption Pore Volume | HK Method | SF Method | |||
M-1 | 0.0255 | 0.0294 | 0.0280 | 0.0050 | 0.0111 | 0.0346 |
M-2 | 0.0224 | 0.0248 | 0.0260 | 0.0045 | 0.0045 | 0.0317 |
M-3 | 0.0150 | 0.0173 | 0.0200 | 0.0043 | 0.0090 | 0.0229 |
Q-1 | 0.0350 | 0.0320 | 0.0320 | 0.0044 | 0.0111 | 0.0350 |
Q-2 | 0.0153 | 0.0176 | 0.0190 | 0.0035 | 0.0080 | 0.0223 |
Q-3 | 0.0222 | 0.0259 | 0.0270 | 0.0058 | 0.0118 | 0.0328 |
A-1 | 0.0153 | 0.0171 | 0.0160 | 0.0020 | 0.0057 | 0.0203 |
A-2 | 0.0134 | 0.0140 | 0.0120 | 0.0012 | 0.0044 | 0.0172 |
C-1 | 0.0269 | 0.0282 | 0.0210 | 0.0015 | 0.0069 | 0.0319 |
C-2 | 0.0117 | 0.0133 | 0.0130 | 0.0019 | 0.0051 | 0.0162 |
Sample ID | Model | D−10–D10 | D10–D0 | D0–D10 | D1/D0 | D2 | D1 | D0 | D−10 | D10 | Δα | Δf | Hurst |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
M-1 | BJH-AD | 2.793 | 1.391 | 1.402 | 0.392 | 0.302 | 0.618 | 1.575 | 2.966 | 1.575 | 3.062 | 0.456 | 0.651 |
M-2 | 2.938 | 1.477 | 1.462 | 0.296 | 0.197 | 0.466 | 1.572 | 3.049 | 1.572 | 3.186 | 0.679 | 0.598 | |
M-3 | 3.055 | 1.569 | 1.486 | 0.270 | 0.177 | 0.428 | 1.585 | 3.154 | 1.585 | 3.307 | 0.728 | 0.588 | |
Q-1 | 2.751 | 1.319 | 1.432 | 0.343 | 0.244 | 0.537 | 1.569 | 2.888 | 1.569 | 2.983 | 0.700 | 0.622 | |
Q-2 | 3.018 | 1.509 | 1.509 | 0.307 | 0.217 | 0.501 | 1.631 | 3.140 | 1.631 | 3.252 | 0.928 | 0.608 | |
Q-3 | 3.036 | 1.594 | 1.442 | 0.297 | 0.231 | 0.466 | 1.572 | 3.166 | 1.572 | 3.352 | 0.131 | 0.615 | |
A-1 | 2.760 | 1.347 | 1.413 | 0.382 | 0.282 | 0.600 | 1.572 | 2.920 | 1.572 | 3.021 | 0.473 | 0.641 | |
A-2 | 1.760 | 0.733 | 1.027 | 0.723 | 0.845 | 1.136 | 1.572 | 2.305 | 1.572 | 1.925 | 1.193 | 0.923 | |
C-1 | 2.793 | 1.391 | 1.402 | 0.392 | 0.302 | 0.618 | 1.575 | 2.966 | 1.575 | 3.062 | 0.456 | 0.651 | |
C-2 | 1.760 | 0.733 | 1.027 | 0.723 | 0.845 | 1.136 | 1.572 | 2.305 | 1.572 | 1.925 | 1.193 | 0.923 | |
M-1 | BJH-DE | 1.320 | 0.657 | 0.664 | 0.772 | 0.749 | 0.939 | 1.216 | 1.872 | 1.110 | 1.547 | −0.051 | 0.874 |
M-2 | 1.716 | 0.776 | 0.940 | 0.724 | 0.914 | 1.168 | 1.613 | 2.388 | 1.535 | 1.906 | 1.007 | 0.957 | |
M-3 | 1.384 | 0.616 | 0.768 | 0.496 | 0.584 | 0.605 | 1.219 | 1.835 | 0.981 | 1.511 | 0.536 | 0.792 | |
Q-1 | 1.400 | 0.743 | 0.657 | 0.763 | 0.744 | 0.926 | 1.213 | 1.956 | 1.074 | 1.636 | −0.126 | 0.872 | |
Q-2 | 1.436 | 0.679 | 0.757 | 0.674 | 0.626 | 0.832 | 1.236 | 1.915 | 1.037 | 1.585 | 0.500 | 0.813 | |
Q-3 | 1.328 | 0.614 | 0.714 | 0.686 | 0.647 | 0.839 | 1.222 | 1.836 | 0.966 | 1.452 | 0.600 | 0.823 | |
A-1 | 1.921 | 0.971 | 0.951 | 0.528 | 0.437 | 0.647 | 1.224 | 2.194 | 1.224 | 2.090 | 0.783 | 0.718 | |
A-2 | 1.207 | 0.516 | 0.691 | 0.805 | 0.799 | 0.984 | 1.222 | 1.738 | 1.222 | 1.364 | 0.700 | 0.899 | |
C-1 | 0.943 | 0.345 | 0.598 | 0.850 | 0.886 | 1.045 | 1.230 | 1.575 | 1.224 | 1.073 | 0.893 | 0.943 | |
C-2 | 0.377 | 0.141 | 0.236 | 0.959 | 1.126 | 1.176 | 1.227 | 1.368 | 0.688 | 0.452 | 0.528 | 1.063 | |
M-1 | DFT | 0.932 | 0.348 | 0.584 | 0.809 | 0.771 | 0.924 | 1.142 | 1.490 | 1.030 | 1.057 | 0.571 | 0.885 |
M-2 | 1.389 | 0.549 | 0.839 | 0.641 | 0.537 | 0.769 | 1.200 | 1.750 | 1.198 | 1.594 | 0.052 | 0.769 | |
M-3 | 1.161 | 0.525 | 0.636 | 0.702 | 0.646 | 0.797 | 1.135 | 1.660 | 0.974 | 1.304 | 0.411 | 0.823 | |
Q-1 | 1.240 | 0.614 | 0.626 | 0.760 | 0.706 | 0.864 | 1.137 | 1.751 | 1.072 | 1.423 | 0.301 | 0.853 | |
Q-2 | 1.210 | 0.537 | 0.673 | 0.688 | 0.624 | 0.786 | 1.143 | 1.680 | 1.007 | 1.350 | 0.469 | 0.812 | |
Q-3 | 1.166 | 0.499 | 0.667 | 0.693 | 0.619 | 0.783 | 1.131 | 1.629 | 1.037 | 1.294 | 0.628 | 0.810 | |
A-1 | 0.923 | 0.348 | 0.575 | 0.809 | 0.771 | 0.924 | 1.142 | 1.490 | 1.084 | 1.054 | 0.625 | 0.885 | |
A-2 | 0.675 | 0.286 | 0.389 | 0.857 | 0.876 | 0.979 | 1.142 | 1.428 | 0.811 | 0.772 | 0.550 | 0.938 | |
C-1 | 0.603 | 0.254 | 0.349 | 0.905 | 0.949 | 1.034 | 1.142 | 1.396 | 0.878 | 0.721 | 0.476 | 0.974 | |
C-2 | 0.995 | 0.395 | 0.600 | 0.796 | 0.742 | 0.905 | 1.138 | 1.533 | 1.069 | 1.132 | 0.558 | 0.871 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, M.; Li, Z.; Liang, Z.; Jiang, Z.; Wu, W. Method Selection for Analyzing the Mesopore Structure of Shale—Using a Combination of Multifractal Theory and Low-Pressure Gas Adsorption. Energies 2023, 16, 2464. https://doi.org/10.3390/en16052464
Wang M, Li Z, Liang Z, Jiang Z, Wu W. Method Selection for Analyzing the Mesopore Structure of Shale—Using a Combination of Multifractal Theory and Low-Pressure Gas Adsorption. Energies. 2023; 16(5):2464. https://doi.org/10.3390/en16052464
Chicago/Turabian StyleWang, Meng, Zhuo Li, Zhikai Liang, Zhenxue Jiang, and Wei Wu. 2023. "Method Selection for Analyzing the Mesopore Structure of Shale—Using a Combination of Multifractal Theory and Low-Pressure Gas Adsorption" Energies 16, no. 5: 2464. https://doi.org/10.3390/en16052464
APA StyleWang, M., Li, Z., Liang, Z., Jiang, Z., & Wu, W. (2023). Method Selection for Analyzing the Mesopore Structure of Shale—Using a Combination of Multifractal Theory and Low-Pressure Gas Adsorption. Energies, 16(5), 2464. https://doi.org/10.3390/en16052464