Analysis of Improved In-Cylinder Combustion Characteristics with Chamber Modifications of the Diesel Engine
Abstract
:1. Introduction
2. Methodology
2.1. Geometry Preparation and Meshing
2.2. Simulation Setup and Post-Processing
2.3. Grid Sensitivity Analysis
2.4. Model Validation
2.5. Chamber Geometry Modification
3. Results and Discussions
3.1. Effect of Chamber Modifications on Compression Behaviour
3.2. Effect of Chamber Modifications on Fuel Particle Distribution
3.3. Effect of Chamber Modifications on In-Cylinder Temperature Distribution
3.4. Effect of Chamber Modifications on the In-Cylinder Velocity Distribution
3.5. Effect of Chamber Modifications on the Heat Release Rate
3.6. Swirl Ratio and Tumble Ratio
4. Conclusions and Recommendations
- The results show that the combustion distribution pattern is quite different among the piston bowl geometries. From the examined velocity profiles, the bowl depth and length affect the spatial distribution of fluid motions inside the cylinder, which causes high-turbulence motions around the chamber.
- The DSCC (swirl chamber) showed better combustion performance than the other chambers considering the better temperature and velocity distribution, as well as the high swirl ratio and low HRR.
- The SCC showed better combustion rates, velocity distribution, and HRR compared with the FCC and others, whereas the DTRCC showed poor temperature formation and rapid velocity distribution, which can lead to knocking.
- A high swirl ratio was observed during the suction stroke, and a high tumble ratio was observed during the combustion stroke, which increased the turbulence rates of the piston bowl geometries.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
AHRR | Apparent heat release rate |
BDC | Bottom dead centre |
BTCC | Bathtub combustion chamber |
CFD | Computational fluid dynamics |
DSCC | Double swirl combustion chamber |
DTRCC | Double toroidal re-entrant combustion chamber |
FCC | Flat combustion chamber |
HCC | Hemispherical combustion chamber |
SCC | Shallow depth combustion chamber |
SBCC | Stepped bowl combustion chamber |
TDC | Top dead centre |
TKE | Turbulent kinetic energy |
TRCC | Toroidal re-entrant combustion chamber |
LSCC | Lateral swirl combustion chamber |
LTC | Low-temperature combustion |
References
- Kanda, T.; Hakozaki, T.; Uchimoto, T.; Hatano, J.; Kitayama, N.; Sono, H. PCCI Operation with Early Injection of Conventional Diesel Fuel. SAE Trans. 2005, 114, 584–593. [Google Scholar]
- Praveena, V.; Martin, M.L.J.; Varuvel, E.G. Combined effects of nozzle hole variation and piston bowl geometry modification on performance characteristics of a diesel engine with energy and exergy approach. J. Clean. Prod. 2022, 375, 133946. [Google Scholar] [CrossRef]
- Ashok, B.; Nanthagopal, K.; Saravanan, B.; Azad, K.; Patel, D.; Sudarshan, B.; Ramasamy, R.A. Study on isobutanol and Calophyllum inophyllum biodiesel as a partial replacement in CI engine applications. Fuel 2019, 235, 984–994. [Google Scholar] [CrossRef]
- Azad, A.K.; Adhikari, J.; Halder, P.; Rasul, M.G.; Hassan, N.M.S.; Khan, M.M.K.; Naqvi, S.R.; Viswanathan, K. Performance, Emission and Combustion Characteristics of a Diesel Engine Powered by Macadamia and Grapeseed Biodiesels. Energies 2020, 13, 2748. [Google Scholar] [CrossRef]
- Piano, A.; Roggio, S.; Millo, F.; García, A.; Micó, C.; Lewiski, F.; Pesce, F.; Vassallo, A.; Bianco, A. Numerical and optical soot characterisation through 2-color pyrometry technique for an innovative diesel piston bowl design. Fuel 2023, 333, 126347. [Google Scholar] [CrossRef]
- Soni, D.K.; Gupta, R. Numerical analysis of flow dynamics for two piston bowl designs at different spray angles. J. Clean. Prod. 2017, 149, 723–734. [Google Scholar] [CrossRef]
- Gafoor, C.A.; Gupta, R. Numerical investigation of piston bowl geometry and swirl ratio on emission from diesel engines. Energy Convers. Manag. 2015, 101, 541–551. [Google Scholar] [CrossRef]
- Lawrence, K.R.; Huang, Z.; Nguyen, X.P.; Balasubramanian, D.; Gangula, V.R.; Doddipalli, R.R.; Le, V.V.; Bharathy, S.; Hoang, A.T. Exploration over combined impacts of modified piston bowl geometry and tert-butyl hydroquinone additive-included biodiesel/diesel blend on diesel engine behaviors. Fuel 2022, 322, 124206. [Google Scholar] [CrossRef]
- Azad, A.K.; Rasul, M.; Khan, M.; Sharma, S.; Hazrat, M. Prospect of biofuels as an alternative transport fuel in Australia. Renew. Sustain. Energy Rev. 2015, 43, 331–351. [Google Scholar] [CrossRef]
- Bhuiya, M.M.K.; Rasul, M.; Khan, M.; Ashwath, N.; Azad, A. Prospects of 2nd generation biodiesel as a sustainable fuel—Part: 1 selection of feedstocks, oil extraction techniques and conversion technologies. Renew. Sustain. Energy Rev. 2016, 55, 1109–1128. [Google Scholar] [CrossRef]
- Bhuiya, M.M.K.; Rasul, M.; Khan, M.; Ashwath, N.; Azad, A.; Hazrat, M. Prospects of 2nd generation biodiesel as a sustainable fuel—Part 2: Properties, performance and emission characteristics. Renew. Sustain. Energy Rev. 2016, 55, 1129–1146. [Google Scholar] [CrossRef]
- Mofijur, M.; Rasul, M.G.; Hyde, J.; Azad, A.K.; Mamat, R.; Bhuiya, M.M.K. Role of biofuel and their binary (diesel–biodiesel) and ternary (ethanol–biodiesel–diesel) blends on internal combustion engines emission reduction. Renew. Sustain. Energy Rev. 2016, 53, 265–278. [Google Scholar] [CrossRef] [Green Version]
- Azad, A.; Rasul, M.; Khan, M.; Sharma, S.C.; Islam, R. Prospect of Moringa Seed Oil as a Sustainable Biodiesel Fuel in Australia: A Review. Procedia Eng. 2015, 105, 601–606. [Google Scholar] [CrossRef] [Green Version]
- Azad, A.; Rasul, M.; Khan, M.; Sharma, S.C.; Mofijur, M.; Bhuiya, M. Prospects, feedstocks and challenges of biodiesel production from beauty leaf oil and castor oil: A nonedible oil sources in Australia. Renew. Sustain. Energy Rev. 2016, 61, 302–318. [Google Scholar] [CrossRef]
- Bhuiya, M.; Rasul, M.; Khan, M.; Ashwath, N.; Azad, A.; Hazrat, M. Second Generation Biodiesel: Potential Alternative to-edible Oil-derived Biodiesel. Energy Procedia 2014, 61, 1969–1972. [Google Scholar] [CrossRef] [Green Version]
- Halder, P.; Azad, K.; Shah, S.; Sarker, E. 8—Prospects and technological advancement of cellulosic bioethanol ecofuel production. In Advances in Eco-Fuels for a Sustainable Environment; Azad, K., Ed.; Woodhead Publishing: Cambridge, UK, 2019; pp. 211–236. [Google Scholar]
- Uddin, S.A.; Azad, A.; Alam, M.; Ahamed, J. Performance of a Diesel Engine Run with Mustard-Kerosene Blends. Procedia Eng. 2015, 105, 698–704. [Google Scholar] [CrossRef] [Green Version]
- Jaichandar, S.; Annamalai, K. Effects of open combustion chamber geometries on the performance of pongamia biodiesel in a DI diesel engine. Fuel 2012, 98, 272–279. [Google Scholar] [CrossRef]
- Jaichandar, S.; Annamalai, K. Influences of re-entrant combustion chamber geometry on the performance of Pongamia biodiesel in a DI diesel engine. Energy 2012, 44, 633–640. [Google Scholar] [CrossRef]
- Jaichandar, S.; Kumar, P.S.; Annamalai, K. Combined effect of injection timing and combustion chamber geometry on the performance of a biodiesel fueled diesel engine. Energy 2012, 47, 388–394. [Google Scholar] [CrossRef]
- Channappagoudra, M.; Ramesh, K.; Manavendra, G. Comparative study of standard engine and modified engine with different piston bowl geometries operated with B20 fuel blend. Renew. Energy 2019, 133, 216–232. [Google Scholar] [CrossRef]
- Pastor, J.V.; García, A.; Micó, C.; Lewiski, F.; Vassallo, A.; Pesce, F. Effect of a novel piston geometry on the combustion process of a light-duty compression ignition engine: An optical analysis. Energy 2021, 221, 119764. [Google Scholar] [CrossRef]
- Li, X.; Zhou, H.; Zhao, L.M.; Su, L.; Xu, H.; Liu, F. Effect of split injections coupled with swirl on combustion performance in DI diesel engines. Energy Convers. Manag. 2016, 129, 180–188. [Google Scholar] [CrossRef]
- Li, X.; Chen, Y.; Su, L.; Liu, F. Effects of lateral swirl combustion chamber geometries on the combustion and emission characteristics of DI diesel engines and a matching method for the combustion chamber geometry. Fuel 2018, 224, 644–660. [Google Scholar] [CrossRef]
- Cao, L.; Bhave, A.; Su, H.; Mosbach, S.; Kraft, M.; Dris, A.; McDavid, R.M. Influence of Injection Timing and Piston Bowl Geometry on PCCI Combustion and Emissions. SAE Int. J. Engines 2009, 2, 1019–1033. [Google Scholar] [CrossRef]
- Xu, L.; Bai, X.-S.; Li, Y.; Treacy, M.; Li, C.; Tunestål, P.; Tunér, M.; Lu, X. Effect of piston bowl geometry and compression ratio on in-cylinder combustion and engine performance in a gasoline direct-injection compression ignition engine under different injection conditions. Appl. Energy 2020, 280, 115920. [Google Scholar] [CrossRef]
- Lee, S.; Park, S. Optimization of the piston bowl geometry and the operating conditions of a gasoline-diesel dual-fuel engine based on a compression ignition engine. Energy 2017, 121, 433–448. [Google Scholar] [CrossRef]
- Shen, Z.; Wang, X.; Zhao, H.; Lin, B.; Shen, Y.; Yang, J. Numerical investigation of natural gas-diesel dual-fuel engine with different piston geometries and radial clearances. Energy 2021, 220, 119706. [Google Scholar] [CrossRef]
- Han, S.; Kim, J.; Bae, C. Effect of air–fuel mixing quality on characteristics of conventional and low temperature diesel combustion. Appl. Energy 2014, 119, 454–466. [Google Scholar] [CrossRef]
- Hao, C.; Zhang, Z.; Wang, Z.; Bai, H.; Li, Y.; Li, Y.; Lu, Z. Investigation of spray angle and combustion chamber geometry to improve combustion performance at full load on a heavy-duty diesel engine using genetic algorithm. Energy Convers. Manag. 2022, 267, 115862. [Google Scholar] [CrossRef]
- Saito, T.; Daisho, Y.; Uchida, N.; Ikeya, N. Effects of Combustion Chamber Geometry on Diesel Combustion. SAE Trans. 1986, 95, 793–803. [Google Scholar]
- Varun; Singh, P.; Tiwari, S.K.; Singh, R.; Kumar, N. Modification in combustion chamber geometry of CI engines for suitability of biodiesel: A review. Renew. Sustain. Energy Rev. 2017, 79, 1016–1033. [Google Scholar] [CrossRef]
- Venu, H.; Raju, V.D.; Subramani, L. Combined effect of influence of nano additives, combustion chamber geometry and injection timing in a DI diesel engine fuelled with ternary (diesel-biodiesel-ethanol) blends. Energy 2019, 174, 386–406. [Google Scholar] [CrossRef]
- Krishnaraj, J.; Vasanthakumar, P.; Hariharan, J.; Vinoth, T.; Karthikayan, S. Combustion Simulation and Emission Prediction of Different Combustion Chamber Geometries Using Finite Element Method. Mater. Today Proc. 2017, 4, 7903–7910. [Google Scholar] [CrossRef]
- Bapu, B.R.; Saravanakumar, L.; Prasad, B.D. Effects of combustion chamber geometry on combustion characteristics of a DI diesel engine fueled with calophyllum inophyllum methyl ester. J. Energy Inst. 2017, 90, 82–100. [Google Scholar] [CrossRef]
- Hazrat, M.A.; Rasul, M.G.; Mofijur, M.; Khan, M.M.K.; Djavanroodi, F.; Azad, A.K.; Bhuiya, M.M.K.; Silitonga, A. A Mini Review on the Cold Flow Properties of Biodiesel and its Blends. Front. Energy Res. 2020, 8, 598651. [Google Scholar] [CrossRef]
- Azad, A.K.; Rasul, M.G.; Khan, M.M.K.; Sharma, S.C.; Bhuiya, M.M.K. Recent development of biodiesel combustion strategies and modelling for compression ignition engines. Renew. Sustain. Energy Rev. 2016, 56, 1068–1086. [Google Scholar] [CrossRef]
- Varol, Y.; Oztop, H.F.; Firat, M.; Koca, A. CFD modeling of heat transfer and fluid flow inside a pent-roof type combustion chamber using dynamic model. Int. Commun. Heat Mass Transf. 2010, 37, 1366–1375. [Google Scholar] [CrossRef]
- Han, Z.; Reitz, R.D. Turbulence modeling of internal combustion engines using RNG κ-ε models. Combust. Sci. Technol. 1995, 106, 267–295. [Google Scholar] [CrossRef]
- Duan, X.; Zhang, S.; Liu, Y.; Li, Y.; Liu, J.; Lai, M.-C.; Deng, B. Numerical investigation the effects of the twin-spark plugs coupled with EGR on the combustion process and emissions characteristics in a lean burn natural gas SI engine. Energy 2020, 206, 118181. [Google Scholar] [CrossRef]
- Li, J.; Yang, W.; An, H.; Maghbouli, A.; Chou, S. Effects of piston bowl geometry on combustion and emission characteristics of biodiesel fueled diesel engines. Fuel 2014, 120, 66–73. [Google Scholar] [CrossRef]
- Banaeizadeh, A.; Afshari, A.; Schock, H.; Jaberi, F. Large-eddy simulations of turbulent flows in internal combustion engines. Int. J. Heat Mass Transf. 2013, 60, 781–796. [Google Scholar] [CrossRef]
- Yadav, J.; Venkatesh, P.; Pischinger, S. Application of micro-genetic algorithms to optimise piston bowl geometries for heavy-duty engines running on diesel and 1-Octanol fuels. Appl. Therm. Eng. 2023, 226, 120236. [Google Scholar] [CrossRef]
- Doppalapudi, A.; Azad, A.; Khan, M. Advanced strategies to reduce harmful nitrogen-oxide emissions from biodiesel fueled engine. Renew. Sustain. Energy Rev. 2023, 174, 113123. [Google Scholar] [CrossRef]
- Doppalapudi, A.; Azad, A.; Khan, M. Combustion chamber modifications to improve diesel engine performance and reduce emissions: A review. Renew. Sustain. Energy Rev. 2021, 152, 111683. [Google Scholar] [CrossRef]
- Lee, K.; Bae, C.; Kang, K. The effects of tumble and swirl flows on flame propagation in a four-valve S.I. engine. Appl. Therm. Eng. 2007, 27, 2122–2130. [Google Scholar] [CrossRef]
Make | Kubota V3300 |
---|---|
Engine type | Vertical, 4-cycle liquid cooled diesel |
Total displacement | 3.318 (litres) |
Fuel | Diesel surrogate (n-heptane) |
Bore | 98 mm |
Stroke | 110 mm |
Compression ratio | 22.6:1 |
Speed | 1500 rpm |
Fuel | Diesel |
Cooling system | Water-cooled |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Doppalapudi, A.T.; Azad, A.K.; Khan, M.M.K. Analysis of Improved In-Cylinder Combustion Characteristics with Chamber Modifications of the Diesel Engine. Energies 2023, 16, 2586. https://doi.org/10.3390/en16062586
Doppalapudi AT, Azad AK, Khan MMK. Analysis of Improved In-Cylinder Combustion Characteristics with Chamber Modifications of the Diesel Engine. Energies. 2023; 16(6):2586. https://doi.org/10.3390/en16062586
Chicago/Turabian StyleDoppalapudi, Arun Teja, Abul Kalam Azad, and Mohammad Masud Kamal Khan. 2023. "Analysis of Improved In-Cylinder Combustion Characteristics with Chamber Modifications of the Diesel Engine" Energies 16, no. 6: 2586. https://doi.org/10.3390/en16062586
APA StyleDoppalapudi, A. T., Azad, A. K., & Khan, M. M. K. (2023). Analysis of Improved In-Cylinder Combustion Characteristics with Chamber Modifications of the Diesel Engine. Energies, 16(6), 2586. https://doi.org/10.3390/en16062586