A System Analysis of a Bio-Hydrogen Production System Using Granulated Mine Residue as a H2S Adsorbent
Abstract
:1. Introduction
2. Methods
2.1. Dynamic Adsorption Experiment
2.2. Simulation Method
2.2.1. Simulation Conditions
2.2.2. Energy and Exergy Analysis
2.3. Life Cycle Assessment
2.3.1. Goal and Scope Definition
2.3.2. Inventory Analysis
3. Results and Discussion
3.1. Results of Dynamic Adsorption
3.2. Results of Exergy Analysis
3.3. LCA Results
3.3.1. Comparison between ZnO and Granulated Neutralized Sediment
3.3.2. Comparison between ZnO_re and Granulated Neutralized Sediment
3.3.3. Sensitivity Analysis
4. Conclusions
- The sulfur capture capacity of the granulated neutralized sediment was the largest at 300 °C. The sulfur capture capacity of the granulated neutralized sediment at 300 °C was approximately 46.2% and 23.2% lower than that of the powdered sediment and ZnO, respectively.
- The exergy efficiency of the hydrogen production system was 26.1%.
- The GWP and ADP of the hydrogen production system using granulated neutralized sediment were approximately 0.89 and 55.3% smaller, respectively, than those using ZnO.
- The GWP and ADP of the hydrogen production system using granulated neutralized sediment were approximately 0.33 and 23.5% smaller, respectively, than those using ZnO_re.
- The results of the sensitivity analysis showed that the use of the granulated neutralized sediment as a H2S adsorbent had a significant effect on reducing the ADP of the hydrogen production system by more than 17.5%, even when changes in the RH were considered.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Magdziarz, A.; Wilk, M. Thermogravimetric study of biomass, sewage sludge, and coal combustion. Energy Convers. Manag. 2013, 75, 425–430. [Google Scholar] [CrossRef]
- Hamazaki, M.; Torii, K.; Shan, M.; Kameyama, M.; Mercado, J.V.L.; Dowaki, K. Discussions on the heat transfer performance of the indirect pyrolysis plant using CFD modeling. IOP Conf. Ser. Earth Environ. 2023; in press. [Google Scholar]
- Tayebi-Khorami, M.; Edraki, M.; Corder, G.; Golev, A. Re-thinking mining waste through an integrative approach led by circular economy aspirations. Minerals 2019, 9, 286. [Google Scholar] [CrossRef] [Green Version]
- Torii, K.; Kumon, S.; Sato, K.; Kato, S.; Dowaki, K. Performance evaluation of desulfurization and environmental impact of using waste from mines as adsorbent. Clean. Eng. Technol. 2022, 11, 100573. [Google Scholar] [CrossRef]
- Mrosso, R.; Machunda, R.; Pogrebnaya, T. Removal of hydrogen sulfide from biogas using a red rock. J. Energy 2020, 2020, 2309378. [Google Scholar] [CrossRef] [Green Version]
- Narang, K.; Akhtar, F. Freeze granulated zeolites X and A for biogas upgrading. Molecules 2020, 25, 1378. [Google Scholar] [CrossRef] [Green Version]
- Munusamy, K.; Sethia, G.; Patil, D.V.; Rallapalli, P.B.S.; Somani, R.S.; Bajaj, H.C. Sorption of carbon dioxide, methane, nitrogen and carbon monoxide on MIL-101 (Cr): Volumetric measurements and dynamic adsorption studies. Chem. Eng. J. 2012, 195, 359–368. [Google Scholar] [CrossRef]
- Melideo, D.; Ortiz Cebolla, R.; Ronnefeld, W.E. Life Cycle Assessment of Hydrogen and Fuel Cell Technologies; EUR 29986. E.N.; Publications Office of the European Union: Luxembourg, 2020; ISBN 978-92-76-13185-4. [Google Scholar] [CrossRef]
- Choudhury, A.; Lansing, S. Adsorption of hydrogen sulfide in biogas using a novel iron-impregnated biochar scrubbing system. J. Environ. Chem. Eng. 2021, 9, 104837. [Google Scholar] [CrossRef]
- Al Mamun, M.R.; Torii, S. Removal of hydrogen sulfide (H2S) from biogas using zero-valent iron. J. Clean. Energy Technol. 2015, 3, 428–432. [Google Scholar] [CrossRef] [Green Version]
- Zhu, H.L.; Papurello, D.; Gandiglio, M.; Lanzini, A.; Akpinar, I.; Shearing, P.R.; Manos, G.; Brett, D.J.L.; Zhang, Y.S. Study of H2S removal capability from simulated biogas by using waste-derived adsorbent materials. Processes 2020, 8, 1030. [Google Scholar] [CrossRef]
- Gupta, N.K.; Bae, J.; Kim, K.S. Iron-organic frameworks-derived iron oxide adsorbents for hydrogen sulfide removal at room temperature. J. Environ. Chem. Eng. 2021, 9, 106195. [Google Scholar] [CrossRef]
- Hao, W.; Björkman, E.; Lilliestråle, M.; Hedin, N. Activated carbons prepared from hydrothermally carbonized waste biomass used as adsorbents for CO2. Appl. Energy 2013, 112, 526–532. [Google Scholar] [CrossRef]
- Torii, K.; Sugihara, H.; Dowaki, K. Environmental Performance and Operational Analysis of a Sewage Sludge Fermentation Solid Oxidation Fuel Cell System Using Fe2O3 and Kanuma Clay. J. Jpn. Inst. Energy 2022, 101, 66–75. [Google Scholar] [CrossRef]
- Dowa Holdings Co., Ltd.; Fujiwara, Y.; Sudou, M.; Ynagisawa, E.; Tobita, M. Deodorizer and Its Production Method. Patent Publication No. 5-015775. 26 January 1993. Available online: https://jglobal.jst.go.jp/detail?JGLOBAL_ID=200903012955915503 (accessed on 16 February 2023). (In Japanese).
- Hiraoka, M. Pyrolysis treatment of sewage sludge. J. Environ. Conserv. Eng. 1978, 7, 419–428. [Google Scholar] [CrossRef]
- Miura, K.; Ishikawa, T.; Hotta, T. Study on Anaerobic Gas Generation and Scum Surfacing from Organic Sludge Deposited in Brackish Water of Urban River. JSCE J. B1 Water Eng. 2017, 73, I_1063–I_1068. [Google Scholar] [CrossRef] [PubMed]
- Song, H.S.; Park, M.G.; Croiset, E.; Chen, Z.; Nam, S.C.; Ryu, H.J.; Yi, K.B. Effect of active zinc oxide dispersion on reduced graphite oxide for hydrogen sulfide adsorption at mid-temperature. Appl. Surf. Sci. 2013, 280, 360–365. [Google Scholar] [CrossRef]
- Di Felice, R.; Gibilaro, L.G. Wall effects for the pressure drop in fixed beds. Chem. Eng. Sci. 2004, 59, 3037–3040. [Google Scholar] [CrossRef]
- Kondo, S.; Nagaishi, T.; Dowaki, K. Analyses of exergy and environmental impact on Bio-H2 production system using 2-step PSA. J. Jpn. Inst. Energy 2017, 97, 77–87. [Google Scholar] [CrossRef]
- Kuroda, S.; Nagaishi, T.; Kameyama, M.; Koido, K.; Seo, Y.; Dowaki, K. Hydroxyl aluminium silicate clay for biohydrogen purification by pressure swing adsorption: Physical properties, adsorption isotherm, multicomponent breakthrough curve modelling, and cycle simulation. Int. J. Hydrogen Energy 2018, 43, 16573–16588. [Google Scholar] [CrossRef]
- Yang, J.; Lee, C.H.; Chang, J.W. Separation of hydrogen mixtures by a two-bed pressure swing adsorption process using zeolite 5A. Ind. Eng. Chem. Res. 1997, 36, 2789–2798. [Google Scholar] [CrossRef]
- Yang, J.; Han, S.; Cho, C.; Lee, C.H.; Lee, H. Bulk separation of hydrogen mixtures by a one-column PSA process. Sep. Purif. Technol. 1995, 5, 239–249. [Google Scholar] [CrossRef]
- Ahern, J.E. The Exergy Method of Energy Systems Analysis; Wiley: New York, NY, USA, 1980. Available online: https://www.osti.gov/biblio/6148569 (accessed on 16 February 2023).
- Tekin, T.; Bayramoğlu, M. Exergy analysis of the sugar production process from sugar beets. Int. J. Energy Res. 1998, 22, 591–601. [Google Scholar] [CrossRef]
- Couto, N.; Silva, V.; Monteiro, E.; Rouboa, A. Exergy analysis of Portuguese municipal solid waste treatment via steam gasification. Energy Convers. Manag. 2017, 134, 235–246. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, B.; Li, H.; Zhang, B. Exergy analysis of biomass utilization via steam gasification and partial oxidation. Thermochim. Acta 2012, 538, 21–28. [Google Scholar] [CrossRef]
- Dong, Y.H.; Ng, S.T. Comparing the midpoint and endpoint approaches based on ReCiPe—A study of commercial buildings in Hong Kong. Int. J. Life Cycle Assess. 2014, 19, 1409–1423. Available online: https://link.springer.com/article/10.1007/s11367-014-0743-0 (accessed on 16 February 2023). [CrossRef]
- Dooley, F.D.; Nair, S.P.; Ward, P.D. Increased growth and germination success in plants following hydrogen sulfide administration. PLoS ONE 2013, 8, e62048. [Google Scholar] [CrossRef] [Green Version]
- Ecobalance2022. “Presentation List: Poster Session”. p. 3. Available online: https://www.ecobalanceconference.org/conference/2022/pdf/Program_Details_Poster_Ver2.pdf (accessed on 9 February 2023).
- Michiura, T.; Nakao, H.; Yamamoto, Y.; Yoshida, N. Effect of Different Heat Source for Sewage Sludge Fuelization on Energy Recovery. Proc. JSCE G Environ. 2017, 73, II_221–II_231. [Google Scholar] [CrossRef] [Green Version]
- Lew, S.; Jothimurugesan, K.; Flytzani-Stephanopoulos, M. High-temperature hydrogen sulfide removal from fuel gases by regenerable zinc oxide-titanium dioxide sorbents. Ind. Eng. Chem. Res. 1989, 28, 535–541. [Google Scholar] [CrossRef]
- Coskun, I.; Tollefson, E.L. Oxidation of low concentrations of hydrogen sulfide over activated carbon. Can. J. Chem. Eng. 1980, 58, 72–76. [Google Scholar] [CrossRef]
- Huang, G.; He, E.; Wang, Z.; Fan, H.; Shangguan, J.; Croiset, E.; Chen, Z. Synthesis and characterization of γ-Fe2O3 for H2S removal at low temperature. Ind. Eng. Chem. Res. 2015, 54, 8469–8478. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, Z.; Yang, C.; Fan, H.; Wang, J.; Tian, Z.; Zhang, H. Critical role of water on the surface of ZnO in H2S removal at room temperature. Ind. Eng. Chem. Res. 2018, 57, 15366–15374. [Google Scholar] [CrossRef]
- Song, J.; Xu, T.; Gordin, M.L.; Zhu, P.; Lv, D.; Jiang, Y.B.; Chen, Y.; Duan, Y.; Wang, D. Nitrogen-doped mesoporous carbon promoted chemical adsorption of sulfur and fabrication of high-areal-capacity sulfur cathode with exceptional cycling stability for lithium-sulfur batteries. Adv. Funct. Mater. 2014, 24, 1243–1250. [Google Scholar] [CrossRef]
- Castrillon, M.C.; Moura, K.O.; Alves, C.A.; Bastos-Neto, M.; Azevedo, D.C.S.; Hofmann, J.; Möllmer, J.; Einicke, W.; Gläser, R. CO2 and H2S removal from CH4-rich streams by adsorption on activated carbons modified with K2CO3, NaOH, or Fe2O3. Energy Fuels 2016, 30, 9596–9604. [Google Scholar] [CrossRef]
- Costa, C.; Cornacchia, M.; Pagliero, M.; Fabiano, B.; Vocciante, M.; Reverberi, A.P. Hydrogen sulfide adsorption by iron oxides and their polymer composites: A case-study application to biogas purification. Materials 2020, 13, 4725. [Google Scholar] [CrossRef]
- Long, N.Q.; Loc, T.X. Experimental and modeling study on room-temperature removal of hydrogen sulfide using a low-cost extruded Fe2O3-based adsorbent. Adsorption 2016, 22, 397–408. [Google Scholar] [CrossRef]
- Sakabe, M.; Kanagawa, K.; Sato, T.; Kobayashi, N.; Kobayashi, J.; Piao, G.; Hatano, S.; Itaya, Y.; Mori, S. The de-hydrogen sulfide characteristic by the activated coke manufactured from ligneous waste. In Asian Pacific Confederation of Chemical Engineering Congress Program and Abstracts Asian Pacific Confederation of Chemical Engineers Congress Program and Abstracts; The Society of Chemical Engineers: Tokyo, Japan, 2004; p. 567. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, P.; Liang, S.; Liu, B.; Shuai, Y.; Li, B. Exergy analysis of hydrogen production from steam gasification of biomass: A review. Int. J. Hydrogen Energy 2019, 44, 14290–14302. [Google Scholar] [CrossRef]
- Cohce, M.K.; Dincer, I.; Rosen, M.A. Energy and exergy analyses of a biomass-based hydrogen production system. Bioresour. Technol. 2011, 102, 8466–8474. [Google Scholar] [CrossRef]
Plant scale | 828 kg/d |
Steam/Carbon | 1.4 |
Uf | 75% |
Lifetime | 10 years |
Carbon [wt.%] | 39.14 |
Hydrogen [wt.%] | 6.22 |
Nitrogen [wt.%] | 4.72 |
Sulfur [wt.%] | 0.65 |
Chlorine [wt.%] | 0.21 |
Oxygen [wt.%] | 31.06 |
Ash [wt.%] | 18.00 |
Volatiles [wt.%] | 81.50 |
Higher Heating value [kJ/kg] | 17,299 |
H2 | 9.8 | mol% |
CO | 8.7 | mol% |
CH4 | 12.3 | mol% |
CO2 | 25.0 | mol% |
N2 | 35.2 | mol% |
H2S | 0.020 | mol% |
C2H4 | 0.5 | mol% |
C2H6 | 8.5 | mol% |
Parameters | Value | Unit |
---|---|---|
Input | ||
SS1 Syngas production | ||
Biomass feedstock | 2.97 × 101 | kg |
HC | 4.46 × 10−2 | kg |
Water | 2.62 × 101 | kg |
Electricity | 1.94 × 10−2 | kWh |
SS2 Desulfurization | ||
ZnO (Conventional) | 7.67 × 10−1 | kg |
Granulated neutralized sediment (proposal) | 1.15 | kg |
SS3 Hydrogen purification | ||
HAS-Clay | 9.81 × 10−4 | kg |
Zeolite 5A | 9.81 × 10−4 | kg |
Electricity | 1.18 × 101 | kWh |
SS4 Combustor | ||
Air | 1.33 × 102 | kg |
Electricity | 3.51 × 10−1 | kWh |
Output | ||
Wastewater | 3.10 × 101 | kg |
Hydrogen | 1.00 | kg |
Carbon dioxide | 3.27 × 101 | kg |
Oxygen | 3.41 × 101 | kg |
Nitrogen | 9.01 × 101 | kg |
Parameters | Value | Unit |
---|---|---|
Input | ||
Granulation | ||
Powdered neutralized sediment | 1.00 | kg |
Electricity | 3.09 × 102 | MJ |
Transportation | ||
Light fuel oil | 9.05 × 10−2 | kg |
Output | ||
Granulated neutralized sediment | 1.00 | kg |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torii, K.; Hamazaki, M.; Kumon, S.; Sato, K.; Kato, S.; Dowaki, K. A System Analysis of a Bio-Hydrogen Production System Using Granulated Mine Residue as a H2S Adsorbent. Energies 2023, 16, 2625. https://doi.org/10.3390/en16062625
Torii K, Hamazaki M, Kumon S, Sato K, Kato S, Dowaki K. A System Analysis of a Bio-Hydrogen Production System Using Granulated Mine Residue as a H2S Adsorbent. Energies. 2023; 16(6):2625. https://doi.org/10.3390/en16062625
Chicago/Turabian StyleTorii, Kento, Mayu Hamazaki, Shoichi Kumon, Kimitaka Sato, Shogo Kato, and Kiyoshi Dowaki. 2023. "A System Analysis of a Bio-Hydrogen Production System Using Granulated Mine Residue as a H2S Adsorbent" Energies 16, no. 6: 2625. https://doi.org/10.3390/en16062625
APA StyleTorii, K., Hamazaki, M., Kumon, S., Sato, K., Kato, S., & Dowaki, K. (2023). A System Analysis of a Bio-Hydrogen Production System Using Granulated Mine Residue as a H2S Adsorbent. Energies, 16(6), 2625. https://doi.org/10.3390/en16062625