Exploring the Green-Oriented Transition Process of Ship Power Systems: A Patent-Based Overview on Innovation Trends and Patterns
Abstract
:1. Introduction
2. Data and Methodology
2.1. Data Collection
2.2. Analytical Framework
2.3. Research Methods and Tools
3. Results and Analysis
3.1. Analysis of Technical Trends in Ship Power Systems
3.2. Analysis of Technical Topics and Competitive Situation in Ship Power Systems
3.2.1. Technical Topics and Competitive Situation in T1 Phase (1965–2009)
3.2.2. Technical Topics and Competitive Situation in T2 Phase (2010–2016)
3.2.3. Technical Topics and Competitive Situation in T3 Phase (2017–2022)
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Phase | Lable | Representation in the Patent Family | Distributed Countries and Regions | Patentees |
---|---|---|---|---|
T1 | 384 | US4019456-A | CA; DE; FR; GB; IT; US | WHITTAKER CORP (WHIK-C) |
T1 | 844 | DE3222054-A | AU; BR; CA; DE; ES; GB; US; ZA | SCHOTTEL-WERFT J BE (SCHO-N) |
T1 | 1424 | US4836809-A | DE; GB; US | TWIN DISC INC (TWID-C) |
T1 | 1700 | US5234364-A | JP; US | SANSHIN KOGYO KK (SASK-C) |
T1 | 1991 | EP590867-A1 | CA; DE; EP; ES; FI; JP; KR; NO; RU; SG; US | KVAERNER MASA-YARDS OY (KVAE-N); ABB OY (ALLM-C) |
T1 | 2106 | US5386368-A | US | JOHNSON FISHING INC (JOHN-N) |
T1 | 2147 | WO9528682-A1 | EP; US; WO | ROBERTSON G (ROBE-I) |
T1 | 2201 | DE4432483-A1 | DE; ES; FI; JP; KR; NO; SG; US | BLOHM and VOSS AG (BLVO-C) |
T1 | 2506 | JP10067390-A | JP; US | YAMAHA MOTOR CO LTD (YMHA-C) |
T1 | 2549 | JP10176560-A | JP; US | SANSHIN KOGYO KK (SASK-C); YAMAHA MARINE CO LTD (NIHG-C) |
T1 | 3142 | US2001036777-A1 | JP; US | YAMAHA MOTOR CO LTD (YMHA-C); SANSHIN KOGYO KK (SASK-C) |
T1 | 3405 | WO200299455-A2 | AU; EP; US; WO | TELEFLEX INC (TELX-C) |
T1 | 3499 | WO2003024784-A1 | EP; JP; US; WO | YANMAR CO LTD (YANM-C) |
T1 | 3635 | US2003191562-A1 | US | ROBERTSON G (ROBE-I) |
T1 | 3748 | JP2004142538-A | JP; US | SANSHIN KOGYO KK (SASK-C); MITSUBISHI ELECTRIC CORP (MITQ-C); YAMAHA MARINE KK (NIHG-C) |
T1 | 3780 | US6848382-B1 | US | BEKKER J (BEKK-I) |
T1 | 4352 | EP1775212-A2 | EP; US | BRUNSWICK CORP (BRUH-C) |
T1 | 4353 | EP1775211-A2 | EP; US | BRUNSWICK CORP (BRUH-C) |
T1 | 4567 | EP1897801-A2 | EP; JP; US | YAMAHA MARINE KK (NIHG-C); YAMAHA HATSUDOKI KK (YMHA-C) |
T1 | 4978 | WO2009076659-A1 | AU; CA; CN; EP; ES; JP; KR; SG; US; WO | FOSS MARITIME CO (FOSS-N); ASPIN KEMP and ASSOC (ASPI-N); XEROPOINT ENERGY (XERO-N) |
T2 | 5833 | US2011166724-A1 | EP; JP; US | YAMAHA HATSUDOKI KK (YMHA-C) |
T2 | 5866 | WO2011100641-A1 | AU; CN; EP; JP; US; WO | DAVIS ENG LLC (DAVI-N); SEVEN MARINE LLC (SEVE-N); VOLVO PENTA AB (VOLV-C) |
T2 | 5912 | CN201633913-U | CN | GUANGXI YUCAI MACHINE CO LTD (GXYC-C) |
T2 | 6039 | WO2012003333-A1 | AU; BR; CA; CN; EP; IL; JP; MX; NZ; TW; US; WO; ZA | BOOMERBOARD LLC (BOOM-N) |
T2 | 6065 | US2012015566-A1 | US | JOHNSON OUTDOORS INC (JOHN-N) |
T2 | 6066 | US2014249698-A1 | US | JOHNSON OUTDOORS INC (JOHN-N) |
T2 | 6154 | RU2436708-C1 | RU | RUSSIA IND TRADE MIN (RUTA-C) |
T2 | 6437 | WO2012128448-A1 | CN; EP; JP; KR; US; WO | DAEWOO SHIPBUILDING and MARINE (DEWO-C) |
T2 | 6438 | WO2012128449-A1 | CN; EP; JP; KR; US; WO | DAEWOO SHIPBUILDING and MARINE (DEWO-C) |
T2 | 6527 | CN202147836-U | CN | UNIV SHANGHAI MARITIME (USHM-C) |
T2 | 6529 | CN102211657-A | CN | UNIV SHANGHAI MARITIME (USHM-C) |
T2 | 6681 | CN202156534-U | CN | UNIV SHANGHAI MARITIME (USHM-C) |
T2 | 6682 | CN102358412-A | CN | UNIV SHANGHAI MARITIME (USHM-C) |
T2 | 6787 | CN102381464-A | CN | UNIV ZHEJIANG ZHOUSHAN OCEAN (UYZH-C) |
T2 | 6833 | US2013115833-A1 | CN; EP; JP; US | YAMAHA HATSUDOKI KK (YMHA-C) |
T2 | 7091 | WO2013146314-A1 | CN; EP; JP; KR; WO | MITSUBISHI HEAVY IND CO LTD (MITO-C) |
T2 | 7177 | CN102673763-A | CN | WUXI FUHONG TECHNOLOGY CO LTD (WUXI-N) |
T2 | 7313 | US8762022-B1 | US | BRUNSWICK CORP (BRUH-C) |
T2 | 7485 | WO2014065619-A1 | CN; EP; ES; ID; IN; JP; KR; PH; RU; SG; US; VN; WO | DAEWOO SHIPBUILDING and MARINE (DEWO-C) |
T2 | 7487 | WO2014065618-A1 | CN; EP; ES; ID; KR; WO | DAEWOO SHIPBUILDING and MARINE (DEWO-C) |
T2 | 7491 | WO2014092369-A1 | CN; EP; ID; JP; KR; PH; RU; SG; US; WO | DAEWOO SHIPBUILDING and MARINE (DEWO-C) |
T2 | 7782 | US9248898-B1 | US | BRUNSWICK CORP (BRUH-C) |
T2 | 7783 | US9039468-B1 | US | BRUNSWICK CORP (BRUH-C) |
T2 | 7806 | US8924054-B1 | US | BRUNSWICK CORP (BRUH-C) |
T2 | 7973 | KR1289212-B1 | CN; EP; JP; KR; US; | HYUNDAI HEAVY IND CO LTD (HHIH-C) |
T2 | 7994 | CN103287563-B | CN | HARBIN COUPLING POWER ENG (HARB-N); LIAONING ZHONGCHUAN (LIAO-N); CHINA SHIPBUILDING 703TH INST (CSHI-C) |
T2 | 8036 | WO2014209029-A1 | CN; EP; ES; ID; IN; JP; KR; PH; RU; SG; US; VN; WO; | DAEWOO SHIPBUILDING and MARINE (DEWO-C) |
T2 | 8039 | CN103332284-B | CN | UNIV SHANGHAI MARITIME (USHM-C) |
T2 | 8244 | WO2015053126-A1 | CN; JP; KR; WO | MITSUI ENG and SHIPBUILDING CO LTD (MITB-C) |
T2 | 8407 | CN103708015-B | CN | UNIV SHANGHAI MARITIME (USHM-C) |
T2 | 9006 | CN204056278-U | CN | CHINA NAT OFFSHORE OIL CORP (CNOO-C); OIL PRODN SERVICES BRANCH (OILS-N) |
T2 | 9438 | KR1511214-B1 | KR | DAEWOO SHIPBUILDING and MARINE (DEWO-C) |
T2 | 9469 | WO2016195231-A1 | CN; EP; ID; IN; JP; KR; PH; RU; SG; US; VN; WO | DAEWOO SHIPBUILDING and MARINE (DEWO-C) |
T2 | 9790 | CN104859828-B | CN | UNIV WUHAN TECHNOLOGY (UYWL-C) |
T2 | 10751 | US2017349256-A1 | JP; US | YAMAHA HATSUDOKI KK (YMHA-C) |
T3 | 11504 | CN206476080-U | CN | GUANGZHOU JINHAI INTELLIGENT (GUAN-N) |
T3 | 11505 | WO2018133413-A1 | CN; EP; US; WO | DONGGUAN EPROPULSION INTELLIGENT TECHNOL (DONG-N) |
T3 | 11561 | WO2018149044-A1 | CN; WO | CHEN C (CHEN-I) |
T3 | 11667 | WO2018181504-A1 | CN; JP; KR; SG; WO | MITSUBISHI HITACHI POWER SYSTEMS (MIBI-C); MITSUBISHI SHIPBUILDING CO LTD (MITO-C) |
T3 | 11669 | EP3381790-A1 | AU; CA; EP; US | NAVICO HOLDING AS (NAVI-N) |
T3 | 11744 | CN107140168-B | CN | UNIV WUHAN TECHNOLOGY (UYWL-C) |
T3 | 11772 | WO2018201890-A1 | AU; CN; EP; JP; US; WO | TIANJIN DEEPFAR OCEAN EQUIP (TIAN-N) |
T3 | 11821 | CN107161313-B | CN | UNIV DALIAN TECHNOLOGY (UYDA-C) |
T3 | 11865 | CN206841680-U | CN | MA S (MASS-I) |
T3 | 11910 | US10836457-B2 | AU; DE; EP; JP; KR; US | ELLERGON ANTRIEBSTECHNIK GMBH (ELLE-N) |
T3 | 11928 | CN107380341-B | CN | UNIV DALIAN TECHNOLOGY (UYDA-C) |
T3 | 12086 | CN107499487-B | CN | UNIV WUHAN TECHNOLOGY (UYWL-C) |
T3 | 12110 | CN107697256-A | CN | GUANGZHOU FAZHAN RUIHUA (GUAN-N) |
T3 | 12149 | CN107554741-B | CN | UNIV SHANGHAI MARITIME (USHM-C) |
T3 | 12255 | CN107748498-A | CN | UNIV SHANGHAI MARITIME (USHM-C) |
T3 | 12421 | EP3486742-A1 | EP; JP; US; | BRUNSWICK CORP (BRUH-C) |
T3 | 12475 | CN107826225-A | CN | OUBO INTELLIGENT TECHNOLOGY (OUBO-N) |
T3 | 12565 | WO2019129687-A1 | CN; EP; US; WO | RIDE AWAKE AB (RIDE-N) |
T3 | 12764 | CN108860549-A | CN | UNIV HARBIN ENGINEERING (UHEG-C) |
T3 | 12765 | CN108674627-B | CN | UNIV HARBIN ENGINEERING (UHEG-C) |
T3 | 12768 | CN108657406-B | CN | UNIV HARBIN ENGINEERING (UHEG-C) |
T3 | 12772 | CN108438189-B | CN | UNIV HARBIN ENGINEERING (UHEG-C) |
T3 | 12923 | CN108750064-A | CN | GUANGZHOU MARITIME INST (GUAN-N) |
T3 | 12974 | WO2019235842-A1 | CN; JP; KR; US; WO | KWATERCRAFT CO LTD (KWAT-N) |
T3 | 13136 | US2020043315-A1 | JP; US | SUZUKI MOTOR CORP (SUZM-C) |
T3 | 13228 | CN108974308-A | CN | NINGBO JIEMAO SHIPPING (NING-N) |
T3 | 13431 | KR2020052535-A | KR | MARINE TECHNO KOREA CO LTD (MARI-N) |
T3 | 13756 | CN109941417-A | CN | UNIV HARBIN ENGINEERING (UHEG-C) |
T3 | 13768 | US11034424-B2 | CN; US | UNIV HARBIN ENGINEERING (UHEG-C) |
T3 | 13790 | CN109733583-A | CN | UNIV GUANGXI NORMAL (UNGT-C) |
T3 | 13867 | CN109927872-A | CN | SHANXI FENXI HEAVY IND CO LTD (CSHI-C); WUXI SILENT ELECTRIC SYSTEM (WUXI-N) |
T3 | 13944 | CN110001908-A | CN | UNIV JIMEI (UYMJ-C) |
T3 | 14126 | CN110435865-A | CN | CHINA SHIPBUILDING 719TH RES (CSHI-C) |
T3 | 14329 | CN110481748- | CN | CHINA SHIPBUILDING 702TH INST (CSHI-C) |
T3 | 14406 | CN110539869-A | CN | CHINA SHIPBUILDING 719TH RES (CSHI-C) |
T3 | 14409 | CN110539870-A | CN | CHINA SHIPBUILDING 719TH RES (CSHI-C) |
T3 | 14410 | CN110525624-A | CN | CHINA SHIPBUILDING 719TH RES (CSHI-C) |
T3 | 14470 | CN110758708-A | CN | UNIV ZHEJIANG OCEAN (UYZO-C) |
T3 | 14486 | WO2021073378-A1 | CN; WO | SUZHOU PM and T POWER CO LTD (SUZH-N) |
T3 | 15015 | WO2021185056-A1 | CN; WO | WUXI SILENT ELECTRIC SYSTEM (WUXI-N); SHANXI FENXI HEAVY IND CO LTD (CSHI-C) |
References
- Joung, T.-H.; Kang, S.-G.; Lee, J.-K.; Ahn, J. The IMO initial strategy for reducing Greenhouse Gas(GHG) emissions, and its follow-up actions towards 2050. J. Int. Marit. Saf. Environ. Aff. Shipp. 2020, 4, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Ampah, J.D.; Yusuf, A.A.; Afrane, S.; Jin, C.; Liu, H. Reviewing two decades of cleaner alternative marine fuels: Towards IMO’s decarbonization of the maritime transport sector. J. Clean. Prod. 2021, 320, 128871. [Google Scholar] [CrossRef]
- Ezinna, P.C.; Nwanmuoh, E.; Ozumba, B.U.I. Decarbonization and sustainable development goal 13: A reflection of the maritime sector. J. Int. Marit. Saf. Environ. Aff. Shipp. 2021, 5, 98–105. [Google Scholar] [CrossRef]
- Papadis, E.; Tsatsaronis, G. Challenges in the decarbonization of the energy sector. Energy 2020, 205, 118025. [Google Scholar] [CrossRef]
- Groppi, D.; Nastasi, B.; Prina, M.G. The EPLANoptMAC model to plan the decarbonisation of the maritime transport sector of a small island. Energy 2022, 254, 124342. [Google Scholar] [CrossRef]
- Mallouppas, G.; Yfantis, E.A.; Ktoris, A.; Ioannou, C. Methodology to Assess the Technoeconomic Impacts of the EU Fit for 55 Legislation Package in Relation to Shipping. J. Mar. Sci. Eng. 2022, 10, 1006. [Google Scholar] [CrossRef]
- Psaraftis, H.N.; Kontovas, C.A. Speed models for energy-efficient maritime transportation: A taxonomy and survey. Transp. Res. Part C: Emerg. Technol. 2013, 26, 331–351. [Google Scholar] [CrossRef]
- Hansen, E.K.; Rasmussen, H.B.; Lützen, M. Making shipping more carbon-friendly? Exploring ship energy efficiency management plans in legislation and practice. Energy Res. Soc. Sci. 2020, 65, 101459. [Google Scholar] [CrossRef]
- Nisiforou, O.; Shakou, L.M.; Magou, A.; Charalambides, A.G. A Roadmap towards the Decarbonization of Shipping: A Participatory Approach in Cyprus. Sustainability 2022, 14, 2185. [Google Scholar] [CrossRef]
- Stalmokaitė, I.; Hassler, B. Dynamic capabilities and strategic reorientation towards decarbonisation in Baltic Sea shipping. Environ. Innov. Soc. Transit. 2020, 37, 187–202. [Google Scholar] [CrossRef]
- Halim, R.A.; Kirstein, L.; Merk, O.; Martinez, L.M. Decarbonization Pathways for International Maritime Transport: A Model-Based Policy Impact Assessment. Sustainability 2018, 10, 2243. [Google Scholar] [CrossRef] [Green Version]
- Wan, Z.; El Makhloufi, A.; Chen, Y.; Tang, J. Decarbonizing the international shipping industry: Solutions and policy recommendations. Mar. Pollut. Bull. 2018, 126, 428–435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pastra, A.; Doelle, M.; Johansson, T. The Shipping Sector and Ports as Central Actors in the Decarbonization Effort: A Case Study of China. Asia-Pac. J. Ocean. Law Policy 2021, 6, 247–270. [Google Scholar] [CrossRef]
- Psaraftis, H.N.; Kontovas, C.A. Decarbonization of Maritime Transport: Is There Light at the End of the Tunnel? Sustainability 2021, 13, 237. [Google Scholar] [CrossRef]
- Popescu, G.; Gasparotti, C. Swot-Ahp Hybrid method for ranking the strategies in the shipbuilding sector. J. Bus. Econ. Manag. 2022, 23, 706–730. [Google Scholar] [CrossRef]
- Pu, S.Y.; Lam, J.S.L. Blockchain adoptions in the maritime industry: A conceptual framework. Marit. Policy Manag. 2021, 48, 777–794. [Google Scholar] [CrossRef]
- Lee, E.S. Improving a Firm’s Performance within a Strategic Shipping Alliance. Asian J. Shipp. Logist. 2019, 35, 213–219. [Google Scholar] [CrossRef]
- Raza, Z. Effects of regulation-driven green innovations on short sea shipping’s environmental and economic performance. Transp. Res. Part D Transp. Environ. 2020, 84, 102340. [Google Scholar] [CrossRef]
- Jimenez, V.J.; Kim, H.; Munim, Z.H. A review of ship energy efficiency research and directions towards emission reduction in the maritime industry. J. Clean. Prod. 2022, 366, 132888. [Google Scholar] [CrossRef]
- Moshiul, A.M.; Mohammad, R.; Hira, F.A.; Maarop, N. Alternative Marine Fuel Research Advances and Future Trends: A Bibliometric Knowledge Mapping Approach. Sustainability 2022, 14, 4947. [Google Scholar] [CrossRef]
- Moshiul, A.M.; Mohammad, R.; Anjum, H.F.; Yesmin, A.; Chelliapan, S. The Evolution of Green Shipping Practices Adoption in the International Maritime Industry. Tem J. Technol. Educ. Manag. Inform. 2021, 10, 1112–1121. [Google Scholar] [CrossRef]
- Kolakowski, P.; Gil, M.; Wrobel, K.; Ho, Y.S. State of play in technology and legal framework of alternative marine fuels and renewable energy systems: A bibliometric analysis. Marit. Policy Manag. 2022, 49, 236–260. [Google Scholar] [CrossRef]
- Kolakowski, P.; Ampah, J.D.; Wrobel, K.; Yusuf, A.A.; Gil, M.; Afrane, S.; Jin, C.; Liu, H. Alternative fuels in shipping: Discussion on the findings of two recently published, independent bibliometric studies. J. Clean. Prod. 2022, 338, 130651. [Google Scholar] [CrossRef]
- Wiśnicki, B.; Wagner, N.; Wołejsza, P. Critical areas for successful adoption of technological innovations in sea shipping—the autonomous ship case study. Innov. Eur. J. Soc. Sci. Res. 2021, 1–27. [Google Scholar] [CrossRef]
- Chlomoudis, C.; Styliadis, T. Innovation and Patenting within Containerized Liner Shipping. Sustainability 2022, 14, 892. [Google Scholar] [CrossRef]
- Sheng, Y.; Gao, S.-F. Shipbuilding Industry’ Technology Innovation Capabilities from the Perspective of Patent Portfolio: Comparison of China, Japan and South Korea. DEStech Trans. Soc. Sci. Educ. Hum. Sci. 2019. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, A.J.M.; Popkov, E.; Koptjaev, E. Evolution and Development Prospects of Electric Propulsion Systems of Large Sea Ships. In Proceedings of the 2020 International Ural Conference on Electrical Power Engineering (UralCon), Chelyabinsk, Russia, 22–24 September 2020. [Google Scholar]
- Zhao, R.; Li, D.; Li, X. Research on the Development Trend of Ship Integrated Power System Based on Patent Analysis; Smart Trends in Computing and Communications; Springer: Singapore, 2020. [Google Scholar]
- Ampah, J.D.; Jin, C.; Fattah, I.M.R.; Appiah-Otoo, I.; Afrane, S.; Geng, Z.; Yusuf, A.A.; Li, T.; Mahlia, I.T.M. Investigating the evolutionary trends and key enablers of hydrogen production technologies: A patent-life cycle and econometric analysis. Int. J. Hydrog. Energy 2022. [Google Scholar] [CrossRef]
- Toshon, T.A.; Faruque, M.O. Multiobjective Optimization Based Framework for Early Stage Design of Modular Multilevel Converter for All-Electric Ship Application. Energies 2022, 15, 4418. [Google Scholar] [CrossRef]
- Horvath, S.; Fasihi, M.; Breyer, C. Techno-economic analysis of a decarbonized shipping sector: Technology suggestions for a fleet in 2030 and 2040. Energy Convers. Manag. 2018, 164, 230–241. [Google Scholar] [CrossRef]
- Burel, F.; Taccani, R.; Zuliani, N. Improving sustainability of maritime transport through utilization of Liquefied Natural Gas (LNG) for propulsion. Energy 2013, 57, 412–420. [Google Scholar] [CrossRef]
- Mohammad, N.; Ishak, W.W.M.; Mustapa, S.I.; Ayodele, B.V. Natural Gas as a Key Alternative Energy Source in Sustainable Renewable Energy Transition: A Mini Review. Front. Energy Res. 2021, 9, 625023. [Google Scholar] [CrossRef]
- Li, D.; Li, X. Which ship-integrated power system enterprises are more competitive from the perspective of patent? PLoS ONE 2021, 16, e0252020. [Google Scholar] [CrossRef]
- Cheng, P.; Liang, N.; Li, R.; Lan, H.; Cheng, Q. Analysis of Influence of Ship Roll on Ship Power System with Renewable Energy. Energies 2020, 13, 1. [Google Scholar] [CrossRef] [Green Version]
- Ampah, J.D.; Liu, X.; Sun, X.; Pan, X.; Xu, L.; Jin, C.; Sun, T.; Geng, Z.; Afrane, S.; Liu, H. Study on characteristics of marine heavy fuel oil and low carbon alcohol blended fuels at different temperatures. Fuel 2022, 310, 122307. [Google Scholar] [CrossRef]
- Jin, C.; Sun, T.; Ampah, J.D.; Liu, X.; Geng, Z.; Afrane, S.; Yusuf, A.A.; Liu, H. Comparative study on synthetic and biological surfactants’ role in phase behavior and fuel properties of marine heavy fuel oil-low carbon alcohol blends under different temperatures. Renew. Energy 2022, 195, 841–852. [Google Scholar] [CrossRef]
- Vieira, G.T.T.; Pereira, D.F.; Taheri, S.I.; Khan, K.S.; Salles, M.B.; Guerrero, J.M.; Carmo, B.S. Optimized Configuration of Diesel Engine-Fuel Cell-Battery Hybrid Power Systems in a Platform Supply Vessel to Reduce CO2 Emissions. Energies 2022, 15, 2184. [Google Scholar] [CrossRef]
- IPC Publication. Available online: https://ipcpub.wipo.int (accessed on 9 February 2022).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, M.; Jia, Y.; Wei, J.; Zhu, J.X. Exploring the Green-Oriented Transition Process of Ship Power Systems: A Patent-Based Overview on Innovation Trends and Patterns. Energies 2023, 16, 2566. https://doi.org/10.3390/en16062566
Sun M, Jia Y, Wei J, Zhu JX. Exploring the Green-Oriented Transition Process of Ship Power Systems: A Patent-Based Overview on Innovation Trends and Patterns. Energies. 2023; 16(6):2566. https://doi.org/10.3390/en16062566
Chicago/Turabian StyleSun, Minghan, Yiwei Jia, Jian Wei, and Jewel X. Zhu. 2023. "Exploring the Green-Oriented Transition Process of Ship Power Systems: A Patent-Based Overview on Innovation Trends and Patterns" Energies 16, no. 6: 2566. https://doi.org/10.3390/en16062566
APA StyleSun, M., Jia, Y., Wei, J., & Zhu, J. X. (2023). Exploring the Green-Oriented Transition Process of Ship Power Systems: A Patent-Based Overview on Innovation Trends and Patterns. Energies, 16(6), 2566. https://doi.org/10.3390/en16062566