The Induction Motor MRAS-Based Speed Estimator Capable of Modelling the Slip Frequency Dependent Variability of the Rotor Impedance
Abstract
:1. Introduction
2. Rotor Flux Mathematical Models
3. MRAS-Based Speed Estimator
4. Experimental Results
4.1. Identification of the Equivalent Circuit Parameters
4.2. Verification of the Performance of the MRAS(u-ui)
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Rating | Unit | CR IM | SR IM |
---|---|---|---|
Stator voltage | volt (V) | 400 (wye) | 400 (wye) |
Stator frequency | hertz (Hz) | 50 | 50 |
Stator current | ampere (A) | 4.50 | 2.85 |
Torque | newton meter (N·m) | 15.5 | 5.9 |
Rotational speed | revolutions per minute (r/m) | 1450 | 1275 |
Equivalent Circuit Parameter Set | L1σ (H) | Lm (H) | R2(1) (Ω) | Lσ2(1) (H) | R2(2) (Ω) | Lσ2(2) (H) |
---|---|---|---|---|---|---|
Set B1 | 0.0153 | 0.5000 | 1.5687 | 0.0231 | – | – |
Set B2 | 0.0147 | 0.5041 | 1.6973 | 0.0219 | – | – |
Set B3 | 0.0176 | 0.4875 | 2.0812 | 0.0143 | 6.9916 | 0.2146 |
Equivalent Circuit Parameter Set | L1σ (H) | Lm (H) | R2(1) (Ω) | Lσ2(1) (H) | R2(2) (Ω) | Lσ2(2) (H) |
---|---|---|---|---|---|---|
Set D1 | 0.0847 | 0.4526 | 8.3139 | 0.1106 | – | – |
Set D2 | 0.0464 | 0.5168 | 16.0648 | 0.0464 | – | – |
Set D3 | 0.0224 | 0.5018 | 17.4053 | 0.0826 | 19.9513 | 1.1704 |
Appendix B
Appendix C
References
- Holtz, J. Sensorless control of induction machines—With or without signal injection? IEEE Trans. Ind. Electron. 2008, 53, 7–30. [Google Scholar] [CrossRef] [Green Version]
- Finch, J.W.; Giaouris, D. Controlled AC Electrical Drives. IEEE Trans. Ind. Electron. 2008, 55, 481–491. [Google Scholar] [CrossRef]
- Xu, D.; Wang, B.; Zhang, G.; Wang, G.; Yu, Y. A review of sensorless control methods for AC motor drives. CES Trans. Electr. Mach. Syst. 2018, 2, 104–115. [Google Scholar] [CrossRef]
- Schauder, C. Adaptive speed identification for vector control of induction motors without rotational transducers. IEEE Trans. Ind. Appl. 1992, 28, 1054–1061. [Google Scholar] [CrossRef]
- Peng, F.-Z.; Fukao, T. Robust speed identification for speed-sensorless vector control of induction motors. IEEE Trans. Ind. A 1994, 30, 1234–1240. [Google Scholar] [CrossRef]
- Teja, A.V.R.; Chakraborty, C.; Maiti, S.; Hori, Y. A New Model Reference Adaptive Controller for Four Quadrant Vector Controlled Induction Motor Drives. IEEE Trans. Ind. Electron. 2012, 59, 3757–3767. [Google Scholar] [CrossRef]
- Zhao, L.; Huang, J.; Liu, H.; Li, B.; Kong, W. Second-Order Sliding-Mode Observer With Online Parameter Identification for Sensorless Induction Motor Drivest. IEEE Trans. Ind. Electron. 2014, 61, 5280–5289. [Google Scholar] [CrossRef]
- Smith, A.N.; Gadoue, S.M.; Finch, J.W. Improved Rotor Flux Estimation at Low Speeds for Torque MRAS-Based Sensorless Induction Motor Drives. IEEE Trans. Energy Convers. 2016, 31, 270–282. [Google Scholar] [CrossRef] [Green Version]
- Pal, A.; Das, S.; Chattopadhyay, A.K. An Improved Rotor Flux Space Vector Based MRAS for Field-Oriented Control of Induction Motor Drives. IEEE Trans. Power Electron. 2018, 33, 5131–5141. [Google Scholar] [CrossRef]
- Kubota, H.; Matsuse, K.; Nakano, T. DSP-based speed adaptive flux observer of induction motor. IEEE Trans. Ind. Appl. 1993, 29, 344–348. [Google Scholar] [CrossRef]
- Harnefors, L.; Hinkkanen, M. Complete stability of reduced-order and full-order observers for sensorless IM drives. IEEE Trans. Ind. Electron. 2008, 55, 1319–1329. [Google Scholar] [CrossRef]
- Chen, B.; Wang, T.; Yao, W.; Lee, K.; Lu, Z. Speed convergence rate-based feedback gains design of adaptive full-order observer in sensorless induction motor drives. IET Electr. Power Appl. 2014, 8, 13–22. [Google Scholar] [CrossRef]
- Vieira, R.P.; Gastaldini, C.C.; Azzolin, R.Z.; Grundling, H.A. Discrete-time sliding mode speed observer for sensorless control of induction motor drives. IET Electr. Power Appl. 2012, 6, 681–688. [Google Scholar] [CrossRef] [Green Version]
- Zaky, M.S.; Metwaly, M.K.; Azazi, H.Z.; Deraz, S.A. A New Adaptive SMO for Speed Estimation of Sensorless Induction Motor Drives at Zero and Very Low Frequencies. IEEE Trans. Ind. Electron. 2018, 65, 6901–6911. [Google Scholar] [CrossRef]
- Lee, K.-B.; Blaabjerg, F. Reduced-order extended luenberger observer based sensorless vector control driven by matrix converter with nonlinearity compensation. IEEE Trans. Ind. Electron. 2006, 53, 66–75. [Google Scholar]
- Kim, Y.-R.; Sul, S.-K.; Park, M.-H. Speed sensorless vector control of induction motor using extended Kalman filter. IEEE Trans. Ind. Appl. 1994, 30, 1225–1233. [Google Scholar]
- Habibullah, M.; Lu, D.D.-C. A Speed-Sensorless FS-PTC of Induction Motors Using Extended Kalman Filters. IEEE Trans. Ind. Electron. 2015, 62, 6765–6778. [Google Scholar] [CrossRef] [Green Version]
- Zerdali, E.; Barut, M. The Comparisons of Optimized Extended Kalman Filters for Speed-Sensorless Control of Induction Motors. IEEE Trans. Ind. Electron. 2017, 64, 4340–4351. [Google Scholar] [CrossRef]
- Zerdali, E. A Comparative Study on Adaptive EKF Observers for State and Parameter Estimation of Induction Motor. IEEE Trans. Energy Convers. 2020, 35, 1443–1452. [Google Scholar] [CrossRef]
- Jayaramu, M.L.; Suresh, H.N.; Bhaskar, M.S.; Almakhles, D.; Padmanaban, S.; Subramaniam, U. Real-Time Implementation of Extended Kalman Filter Observer with Improved Speed Estimation for Sensorless Control. IEEE Access 2021, 9, 50452–50465. [Google Scholar] [CrossRef]
- Akatsu, K.; Kawamura, A. Sensorless very low-speed and zero-speed estimations with online rotor resistance estimation of induction motor without signal injection. IEEE Trans. Ind. Appl. 2000, 36, 764–771. [Google Scholar] [CrossRef]
- Ohyama, K.; Asher, G.M.; Sumner, M. Comparative analysis of experimental performance and stability of sensorless induction motor drives. IEEE Trans. Ind. Electron. 2006, 53, 178–186. [Google Scholar] [CrossRef]
- Vaclavek, P.; Blaha, P.; Herman, I. AC Drive Observability Analysis. IEEE Trans. Ind. Electron. 2013, 60, 3047–3059. [Google Scholar] [CrossRef]
- Harnefors, L.; Hinkkanen, M. Stabilization Methods for Sensorless Induction Motor Drives—A Survey. IEEE J. Emerg. Sel. Top. Power Electron. 2014, 2, 132–142. [Google Scholar] [CrossRef]
- Chen, J.; Huang, J. Stable Simultaneous Stator and Rotor Resistances Identification for Speed Sensorless IM Drives: Review and New Results. IEEE Trans. Power Electron. 2018, 33, 8695–8709. [Google Scholar] [CrossRef]
- Aiello, M.; Cataliotti, A.; Nuccio, S. An induction motor speed measurement method based on current harmonic analysis with the chirp-Z transform. IEEE Trans. Instrum. Meas. 2005, 54, 1811–1819. [Google Scholar] [CrossRef]
- Zhao, L.; Huang, J.; Chen, J.; Ye, M. A Parallel Speed and Rotor Time Constant Identification Scheme for Indirect Field Oriented Induction Motor Drives. IEEE Trans. Power Electron. 2016, 31, 6494–6503. [Google Scholar] [CrossRef]
- Song, X.; Wang, Z.; Li, S.; Hu, J. Sensorless Speed Estimation of an Inverter-Fed Induction Motor Using the Supply-Side Current. IEEE Trans. Energy Conv. 2019, 34, 1432–1441. [Google Scholar] [CrossRef]
- Degnert, M.W.; Lorend, R.D. Using multiple saliencies for the estimation of flux, position, and velocity in AC machines. IEEE Trans. Ind. Appl. 1998, 34, 1097–1104. [Google Scholar] [CrossRef] [Green Version]
- Caruana, C.; Asher, G.M.; Sumner, M. Performance of HF signal injection techniques for zero-low-frequency vector control of induction Machines under sensorless conditions. IEEE Trans. Ind. Electron. 2006, 53, 225–238. [Google Scholar] [CrossRef]
- Staines, C.S.; Asher, G.M.; Sumner, M. Rotor-position estimation for induction machines at zero and low frequency utilizing zero-sequence currents. IEEE Trans. Ind. Appl. 2006, 42, 105–112. [Google Scholar] [CrossRef]
- Garcia, P.; Briz, F.; Raca, D.; Lorenz, R.D. Saliency-Tracking-Based Sensorless Control of AC Machines Using Structured Neural Networks. IEEE Trans. Ind. Appl. 2007, 43, 77–86. [Google Scholar] [CrossRef]
- Yoon, Y.-D.; Sul, S.-K. Sensorless Control for Induction Machines Based on Square-Wave Voltage Injection. IEEE Trans. Power Electron. 2014, 29, 3637–3645. [Google Scholar] [CrossRef]
- Wang, K.; Chen, B.; Shen, G.; Yao, W.; Lee, K.; Lu, Z. Online Updating of Rotor Time Constant Based on Combined Voltage and Current Mode Flux Observer for Speed-Sensorless AC Drives. IEEE Trans. Ind. Electron. 2014, 61, 4583–4593. [Google Scholar] [CrossRef]
- Marcetic, D.P.; Vukosavic, S.N. Speed-Sensorless AC Drives with the Rotor Time Constant Parameter Update. IEEE Trans. Ind. Electron. 2007, 54, 2618–2625. [Google Scholar] [CrossRef]
- Levy, W.; Landy, C.H.; McCulloch, M.D. Improved models for the simulation of deep bar induction motors. IEEE Trans. Energy Convers 1990, 2, 393–400. [Google Scholar] [CrossRef]
- Healey, R.C.; Williamson, S.; Smith, A.C. Improved cage rotor models for vector controlled induction motors. IEEE Trans. Ind. Appl. 1995, 4, 812–822. [Google Scholar] [CrossRef]
- Rolek, J.; Utrata, G. An identification procedure of electromagnetic parameters for an induction motor equivalent circuit including rotor deep bar effect. Arch. Electr. Eng. 2018, 2, 279–291. [Google Scholar]
- Mölsä, E.; Saarakkala, S.E.; Hinkkanen, M.; Arkkio, A.; Routimo, M. A Dynamic Model for Saturated Induction Machines with Closed Rotor Slots and Deep Bars. IEEE Trans. Energy Convers 2020, 35, 157–165. [Google Scholar] [CrossRef]
- Seok, J.-K.; Sul, S.-K. Pseudorotor-flux-oriented control of an induction machine for deep-bar-effect compensation. IEEE Trans. Ind. Appl. 1998, 34, 429–434. [Google Scholar] [CrossRef]
- Utrata, G.; Rolek, J.; Kaplon, A. The Novel Rotor Flux Estimation Scheme Based on the Induction Motor Mathematical Model Including Rotor Deep-Bar Effect. Energies 2019, 12, 2676. [Google Scholar] [CrossRef] [Green Version]
- Landau, I.D. Adaptive Control: The Model Reference Approach; Marcel Dekker: New York, NY, USA, 1979. [Google Scholar]
- PN-EN 60034-28; 2013 Rotating Electrical Machines—Part 28: Test Methods for Determining Quantities of Equivalent Circuit Diagrams for Three-Phase Low Voltage Cage Induction Motors. Polski Komitet Normalizacyjny: Warszawa, Poland, 2013.
- IEEE Std 112-2017 (Revision of IEEE Std 112-2004); Standard Test Procedure for Polyphase Induction Motors and Generators . IEEE Power Engineering Society: New York, NY, USA, 2004. [CrossRef]
Speed Estimator | MRAS(u-i), N = 1 | MRAS(u-ui), N = 1 | MRAS(u-ui), N = 2 | ||
---|---|---|---|---|---|
Equivalent circuit parameter set | Set B1 | Set B2 | Set B1 | Set B2 | Set B3 |
0.5173 | 0.7709 | 0.3481 | 0.6053 | 0.3418 | |
0.1735 | 0.1935 | 0.0793 | 0.2158 | 0.0799 |
Speed Estimator | MRAS(u-i), N = 1 | MRAS(u-ui), N = 1 | MRAS(u-ui), N = 2 | ||
---|---|---|---|---|---|
Equivalent circuit parameter set | Set D1 | Set D2 | Set D1 | Set D2 | Set D3 |
>100 | 9.4321 | 6.3380 | 7.5058 | 1.3520 | |
>100 | 3.7889 | 1.9094 | 3.4092 | 0.3564 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Utrata, G.; Rolek, J. The Induction Motor MRAS-Based Speed Estimator Capable of Modelling the Slip Frequency Dependent Variability of the Rotor Impedance. Energies 2023, 16, 2591. https://doi.org/10.3390/en16062591
Utrata G, Rolek J. The Induction Motor MRAS-Based Speed Estimator Capable of Modelling the Slip Frequency Dependent Variability of the Rotor Impedance. Energies. 2023; 16(6):2591. https://doi.org/10.3390/en16062591
Chicago/Turabian StyleUtrata, Grzegorz, and Jaroslaw Rolek. 2023. "The Induction Motor MRAS-Based Speed Estimator Capable of Modelling the Slip Frequency Dependent Variability of the Rotor Impedance" Energies 16, no. 6: 2591. https://doi.org/10.3390/en16062591
APA StyleUtrata, G., & Rolek, J. (2023). The Induction Motor MRAS-Based Speed Estimator Capable of Modelling the Slip Frequency Dependent Variability of the Rotor Impedance. Energies, 16(6), 2591. https://doi.org/10.3390/en16062591