Investigation of Thermal Performance of Ternary Hybrid Nanofluid Flow in a Permeable Inclined Cylinder/Plate
Abstract
:1. Introduction
- How does the solid volume fraction affect the velocity and temperature profile of the system?
- How does the fluid profile change as the porous constraint value is increased?
- What is the influence of the heat source/sink on the thermal profile of the system?
2. Mathematical Formulation
3. Numerical Procedure and Validation
4. Results and Discussion
5. Final Remarks
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
Symbols: | ||
Greek symbols | ||
Subscripts | ||
Solid particles | ||
Modified nanofluid | ||
Hybrid nanofluid | ||
Nanofluid | ||
Fluid | ||
Abbreviations | ||
ODEs | Ordinary differential equations | |
PDEs | Partial differential equations | |
TNF | Ternary nanofluids | |
HS–S | Heat source and sink | |
NF | Nanofluid | |
C–C | Cattaneo–Christov |
References
- Wang, X.-Q.; Mujumdar, A.S. A review on nanofluids—Part I: Theoretical and numerical investigations. Braz. J. Chem. Eng. 2008, 25, 613–630. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.-Q.; Mujumdar, A.S. A review on nanofluids—Part II: Experiments and applications. Braz. J. Chem. Eng. 2008, 25, 631–648. [Google Scholar] [CrossRef] [Green Version]
- Ali, A.R.I.; Salam, B. A review on nanofluid: Preparation, stability, thermophysical properties, heat transfer characteristics and application. SN Appl. Sci. 2020, 2, 1636. [Google Scholar] [CrossRef]
- Dey, D.; Kumar, P.; Samantaray, S. A review of nanofluid preparation, stability, and thermo-physical properties. Heat Transf. Asian Res. 2017, 46, 1413–1442. [Google Scholar] [CrossRef]
- Yu, W.; Xie, H. A review on nanofluids: Preparation, stability mechanisms, and applications. J. Nanomater. 2012, 2012, 435873. [Google Scholar] [CrossRef] [Green Version]
- Ranga Babu, J.A.; Kumar, K.K.; Srinivasa Rao, S. State-of-art review on hybrid nanofluids. Renew. Sustain. Energy Rev. 2017, 77, 551–565. [Google Scholar] [CrossRef]
- Yang, L.; Ji, W.; Mao, M.; Huang, J. An updated review on the properties, fabrication and application of hybrid-nanofluids along with their environmental effects. J. Clean. Prod. 2020, 257, 120408. [Google Scholar] [CrossRef]
- Nasajpour-Esfahani, N.; Toghraie, D.; Afran, M. A new correlation for predicting the thermal conductivity of ZnO–Ag (50%–50%)/water hybrid nanofluid: An experimental study. Powder Technol. 2017, 323, 367–373. [Google Scholar] [CrossRef]
- Atashafrooz, M.; Sajjadi, H.; Amiri Delouei, A. Simulation of combined convective-radiative heat transfer of hybrid nanofluid flow inside an open trapezoidal enclosure considering the magnetic force impacts. J. Magn. Magn. Mater. 2023, 567, 170354. [Google Scholar] [CrossRef]
- Adun, H.; Kavaz, D.; Dagbasi, M. Review of ternary hybrid nanofluid: Synthesis, stability, thermophysical properties, heat transfer applications, and environmental effects. J. Clean. Prod. 2021, 328, 129525. [Google Scholar] [CrossRef]
- Alharbi, K.A.M.; Ahmed, A.E.-S.; Ould Sidi, M.; Ahammad, N.A.; Mohamed, A.; El-Shorbagy, M.A.; Bilal, M.; Marzouki, R. Computational Valuation of Darcy Ternary-Hybrid Nanofluid Flow across an Extending Cylinder with Induction Effects. Micromachines 2022, 13, 588. [Google Scholar] [CrossRef]
- Sarada, K.; Gamaoun, F.; Abdulrahman, A.; Paramesh, S.O.; Kumar, R.; Prasanna, G.D.; Punith Gowda, R.J. Impact of exponential form of internal heat generation on water-based ternary hybrid nanofluid flow by capitalizing non-Fourier heat flux model. Case Stud. Therm. Eng. 2022, 38, 102332. [Google Scholar] [CrossRef]
- Sharma, R.P.; Madhukesh, J.K.; Shukla, S.; Prasannakumara, B.C. Numerical and Levenberg–Marquardt backpropagation neural networks computation of ternary nanofluid flow across parallel plates with Nield boundary conditions. Eur. Phys. J. Plus 2023, 138, 63. [Google Scholar] [CrossRef]
- Yogeesha, K.M.; Megalamani, S.B.; Gill, H.S.; Umeshaiah, M.; Madhukesh, J.K. The physical impact of blowing, Soret and Dufour over an unsteady stretching surface immersed in a porous medium in the presence of ternary nanofluid. Heat Transf. 2022, 51, 6961–6976. [Google Scholar] [CrossRef]
- Ullah, Z.; Bilal, M.; Sarris, I.E.; Hussanan, A. MHD and Thermal Slip Effects on Viscous Fluid over Symmetrically Vertical Heated Plate in Porous Medium: Keller Box Analysis. Symmetry 2022, 14, 2421. [Google Scholar] [CrossRef]
- Rekha, M.B.; Sarris, I.E.; Madhukesh, J.K.; Raghunatha, K.R.; Prasannakumara, B.C. Impact of thermophoretic particle deposition on heat transfer and nanofluid flow through different geometries: An application to solar energy. Chin. J. Phys. 2022, 80, 190–205. [Google Scholar] [CrossRef]
- Alsulami, M.D.; Naveen Kumar, R.; Punith Gowda, R.J.; Prasannakumara, B.C. Analysis of heat transfer using Local thermal non-equilibrium conditions for a non-Newtonian fluid flow containing Ti6Al4V and AA7075 nanoparticles in a porous media. ZAMM—J. Appl. Math. Mech. Z. Angew. Math. Mech. 2022, e202100360. [Google Scholar] [CrossRef]
- Yu, Y.; Khan, U.; Zaib, A.; Ishak, A.; Waini, I.; Raizah, Z.; Galal, A.M. Exploration of 3D stagnation-point flow induced by nanofluid through a horizontal plane surface saturated in a porous medium with generalized slip effects. Ain Shams Eng. J. 2023, 14, 101873. [Google Scholar] [CrossRef]
- Rawat, S.K.; Yaseen, M.; Khan, U.; Kumar, M.; Eldin, S.M.; Alotaibi, A.M.; Galal, A.M. Significance of non-uniform heat source/sink and cattaneo-christov model on hybrid nanofluid flow in a Darcy-forchheimer porous medium between two parallel rotating disks. Front. Mater. 2023, 9, 1097057. [Google Scholar] [CrossRef]
- Ahmad, I.; Faisal, M.; Loganathan, K.; Kiyani, M.Z.; Namgyel, N. Nonlinear Mixed Convective Bidirectional Dynamics of Double Stratified Radiative Oldroyd-B Nanofluid Flow with Heat Source/Sink and Higher-Order Chemical Reaction. Math. Probl. Eng. 2022, 2022, e9732083. [Google Scholar] [CrossRef]
- Khan, U.; Zaib, A.; Ishak, A.; Alotaibi, A.M.; Eldin, S.M.; Akkurt, N.; Waini, I.; Madhukesh, J.K. Stability Analysis of Buoyancy Magneto Flow of Hybrid Nanofluid through a Stretchable/Shrinkable Vertical Sheet Induced by a Micropolar Fluid Subject to Nonlinear Heat Sink/Source. Magnetochemistry 2022, 8, 188. [Google Scholar] [CrossRef]
- Naveen Kumar, R.; Mallikarjuna, H.B.; Tigalappa, N.; Punith Gowda, R.J.; Umrao Sarwe, D. Carbon nanotubes suspended dusty nanofluid flow over stretching porous rotating disk with non-uniform heat source/sink. Int. J. Comput. Methods Eng. Sci. Mech. 2022, 23, 119–128. [Google Scholar] [CrossRef]
- Ramesh, G.K.; Madhukesh, J.K.; Shehzad, S.A.; Rauf, A. Ternary nanofluid with heat source/sink and porous medium effects in stretchable convergent/divergent channel. Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 2022, 09544089221081344. [Google Scholar] [CrossRef]
- Waqas, H.; Farooq, U.; Alqarni, M.S.; Muhammad, T. Numerical investigation for 3D bioconvection flow of Carreau nanofluid with heat source/sink and motile microorganisms. Alex. Eng. J. 2022, 61, 2366–2375. [Google Scholar] [CrossRef]
- Waqas, H.; Imran, M.; Muhammad, T.; Sait, S.M.; Ellahi, R. On bio-convection thermal radiation in Darcy—Forchheimer flow of nanofluid with gyrotactic motile microorganism under Wu’s slip over stretching cylinder/plate. Int. J. Numer. Methods Heat Fluid Flow 2020, 31, 1520–1546. [Google Scholar] [CrossRef]
- Ali, A.; Sarkar, S.; Das, S.; Jana, R.N. Investigation of Cattaneo–Christov Double Diffusions Theory in Bioconvective Slip Flow of Radiated Magneto-Cross-Nanomaterial Over Stretching Cylinder/Plate with Activation Energy. Int. J. Appl. Comput. Math. 2021, 7, 208. [Google Scholar] [CrossRef]
- Waqas, H.; Khan, S.A.; Alghamdi, M.; Alqarni, M.S.; Muhammad, T. Numerical simulation for bio-convection flow of magnetized non-Newtonian nanofluid due to stretching cylinder/plate with swimming motile microorganisms. Eur. Phys. J. Spec. Top. 2021, 230, 1239–1256. [Google Scholar] [CrossRef]
- Selimefendigil, F.; Öztop, H.F. Conjugate mixed convection of nanofluid in a cubic enclosure separated with a conductive plate and having an inner rotating cylinder. Int. J. Heat Mass Transf. 2019, 139, 1000–1017. [Google Scholar] [CrossRef]
- Waqas, H.; Manzoor, U.; Shah, Z.; Arif, M.; Shutaywi, M. Magneto-Burgers Nanofluid Stratified Flow with Swimming Motile Microorganisms and Dual Variables Conductivity Configured by a Stretching Cylinder/Plate. Math. Probl. Eng. 2021, 2021, e8817435. [Google Scholar] [CrossRef]
- Anuar, N.S.; Bachok, N.; Pop, I. Influence of buoyancy force on Ag-MgO/water hybrid nanofluid flow in an inclined permeable stretching/shrinking sheet. Int. Commun. Heat Mass Transf. 2021, 123, 105236. [Google Scholar] [CrossRef]
- Umeshaiah, M.; Madhukesh, J.; Khan, U.; Rana, S.; Zaib, A.; Raizah, Z.; Galal, A.M. Dusty Nanoliquid Flow through a Stretching Cylinder in a Porous Medium with the Influence of the Melting Effect. Processes 2022, 10, 1065. [Google Scholar] [CrossRef]
- Dhanai, R.; Rana, P.; Kumar, L. MHD mixed convection nanofluid flow and heat transfer over an inclined cylinder due to velocity and thermal slip effects: Buongiorno’s model. Powder Technol. 2016, 288, 140–150. [Google Scholar] [CrossRef]
- Khan, U.; Zaib, A.; Ishak, A.; Eldin, S.M.; Alotaibi, A.M.; Raizah, Z.; Waini, I.; Elattar, S.; Abed, A.M. Features of hybridized AA7072 and AA7075 alloys nanomaterials with melting heat transfer past a movable cylinder with Thompson and Troian slip effect. Arab. J. Chem. 2023, 16, 104503. [Google Scholar] [CrossRef]
- Ramzan, M.; Dawar, A.; Saeed, A.; Kumam, P.; Sitthithakerngkiet, K.; Lone, S.A. Analysis of the partially ionized kerosene oil-based ternary nanofluid flow over a convectively heated rotating surface. Open Phys. 2022, 20, 507–525. [Google Scholar] [CrossRef]
- Rana, P.; Bhargava, R. Numerical study of heat transfer enhancement in mixed convection flow along a vertical plate with heat source/sink utilizing nanofluids. Commun. Nonlinear Sci. Numer. Simul. 2011, 16, 4318–4334. [Google Scholar] [CrossRef]
- Kameswaran, P.K.; Makukula, Z.G.; Sibanda, P.; Motsa, S.S.; Murthy, P.V.S.N. A new algorithm for internal heat generation in nanofluid flow due to a stretching sheet in a porous medium. Int. J. Numer. Methods Heat Fluid Flow 2014, 24, 1020–1043. [Google Scholar] [CrossRef]
Properties | ||||
---|---|---|---|---|
Parameter | [36] | Present Study | |
---|---|---|---|
Analytical | SRM | RKF-45 | |
1 | 1.41421356 | 1.41421356 | 1.4142375 |
2 | 1.73205081 | 1.73205081 | 1.7320517 |
5 | 2.44948974 | 2.44948974 | 2.4494897 |
10 | 3.31662479 | 3.31662479 | 3.3166247 |
Parameters | Plate | ||||
---|---|---|---|---|---|
0.1 | 0.1 | 30° | 0.5 | 2.08% | 5.19% |
0.3 | 2.20% | 7.54% | |||
0.5 | 2.32% | 10.83% | |||
0.1 | 0.1 | 30° | 0.5 | 2.08% | 5.19% |
0.5 | 2.03% | 3.84% | |||
1.0 | 1.98% | 2.74% | |||
0.1 | 0.1 | 0° | 0.5 | 2.08% | 5.13% |
30° | 2.08% | 5.19% | |||
60° | 2.09% | 5.38% | |||
0.1 | 0.1 | 30° | −0.2 | 0.14% | 3.37% |
0 | 0.27% | 2.96% | |||
0.2 | 0.81% | 2.05% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Madhukesh, J.K.; Sarris, I.E.; Prasannakumara, B.C.; Abdulrahman, A. Investigation of Thermal Performance of Ternary Hybrid Nanofluid Flow in a Permeable Inclined Cylinder/Plate. Energies 2023, 16, 2630. https://doi.org/10.3390/en16062630
Madhukesh JK, Sarris IE, Prasannakumara BC, Abdulrahman A. Investigation of Thermal Performance of Ternary Hybrid Nanofluid Flow in a Permeable Inclined Cylinder/Plate. Energies. 2023; 16(6):2630. https://doi.org/10.3390/en16062630
Chicago/Turabian StyleMadhukesh, Javali Kotresh, Ioannis E. Sarris, Ballajja Chandrappa Prasannakumara, and Amal Abdulrahman. 2023. "Investigation of Thermal Performance of Ternary Hybrid Nanofluid Flow in a Permeable Inclined Cylinder/Plate" Energies 16, no. 6: 2630. https://doi.org/10.3390/en16062630
APA StyleMadhukesh, J. K., Sarris, I. E., Prasannakumara, B. C., & Abdulrahman, A. (2023). Investigation of Thermal Performance of Ternary Hybrid Nanofluid Flow in a Permeable Inclined Cylinder/Plate. Energies, 16(6), 2630. https://doi.org/10.3390/en16062630