Linear Model of a Turboshaft Aero-Engine Including Components Degradation for Control-Oriented Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Engine Thermodynamic Model and Test Conditions
- The design point, whose main parameters are reported in Table 2, was assumed to be sea-level static (SLS) and at international standard atmospheric (ISA) conditions (temperature = 288.25 K, pressure = 1.013 bar, altitude = 0 m, Mach = 0);
- The default compressor and turbine maps were scaled according to a set of input parameters taken from the database of the reference engine, i.e., intake pressure ratio, design rotor speed, design shaft speed;
- An iteration was run in the GSP by adjusting the design air and fuel flow rates injected into the combustion chamber, in order to obtain the desired power output and SFC. The iteration allowed for an accuracy of 1% in the prediction of take-off power with respect to the design take-off power of the reference engine;
- Using block 1, which allowed for manual case control, the off-design engine variables when changing the operating conditions (desired power, Mach number, altitude) were obtained.
2.2. Linear Model
2.2.1. Perturbation Method
2.2.2. System Identification
- Attaining input/output data of the dynamic system;
- Selecting a suitable linear model structure from among discrete/continuous transfer functions or state-space forms;
- Fitting a suitable linear model to data and considered model structure;
- Verifying whether the model is good enough to represent the system.
3. Results and Discussion
3.1. Linearized Turboshaft Model with Perturbation Method
3.2. Linearized Turboshaft Model with System Identification (SI)
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Élimination des Émissions Nettes de Carbone d’ici 2050 IATA COMMUNIQUÉ No: 66. Available online: https://www.iata.org/contentassets/dcd25da635cd4c3697b5d0d8ae32e159/2021-10-04-03-fr.pdf (accessed on 1 December 2022).
- Flamm, J.; James, K.; Bonet, J. Overview Of ERA Integrated Technology Demonstration (ITD) 51A Ultra-High Bypass (UHB) Integration for Hybrid Wing Body (HWB). In Proceedings of the 54th AIAA Aerospace Sciences Meeting, San Diego, CA, USA, 4–8 January 2016. [Google Scholar]
- Donateo, T.; De Pascalis, C.L.; Strafella, L.; Ficarella, A. Off-line and On-line Optimization of the Energy Management Strategy in a Hybrid Electric Helicopter for Urban Air-Mobility. Aerosp. Sci. Technol. 2021, 113, 106677. [Google Scholar] [CrossRef]
- Dinc, A. NOx Emissions of Turbofan Powered Unmanned Aerial Vehicle for Complete Flight Cycle. Chin. J. Aeronaut. 2020, 33, 1683–1691. [Google Scholar] [CrossRef]
- Cabrera, E.; de Sousa, J.M.M. Use of Sustainable Fuels in Aviation—A Review. Energies 2022, 15, 2440. [Google Scholar] [CrossRef]
- Montazeri-Gh, M.; Rasti, A.; Jafari, A.; Ehteshami, M. Ehteshami, Design and Implementation of MPC for Turbofan Engine Control System. Aerosp. Sci. Technol. 2019, 92, 99–113. [Google Scholar] [CrossRef]
- Wei, Z.; Jafari, S.; Zhang, S.; Nikolaidis, T. Hybrid Wiener model: An On-board Approach Using Post-Flight Data for Gas Turbine Aero-Engines Modelling. Appl. Therm. Eng. 2021, 184, 116350. [Google Scholar] [CrossRef]
- Sun, X.; Jafari, S.; Fashandi, S.A.M.; Nikolaidis, T. Compressor Degradation Management Strategies for Gas Turbine Aero-Engine Controller Design. Energies 2021, 14, 5711. [Google Scholar] [CrossRef]
- Imani, A.; Montazeri-Gh, M. Improvement of Min–Max Limit Protection in Aircraft Engine Control: An LMI approach. Aerosp. Sci. Technol. 2017, 68, 214–222. [Google Scholar] [CrossRef]
- Mohammadi, E.; Montazeri-Gh, M. Active Fault Tolerant Control with Self-Enrichment Capability for Gas Turbine Engines. Aerosp. Sci. Technol. 2016, 56, 70–89. [Google Scholar] [CrossRef]
- Chen, Y.; Guo, Y.; Li, R. State Feedback Control for Partially Distributed Turboshaft Engine with Time Delay and Packet Dropouts. In Proceedings of the 37th Chinese Control Conference, Wuhan, China, 25–27 July 2018; pp. 25–27. [Google Scholar]
- Mattingly, J.; Jaw, L. Aircraft Engine Controls: Design, System Analysis, and Health Monitoring, 1st ed.; AIAA: Reston, VA, USA, 2009. [Google Scholar]
- Connolly, J.W.; Csanky, J.; Chicatelliz, A. Advanced Control Considerations for Turbofan Engine Design. In Proceedings of the 52nd AIAA/SAE/ASEE Joint Propulsion Conference, Salt Lake City, UT, USA, 25–27 July 2016; pp. 1–18. [Google Scholar]
- Lu, F.; Qian, J.N.; Huang, J.; Qiu, X. In-flight Adaptive Modeling using Polynomial LPV Approach for Turbofan Engine Dynamic Behavior. Aerosp. Sci. Technol. 2017, 64, 223–236. [Google Scholar] [CrossRef]
- Castiglione, T.; Morrone, P.; Perrone, D.; Bova, S. Application of a model-based controller for improving internal combustion engines fuel economy. Energies 2020, 13, 1148. [Google Scholar] [CrossRef] [Green Version]
- DeCastro, J. Rate-based Model Predictive Control of Turbofan Engine Clearance. J. Propuls. Power 2007, 23, 804–813. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Q.; Xu, Z.; Zhang, H.; Zhu, Z. A Turboshaft Engine NMPC Scheme for Helicopter Autorotation Recovery Maneuver. Aerosp. Sci. Technol. 2018, 76, 421–432. [Google Scholar] [CrossRef]
- Peng, K.; Fan, D.; Yang, F.; Fu, Q.; Li, Y. Active Generalized Predictive Control of Turbine Tip Clearance for Aero-Engines. Chin. J. Aeronaut. 2013, 26, 1147–1155. [Google Scholar] [CrossRef] [Green Version]
- Pang, S.; Li, Q.; Ni, B. Improved Nonlinear MPC for Aircraft Gas Turbine Engine Based on Semi-Alternative Optimization Strategy. Aerosp. Sci. Technol. 2021, 118, 106983. [Google Scholar] [CrossRef]
- Yin, K.; Zhou, W.X.; Qiao, K.; Wang, H.J. Research on Methods of Improving Real-time Performance for Aero-engine Component-level Model. J. Propuls. Technol. 2017, 38, 199–206. [Google Scholar]
- Junior, H.G.; Bringhenti, C.; Barbosa, J.R.; Tomita, J.T. Real-time Gas Turbine Model for Performance Simulations. J. Aerosp. Technol. Manag. 2017, 9, 346–356. [Google Scholar] [CrossRef]
- Lu, J.; Guo, Y.Q.; Zhang, S.G. Research on the Iteration Methods in Aero-Engine Non-Linear Model Real-Time Computation. J. Aerosp. Power 2010, 25, 681–686. [Google Scholar]
- Khorasani, K.; Kiakojoori, S. Dynamic Neural Networks for Gas Turbine Engine Degradation Prediction, Health Monitoring and Prognosis. Neural Comput. Appl. 2016, 27, 2157–2192. [Google Scholar] [CrossRef]
- De Giorgi, M.G.; Quarta, M. Hybrid MultiGene Genetic Programming—Artificial Neural Networks Approach for Dynamic Performance Prediction of an Aeroengine. Aerosp. Sci. Technol. 2020, 103, 105902. [Google Scholar] [CrossRef]
- Asgari, H.; Chen, X.; Morini, M.; Pinelli, M.; Sainudiin, R.; Spina, P.; Venturini, M. NARX Models for Simulation of the Start-Up Operation of a Single-Shaft Gas Turbine. Appl. Therm. Eng. 2016, 93, 368–376. [Google Scholar] [CrossRef]
- Zheng, Q.; Pang, S.; Zhang, H.; Hu, Z. A study on Aero-Engine Direct Thrust Control with Nonlinear Model Predictive Control Based on Deep Neural Network. Int. J. Aeronaut. Space Sci. 2019, 20, 933–939. [Google Scholar] [CrossRef]
- Du, X.; Sun, X.-M.; Wang, Z.-M.; Dai, A.-N. A Scheduling Scheme of Linear Model Predictive Controllers for Turbofan Engines. IEEE Access 2017, 5, 24533–24541. [Google Scholar] [CrossRef]
- Du, X.; Guo, Y.Q.; Chen, X.L. Multivariable Constrained Predictive Control and its Application to a Commercial Turbofan Engine. Adv. Mater. Res. 2014, 99, 281–287. [Google Scholar] [CrossRef]
- Saluru, D.; Yedavalli, R.; Belapurkar, R. Active Fault Tolerant Model Predictive Control of a Turbofan Engine Using C-MAPPS40k. In Proceedings of the Asme 5th Annual Dynamic Systems and Control Division Conference and JSME 11th Motion and Vibration Conference, Fort Lauderdale, FL, USA, 17–19 October 2012; pp. 349–358. [Google Scholar] [CrossRef] [Green Version]
- Sugiyama, N. Derivation of System Matrices From Nonlinear Dynamic Simulation of Jet Engines. J. Guid. Control. Dyn. 1994, 17, 1320–1326. [Google Scholar] [CrossRef]
- Chung, G.; Prasad, J.; Dhingra, M.; Meisner, R. Real Time Analytical Linearization of Turbofan Engine Model. ASME J. Eng. Gas Turbines Power 2014, 136, 011201. [Google Scholar] [CrossRef]
- Kulikov, G.; Thompson, H. Dynamic Modelling of Gas Turbines: Identification, Simulation, Condition Monitoring and Optimal Control; Springer: London, UK, 2004. [Google Scholar]
- Armstrong, J.; Simon, D. Constructing an Efficient Self-Tuning Aircraft Engine Model for Control and Health Management Applications; Report No.: NASA/TM- 2012-217806; Glenn Research Center, National Aeronautics and Space Administration: Cleveland, OH, USA, 2012.
- Montazeri-Gh, M.; Rasti, A. Analyzing Different Numerical Linearization Methods for the Dynamic Model of a Turbofan Engine. Mech. Ind. 2019, 20, 303. [Google Scholar] [CrossRef]
- Luppold, R.; Roman, J.; Gallops, G.; Kerr, L. Estimating In-Flight Engine Performance Variations Using Kalman Filter Concepts. In Proceedings of the AIAA/ASME/SAE/ASEE 25th Joint Propulsion Conference, Monterey, CA, USA, 10–12 July 1989; p. 2584. [Google Scholar]
- Simon, D.; Garg, S. Optimal Tuner Selection For Kalman Filter-Based Aircraft Engine Performance Estimation. J. Eng. Gas Turbines Power 2009, 132, 031601. [Google Scholar] [CrossRef] [Green Version]
- Csank, J.; Connolly, J. Model-Based Engine Control Architecture with An Extended Kalman Filter. In Proceedings of the AIAA Guidance, Navigation, and Control Conference, San Diego, CA, USA, 4–8 January 2016. [Google Scholar]
- Nayfeh, A. Perturbation Methods; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2004. [Google Scholar]
- Holmes, M. Introduction to Perturbation Methods, 2nd ed.; Springer Science+Business Media: New York, NY, USA, 2013. [Google Scholar]
- Tavakolpour-Saleh, A.; Nasib, S.; Sepasyan, A.; Hashemi, S. Parametric and Nonparametric System Identification of an Experimental Turbojet Engine. Aerosp. Sci. Technol. 2015, 43, 21–29. [Google Scholar] [CrossRef]
- Ljung, L. System Identification—Theory for the User, 2nd ed.; Printice Hall: Hoboken, NJ, USA, 1999. [Google Scholar]
- Keesman, K.J. System Identification—An Introduction; Springer: London, UK, 2011. [Google Scholar]
- GSP 11 User Manual National Aerospace Laboratory NLR 2016. Available online: https://www.gspteam.com/Files/manuals/UM/GSP_UM_11.pdf (accessed on 1 July 2021).
- Janikovic, J. Gas Turbine Transient Performance Modeling for Engine Flight Path Cycle Analysis. Ph.D. Thesis, Cranfield University, Bedford, UK, 2010. [Google Scholar]
- Sogut, M.Z.; Yalcin, E.; Karakoc, T.H. Assessment of degradation effects for an aircraft engine considering exergy analysis. Energy 2017, 140, 141–1426. [Google Scholar] [CrossRef]
- Kurz, R.; Brun, K. Degradation in Gas Turbine Systems. ASME J. Eng. Gas Turbines Power 2001, 123, 70–77. [Google Scholar] [CrossRef] [Green Version]
- Zhao, N.-B.; Yang, J.-L.; Li, S.-Y.; Sun, Y.-W. A GM (1, 1) Markov Chain-Based Aeroengine Performance Degradation Forecast Approach Using Exhaust Gas Temperature. Math. Probl. Eng. 2014, 2014, 832851. [Google Scholar] [CrossRef] [Green Version]
- DeCastro, J.; Litt, J.; Frederick, D. A Modular Aero-Propulsion System Simulation Of A Large Commercial Aircraft Engine. In Proceedings of the 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Hartford, CT, USA, 21–23 July 2008. [Google Scholar]
- Matlab Users Guide; University of New Mexico: Albuquerque, NM, USA, 1982.
- Igie, U.; Goiricelaya, M.; Nalianda, D.; Minervino, O. Aero engine compressor fouling effects for short- and long-haul missions. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2016, 230, 1312–1324. [Google Scholar] [CrossRef] [Green Version]
Description | Value |
---|---|
Power | 200–400 [kW] |
Weight | 110 [kg] |
Pressure ratio | 8:1 |
Turbine Inlet temperature | 1173.5 [K] |
SFC (Specific Fuel Consumption) | 0.426–0.33 [kg/kWh] |
Compressor Configuration | 1 centrifugal |
Turbine configuration | HPT, LPT |
Description | Value |
---|---|
Power (POW) | 295 [kW] |
Intake Pressure Ratio (PR) | 0.988 |
Air Flow Rate (Wa) | 2 [kg/s] |
Compressor pressure ratio (βc) | 7.17 |
Combustion Efficiency (ηb) | 0.985 |
Fuel Flow Rate (Wf) | 0.0315 [kg/s] |
Compressor Rotor Speed (N) | 40,891 [rpm] |
Compressor Efficiency (ηc) | 0.825 |
LPT Rotor Speed (NLP) | 6000 [rpm] |
Turbine Efficiency (ηt) | 0.88 |
Spool Mechanical Efficiency (ηm) | 0.99 |
Mach, Altitude | 0, 0 |
Description | Speed [m/s] | Altitude [m] | Power [KW] | Low-Pressure Turbine Speed [rpm] |
---|---|---|---|---|
START-A | 30.6 | 0 | 48 | 6000 |
START-B | 0 | 1150 | 173 | 6000 |
MAXPOW-A | 30.6 | 0 | 291 | 6000 |
MAXPOW-B | 3.96 | 1154 | 273 | 6000 |
MAXDUR-A | 30.6 | 492 | 169 | 6000 |
MAXDUR-B | 0 | 2550 | 176 | 6000 |
State Variables, x | Output Variables, y | Input Variables, u |
---|---|---|
HP shaft speed, NHP [rpm] | HPC exit total pressure, PT3 [bar] | Fuel flow, Wf [kg/s] |
HPT exit total temperature, TT45 [K] | ||
HP shaft speed, NHP [rpm] | ||
Shaft Power, Pow [kW] |
OUTPUTVAR. | PT3 [bar] | TT45 [K] | Power [kW] | |||||||
---|---|---|---|---|---|---|---|---|---|---|
DEGRAD. LEVEL | Mean Err. % | Max Err. % | R2 | Mean Err. % | Max Err. % | R2 | Mean Err. % | Max Err. % | R2 | |
Clean | 0.08 | 1.36 | 0.994 | 0.06 | 3.46 | 0.968 | 0.23 | 5.81 | 0.987 | |
2% | 0.07 | 1.39 | 0.995 | 0.06 | 3.40 | 0.969 | 0.23 | 5.86 | 0.987 | |
4% | 0.07 | 1.48 | 0.994 | 0.06 | 3.37 | 0.971 | 0.23 | 5.99 | 0.987 | |
8% | 0.07 | 1.51 | 0.994 | 0.06 | 3.24 | 0.973 | 0.24 | 5.97 | 0.987 | |
12% | 0.07 | 1.49 | 0.994 | 0.06 | 3.12 | 0.975 | 0.24 | 5.92 | 0.988 | |
15% | 0.07 | 1.48 | 0.995 | 0.06 | 3.00 | 0.976 | 0.24 | 5.88 | 0.988 |
Matrix Coefficient | Linear Law | R2 |
---|---|---|
a11 | 0.862 | |
b11 | 0.902 | |
c11 | 0.981 | |
c21 | 0.998 | |
c31 | 0.929 | |
c41 | 0.929 | |
d11 | 0.853 | |
d21 | 0.994 | |
d31 | 0.778 | |
d41 | 0.739 |
Degradation | Output Power [kW] | % Power Variation |
---|---|---|
clean | 178 | |
2% | 175 | −1.7 |
4% | 171 | −3.9 |
8% | 164 | −7.9 |
12% | 157 | −11.8 |
15% | 152 | −14.6 |
OUTPUTVAR. | PT3 [bar] | TT45 [K] | Power [kW] | |||||||
---|---|---|---|---|---|---|---|---|---|---|
DEGRAD. LEVEL | Mean Err. % | Max Err. % | R2 | Mean Err. % | Max Err. % | R2 | Mean Err. % | Max Err. % | R2 | |
Clean | 0.08 | 1.08 | 0.995 | 0.04 | 0.19 | 0.999 | 0.10 | 0.30 | 0.999 | |
2% | 0.08 | 0.83 | 0.997 | 0.04 | 0.27 | 0.999 | 0.10 | 0.32 | 0.999 | |
4% | 0.09 | 0.67 | 0.997 | 0.05 | 0.26 | 0.998 | 0.11 | 0.33 | 0.999 | |
8% | 0.13 | 0.91 | 0.991 | 0.06 | 0.49 | 0.997 | 0.22 | 2.08 | 0.997 | |
12% | 0.10 | 0.95 | 0.997 | 0.07 | 0.61 | 0.996 | 0.22 | 2.29 | 0.997 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castiglione, T.; Perrone, D.; Strafella, L.; Ficarella, A.; Bova, S. Linear Model of a Turboshaft Aero-Engine Including Components Degradation for Control-Oriented Applications. Energies 2023, 16, 2634. https://doi.org/10.3390/en16062634
Castiglione T, Perrone D, Strafella L, Ficarella A, Bova S. Linear Model of a Turboshaft Aero-Engine Including Components Degradation for Control-Oriented Applications. Energies. 2023; 16(6):2634. https://doi.org/10.3390/en16062634
Chicago/Turabian StyleCastiglione, Teresa, Diego Perrone, Luciano Strafella, Antonio Ficarella, and Sergio Bova. 2023. "Linear Model of a Turboshaft Aero-Engine Including Components Degradation for Control-Oriented Applications" Energies 16, no. 6: 2634. https://doi.org/10.3390/en16062634
APA StyleCastiglione, T., Perrone, D., Strafella, L., Ficarella, A., & Bova, S. (2023). Linear Model of a Turboshaft Aero-Engine Including Components Degradation for Control-Oriented Applications. Energies, 16(6), 2634. https://doi.org/10.3390/en16062634