Hydrogen Hydrate Promoters for Gas Storage—A Review
Abstract
:1. Introduction
2. Hydrogen Hydrate Promoters
2.1. Type sII Hydrate Crystals
2.1.1. Tetrahydrofuran (THF)
2.1.2. Cyclopentane
2.1.3. Cyclohexanone
2.1.4. Propane and Butane
2.1.5. Furan and Tetrahydrothiophene
2.1.6. Argon and Nitrogen
2.2. Type sI Hydrate Crystals
2.2.1. Methane
2.2.2. Carbon Dioxide
2.2.3. Ethane
2.2.4. Ethylene Oxide and Cyclopropane
2.3. Type sH Clathrate Hydrates
2.4. Semi-Clathrate Hydrates
3. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Howarth, R.W.; Jacobson, M.Z. How green is blue hydrogen? Energy Sci. Eng. 2021, 9, 1676–1687. [Google Scholar] [CrossRef]
- Barthelemy, H.; Weber, M.; Barbier, F. Hydrogen storage: Recent improvements and industrial perspectives. Int. J. Hydrogen Energy 2017, 42, 7254–7262. [Google Scholar] [CrossRef]
- Ausfelder, F.; Beilmann, C.; Bertau, M.; Bräuninger, S.; Heinzel, A.; Hoer, R.; Koch, W.; Mahlendorf, F.; Metzelthin, A.; Peuckert, M.; et al. Energy Storage as Part of a Secure Energy Supply. ChemBioEng Rev. 2017, 4, 144–210. [Google Scholar] [CrossRef] [Green Version]
- Acar, C.; Dincer, I. Review and evaluation of hydrogen production options for better environment. J. Clean. Prod. 2019, 218, 835–849. [Google Scholar] [CrossRef]
- Hirscher, M. Handbook of Hydrogen Storage: New Materials for Future Energy Storage; John Wiley & Sons: Hoboken, NJ, USA, 2010. [Google Scholar] [CrossRef]
- Raman, R.; Nair, V.K.; Prakash, V.; Patwardhan, A.; Nedungadi, P. Green-hydrogen research: What have we achieved, and where are we going? Bibliometrics analysis. Energy Rep. 2022, 8, 9242–9260. [Google Scholar] [CrossRef]
- Gupta, A.; Baron, G.V.; Perreault, P.; Lenaerts, S.; Ciocarlan, R.-G.; Cool, P.; Mileo, P.G.; Rogge, S.; Van Speybroeck, V.; Watson, G.; et al. Hydrogen Clathrates: Next Generation Hydrogen Storage Materials. Energy Storage Mater. 2021, 41, 69–107. [Google Scholar] [CrossRef]
- Saadi, A.; Becherif, M.; Ramadan, H. Hydrogen production horizon using solar energy in Biskra, Algeria. Int. J. Hydrogen Energy 2016, 41, 21899–21912. [Google Scholar] [CrossRef]
- Jain, I.; Lal, C.; Jain, A. Hydrogen storage in Mg: A most promising material. Int. J. Hydrogen Energy 2010, 35, 5133–5144. [Google Scholar] [CrossRef]
- Davoodabadi, A.; Mahmoudi, A.; Ghasemi, H. The potential of hydrogen hydrate as a future hydrogen storage medium. iScience 2021, 24, 101907. [Google Scholar] [CrossRef] [PubMed]
- Mostafaeipour, A.; Khayyami, M.; Sedaghat, A.; Mohammadi, K.; Shamshirband, S.; Sehati, M.-A.; Gorakifard, E. Evaluating the wind energy potential for hydrogen production: A case study. Int. J. Hydrogen Energy 2016, 41, 6200–6210. [Google Scholar] [CrossRef]
- Schlapbach, L.; Züttel, A. Hydrogen-storage materials for mobile applications. In Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group; Dusastre, V., Ed.; Nature Publishing Group: London, UK, 2010; pp. 265–270. [Google Scholar]
- Carpetis, C. Estimation of storage costs for large hydrogen storage facilities. Int. J. Hydrogen Energy 1982, 7, 191–203. [Google Scholar] [CrossRef]
- Taylor, J.; Alderson, J.; Kalyanam, K.; Lyle, A.; Phillips, L. Technical and economic assessment of methods for the storage of large quantities of hydrogen. Int. J. Hydrogen Energy 1986, 11, 5–22. [Google Scholar] [CrossRef]
- Luo, X.; Wang, J.; Dooner, M.; Clarke, J. Overview of current development in electrical energy storage technologies and the application potential in power system operation. Appl. Energy 2015, 137, 511–536. [Google Scholar] [CrossRef] [Green Version]
- Hwang, H.T.; Varma, A. Hydrogen storage for fuel cell vehicles. Curr. Opin. Chem. Eng. 2014, 5, 42–48. [Google Scholar] [CrossRef]
- Eberle, U.; Felderhoff, M.; Schüth, F. Chemical and Physical Solutions for Hydrogen Storage. Angew. Chem. Int. Ed. 2009, 48, 6608–6630. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Kobayashi, H.; Taylor, J.M.; Ikeda, R.; Kubota, Y.; Kato, K.; Takata, M.; Yamamoto, T.; Toh, S.; Matsumura, S.; et al. Hydrogen storage in Pd nanocrystals covered with a metal–organic framework. Nat. Mater. 2014, 13, 802–806. [Google Scholar] [CrossRef]
- Tong, L.; Xiao, J.; Bénard, P.; Chahine, R. Thermal management of metal hydride hydrogen storage reservoir using phase change materials. Int. J. Hydrogen Energy 2019, 44, 21055–21066. [Google Scholar] [CrossRef]
- Sethia, G.; Sayari, A. Activated carbon with optimum pore size distribution for hydrogen storage. Carbon 2016, 99, 289–294. [Google Scholar] [CrossRef]
- Pukazhselvan, D.; Kumar, V.; Singh, S. High capacity hydrogen storage: Basic aspects, new developments and milestones. Nano Energy. 2012, 1, 566–589. [Google Scholar] [CrossRef]
- Yanxing, Z.; Maoqiong, G.; Yuan, Z.; Xueqiang, D.; Jun, S. Thermodynamics analysis of hydrogen storage based on compressed gaseous hydrogen, liquid hydrogen and cryo-compressed hydrogen. Int. J. Hydrogen Energy 2019, 44, 16833–16840. [Google Scholar] [CrossRef]
- Hua, T.Q.; Ahluwalia, R.K.; Peng, J.-K.; Kromer, M.; Lasher, S.; McKenney, K.; Law, K.; Sinha, J. Technical assessment of compressed hydrogen storage tank systems for automotive applications. Int. J. Hydrogen Energy 2011, 36, 3037–3049. [Google Scholar] [CrossRef] [Green Version]
- Klontzas, E.; Tylianakis, E.; Froudakis, G.E. On the Enhancement of Molecular Hydrogen Interactions in Nanoporous Solids for Improved Hydrogen Storage. J. Phys. Chem. Lett. 2011, 2, 1824–1830. [Google Scholar] [CrossRef]
- Schmitz, B.; Müller, U.; Trukhan, N.; Schubert, M.; Férey, G.; Hirscher, M. Heat of Adsorption for Hydrogen in Microporous High-Surface-Area Materials. ChemPhysChem 2008, 9, 2181–2184. [Google Scholar] [CrossRef] [PubMed]
- Schlichtenmayer, M.; Hirscher, M. Nanosponges for hydrogen storage. J. Mater. Chem. 2012, 22, 10134–10143. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of Gases, With Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051. [Google Scholar] [CrossRef] [Green Version]
- Di Profio, P.; Arca, S.; Rossi, F.; Filipponi, M. Comparison of hydrogen hydrates with existing hydrogen storage technologies: Energetic and economic evaluations. Int. J. Hydrogen Energy 2009, 34, 9173–9180. [Google Scholar] [CrossRef]
- Jorgensen, S.W. Hydrogen storage tanks for vehicles: Recent progress and current status. Curr. Opin. Solid State Mater. Sci. 2011, 15, 39–43. [Google Scholar] [CrossRef]
- Liu, P.; Chu, J.; Hou, S.; Xu, P.; Zheng, J. Numerical simulation and optimal design for composite high-pressure hydrogen storage vessel: A review. Renew. Sustain. Energy Rev. 2012, 16, 1817–1827. [Google Scholar] [CrossRef]
- Michler, T.; Lindner, M.; Eberle, U.; Meusinger, J. Assessing hydrogen embrittlement in automotive hydrogen tanks. In Gaseous Hydrogen Embrittlement of Materials in Energy Technologies: The Problem, Its Characterisation and Effects on Particular Alloy Classes; Woodhead Publishing: Sawston, UK, 2012; pp. 94–125. [Google Scholar] [CrossRef]
- Arnold, G.; Wolf, J. Liquid Hydrogen for Automotive Application Next Generation Fuel for FC and ICE Vehicles. J. Cryog. Soc. Jpn. 2005, 40, 221–230. [Google Scholar] [CrossRef] [Green Version]
- Zohuri, B. Cryogenics and Liquid Hydrogen Storage. In Hydrogen Energy; Springer: Cham, Switzerland, 2019; pp. 121–139. [Google Scholar] [CrossRef]
- Luo, Y.; Sun, L.; Xu, F.; Liu, Z. Improved hydrogen storage of LiBH4and NH3BH3by catalysts. J. Mater. Chem. A 2018, 6, 7293–7309. [Google Scholar] [CrossRef]
- Stamatakis, E.; Zoulias, E.; Tzamalis, G.; Massina, Z.; Analytis, V.; Christodoulou, C.; Stubos, A. Metal hydride hydrogen compressors: Current developments & early markets. Renew. Energy 2018, 127, 850–862. [Google Scholar] [CrossRef]
- Chaudhuri, S.; Muckerman, J.T. First-Principles Study of Ti-Catalyzed Hydrogen Chemisorption on an Al Surface: A Critical First Step for Reversible Hydrogen Storage in NaAlH4. J. Phys. Chem. B 2005, 109, 6952–6957. [Google Scholar] [CrossRef]
- Vajo, J.J.; Salguero, T.T.; Gross, A.F.; Skeith, S.L.; Olson, G.L. Thermodynamic destabilization and reaction kinetics in light metal hydride systems. J. Alloys Compd. 2007, 446-447, 409–414. [Google Scholar] [CrossRef]
- Sakintuna, B.; Lamari-Darkrim, F.; Hirscher, M. Metal hydride materials for solid hydrogen storage: A review. Int. J. Hydrogen Energy 2007, 32, 1121–1140. [Google Scholar] [CrossRef]
- Jordá-Beneyto, M.; Suárez-García, F.; Lozano-Castelló, D.; Cazorla-Amorós, D.; Linares-Solano, A. Hydrogen storage on chemically activated carbons and carbon nanomaterials at high pressures. Carbon 2007, 45, 293–303. [Google Scholar] [CrossRef]
- Xia, Y.; Yang, Z.; Zhu, Y. Porous carbon-based materials for hydrogen storage: Advancement and challenges. J. Mater. Chem. A 2013, 1, 9365–9381. [Google Scholar] [CrossRef]
- Berenguer-Murcia, A.; Marco-Lozar, J.P.; Cazorla-Amorós, D. Hydrogen Storage in Porous Materials: Status, Milestones, and Challenges. Chem. Rec. 2018, 18, 900–912. [Google Scholar] [CrossRef] [Green Version]
- Mohan, M.; Sharma, V.K.; Kumar, E.A.; Gayathri, V. Hydrogen storage in carbon materials—A review. Energy Storage 2019, 1, e35. [Google Scholar] [CrossRef]
- Daschbach, J.L.; Chang, T.-M.; Corrales, L.R.; Dang, L.X.; McGrail, P. Molecular Mechanisms of Hydrogen-Loaded β-Hydroquinone Clathrate. J. Phys. Chem. B 2006, 110, 17291–17295. [Google Scholar] [CrossRef]
- Tsimpanogiannis, I.N.; Economou, I.G. Monte Carlo simulation studies of clathrate hydrates: A review. J. Supercrit. Fluids 2018, 134, 51–60. [Google Scholar] [CrossRef]
- Struzhkin, V.V.; Militzer, B.; Mao, W.L.; Mao, H.K.; Hemley, R.J. Hydrogen storage in molecular clathrates. Chem. Rev. 2007, 107, 4133–4151. [Google Scholar] [CrossRef]
- Mao, W.L.; Mao, H.-K.; Goncharov, A.F.; Struzhkin, V.V.; Guo, Q.; Hu, J.; Shu, J.; Hemley, R.J.; Somayazulu, M.; Zhao, Y. Hydrogen Clusters in Clathrate Hydrate. Science 2002, 297, 2247–2249. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.H.; Ruckenstein, E. Clathrate Hydrogen Hydrate—A Promising Material for Hydrogen Storage. Angew. Chem. Int. Ed. 2006, 45, 2011–2013. [Google Scholar] [CrossRef] [PubMed]
- Lang, X.; Fan, S.; Wang, Y. Intensification of methane and hydrogen storage in clathrate hydrate and future prospect. J. Nat. Gas Chem. 2010, 19, 203–209. [Google Scholar] [CrossRef]
- Veluswamy, H.P.; Kumar, R.; Linga, P. Hydrogen storage in clathrate hydrates: Current state of the art and future directions. Appl. Energy 2014, 122, 112–132. [Google Scholar] [CrossRef]
- Ozaki, M.; Tomura, S.; Ohmura, R.; Mori, Y.H. Comparative study of large-scale hydrogen storage technologies: Is hydrate-based storage at advantage over existing technologies? Int. J. Hydrogen Energy 2014, 39, 3327–3341. [Google Scholar] [CrossRef]
- Chattaraj, P.K.; Bandaru, S.; Mondal, S. Hydrogen storage in clathrate hydrates. J. Phys. Chem. A 2011, 115, 187–193. [Google Scholar] [CrossRef] [Green Version]
- DOE Technical Targets for Hydrogen Storage Systems for Material Handling Equipment. Department of Energy n.d. Available online: https://www.energy.gov/eere/fuelcells/doe-technical-targets-hydrogen-storage-systems-material-handling-equipment (accessed on 14 February 2023).
- Majid, A.A.A.; Worley, J.; Koh, C.A. Thermodynamic and Kinetic Promoters for Gas Hydrate Technological Applications. Energy Fuels 2021, 35, 19288–19301. [Google Scholar] [CrossRef]
- Lunine, J.I.; Stevenson, D.J. Thermodynamics of clathrate hydrate at low and high pressures with application to the outer solar system. Astrophys. J. Suppl. Ser. 1985, 58, 493–531. [Google Scholar] [CrossRef] [Green Version]
- Vos, W.L.; Finger, L.W.; Hemley, R.J.; Mao, H.-K. NovelH2-H2O clathrates at high pressures. Phys. Rev. Lett. 1993, 71, 3150–3153. [Google Scholar] [CrossRef]
- Florusse, L.J.; Peters, C.J.; Schoonman, J.; Hester, K.C.; Koh, C.A.; Dec, S.F.; Marsh, K.N.; Sloan, E.D. Stable Low-Pressure Hydrogen Clusters Stored in a Binary Clathrate Hydrate. Science 2004, 306, 469–471. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Lee, J.-W.; Kim, D.Y.; Park, J.; Seo, Y.-T.; Zeng, H.; Moudrakovski, I.L.; Ratcliffe, C.I.; Ripmeester, J.A. Tuning clathrate hydrates for hydrogen storage. Nature 2005, 434, 743–746. [Google Scholar] [CrossRef]
- Strobel, T.A.; Koh, C.A.; Sloan, E.D. Hydrogen storage properties of clathrate hydrate materials. Fluid Phase Equilibria 2007, 261, 382–389. [Google Scholar] [CrossRef]
- Strobel, T.A.; Hester, K.C.; Sloan, E.D.; Koh, C.A. A Hydrogen Clathrate Hydrate with Cyclohexanone: Structure and Stability. J. Am. Chem. Soc. 2007, 129, 9544–9545. [Google Scholar] [CrossRef]
- Ogata, K.; Hashimoto, S.; Sugahara, T.; Moritoki, M.; Sato, H.; Ohgaki, K. Storage capacity of hydrogen in tetrahydrofuran hydrate. Chem. Eng. Sci. 2008, 63, 5714–5718. [Google Scholar] [CrossRef]
- Ohgaki, K.; Sugahara, T.; Mori, H.; Sakamoto, J.; Hashimoto, S.; Ogata, K. Cage Occupancy of Hydrogen in Carbon Dioxide, Ethane, Cyclopropane, and Propane Hydrates. Open Thermodyn. J. 2008, 2, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Saha, D.; Deng, S. Accelerated formation of THF-H2 clathrate hydrate in porous media. Langmuir 2010, 26, 8414–8418. [Google Scholar] [CrossRef]
- Talyzin, A. Feasibility of H2–THF–H2O clathrate hydrates for hydrogen storage applications. Int. J. Hydrogen Energy 2008, 33, 111–115. [Google Scholar] [CrossRef]
- Grim, R.G.; Kerkar, P.B.; Sloan, E.D.; Koh, C.A.; Sum, A.K. Rapid hydrogen hydrate growth from non-stoichiometric tuning mixtures during liquid nitrogen quenching. J. Chem. Phys. 2012, 136, 234504. [Google Scholar] [CrossRef]
- Di Profio, P.; Arca, S.; Germani, R.; Savelli, G. Method for the Production of Binary Clathrate Hydrates of Hydrogen. WO2008142560A2, 4 April 2008. [Google Scholar]
- Zhang, J.S.; Lee, J.W. Equilibrium of Hydrogen + Cyclopentane and Carbon Dioxide + Cyclopentane Binary Hydrates. J. Chem. Eng. Data 2008, 54, 659–661. [Google Scholar] [CrossRef]
- Komatsu, H.; Yoshioka, H.; Ota, M.; Sato, Y.; Watanabe, M.; Smith, R.L.; Peters, C.J. Phase Equilibrium Measurements of Hydrogen−Tetrahydrofuran and Hydrogen−Cyclopentane Binary Clathrate Hydrate Systems. J. Chem. Eng. Data 2010, 55, 2214–2218. [Google Scholar] [CrossRef]
- Jianwei, D.; Deqing, L.; Dongliang, L.; Xinjun, L. Experimental Determination of the Equilibrium Conditions of Binary Gas Hydrates of Cyclopentane + Oxygen, Cyclopentane + Nitrogen, and Cyclopentane + Hydrogen. Ind. Eng. Chem. Res. 2010, 49, 11797–11800. [Google Scholar] [CrossRef]
- Veluswamy, H.P.; Chin, W.I.; Linga, P. Clathrate hydrates for hydrogen storage: The impact of tetrahydrofuran, tetra-n-butylammonium bromide and cyclopentane as promoters on the macroscopic kinetics. Int. J. Hydrogen Energy 2014, 39, 16234–16243. [Google Scholar] [CrossRef]
- Skiba, S.S.; Larionov, E.G.; Manakov, A.Y.; Kolesov, B.A.; Ancharov, A.I.; Aladko, E.Y. Double clathrate hydrate of propane and hydrogen. J. Incl. Phenom. Macrocycl. Chem. 2009, 63, 383–386. [Google Scholar] [CrossRef]
- Veluswamy, H.P.; Yew, J.C.; Linga, P. New Hydrate Phase Equilibrium Data for Two Binary Gas Mixtures of Hydrogen and Propane Coupled with a Kinetic Study. J. Chem. Eng. Data 2015, 60, 228–237. [Google Scholar] [CrossRef]
- Veluswamy, H.P.; Chen, J.Y.; Linga, P. Surfactant effect on the kinetics of mixed hydrogen/propane hydrate formation for hydrogen storage as clathrates. Chem. Eng. Sci. 2015, 126, 488–499. [Google Scholar] [CrossRef]
- Koh, D.-Y.; Kang, H.; Jeon, J.; Ahn, Y.-H.; Park, Y.; Kim, H.; Lee, H. Tuning Cage Dimension in Clathrate Hydrates for Hydrogen Multiple Occupancy. J. Phys. Chem. C 2014, 118, 3324–3330. [Google Scholar] [CrossRef]
- Papadimitriou, N.I.; Tsimpanogiannis, I.N.; Economou, I.G.; Stubos, A.K. The effect of lattice constant on the storage capacity of hydrogen hydrates: A Monte Carlo study. Mol. Phys. 2016, 114, 2664–2671. [Google Scholar] [CrossRef]
- Li, D.; Wang, S.; Du, Q.; Huang, R. How many hydrogen molecules (H2) can be stored in a clathrate hydrate cage? J. Renew. Sustain. Energy 2018, 10, 034902. [Google Scholar] [CrossRef]
- Tsuda, T.; Ogata, K.; Hashimoto, S.; Sugahara, T.; Moritoki, M.; Ohgaki, K. Storage capacity of hydrogen in tetrahydrothiophene and furan clathrate hydrates. Chem. Eng. Sci. 2009, 64, 4150–4154. [Google Scholar] [CrossRef]
- Amano, S.; Tsuda, T.; Hashimoto, S.; Sugahara, T.; Ohgaki, K. Competitive cage occupancy of hydrogen and argon in structure-II hydrates. Fluid Phase Equilibria 2010, 298, 113–116. [Google Scholar] [CrossRef]
- Lu, H.; Wang, J.; Liu, C.; Ratcliffe, C.I.; Becker, U.; Kumar, R.; Ripmeester, J. Multiple H2 Occupancy of Cages of Clathrate Hydrate under Mild Conditions. J. Am. Chem. Soc. 2012, 134, 9160–9162. [Google Scholar] [CrossRef]
- Liu, J.; Hou, J.; Xu, J.; Liu, H.; Li, S.; Chen, G.; Zhang, J. Theoretical investigation of exchange of N2 and H2 in sII clathrate hydrates. Chem. Phys. Lett. 2016, 660, 266–271. [Google Scholar] [CrossRef]
- Park, S.; Koh, D.-Y.; Kang, H.; Lee, J.W.; Lee, H. Effect of Molecular Nitrogen on Multiple Hydrogen Occupancy in Clathrate Hydrates. J. Phys. Chem. C 2014, 118, 20203–20208. [Google Scholar] [CrossRef]
- Matsumoto, Y.; Grim, R.G.; Khan, N.M.; Sugahara, T.; Ohgaki, K.; Sloan, E.D.; Koh, C.A.; Sum, A.K. Investigating the Thermodynamic Stabilities of Hydrogen and Methane Binary Gas Hydrates. J. Phys. Chem. C 2014, 118, 3783–3788. [Google Scholar] [CrossRef]
- Belosludov, R.V.; Zhdanov, R.K.; Subbotin, O.S.; Mizuseki, H.; Kawazoe, Y.; Belosludov, V.R. Theoretical study of hydrogen storage in binary hydrogen-methane clathrate hydrates. J. Renew. Sustain. Energy 2014, 6, 053132. [Google Scholar] [CrossRef]
- Zhang, Z.; Kusalik, P.G.; Guo, G.-J. Molecular Insight into the Growth of Hydrogen and Methane Binary Hydrates. J. Phys. Chem. C 2018, 122, 7771–7778. [Google Scholar] [CrossRef]
- Kim, D.-Y.; Lee, H. Spectroscopic Identification of the Mixed Hydrogen and Carbon Dioxide Clathrate Hydrate. J. Am. Chem. Soc. 2005, 127, 9996–9997. [Google Scholar] [CrossRef]
- Kumar, R.; Englezos, P.; Moudrakovski, I.; Ripmeester, J.A. Structure and composition of CO2/H2and CO2/H2/C3H8hydrate in relation to simultaneous CO2capture and H2production. AIChE J. 2009, 55, 1584–1594. [Google Scholar] [CrossRef]
- Kumar, R.; Lang, S.; Englezos, P.; Ripmeester, J. Application of the ATR-IR Spectroscopic Technique to the Characterization of Hydrates Formed by CO2, CO2/H2 and CO2/H2/C3H8. J. Phys. Chem. A 2009, 113, 6308–6313. [Google Scholar] [CrossRef]
- Park, J.; Lee, H. Spectroscopic evidences of the double hydrogen hydrates stabilized with ethane and propane. Korean J. Chem. Eng. 2007, 24, 624–627. [Google Scholar] [CrossRef]
- Belosludov, R.V.; Zhdanov, R.K.; Subbotin, O.S.; Mizuseki, H.; Souissi, M.; Kawazoe, Y.; Belosludov, V.R. Theoretical modelling of the phase diagrams of clathrate hydrates for hydrogen storage applications. Mol. Simul. 2012, 38, 773–780. [Google Scholar] [CrossRef]
- Skiba, S.S.; Larionov, E.G.; Manakov, A.Y.; Kozhemjachenko, S.I. Gas hydrate formation in the system C2H6–H2–H2O at pressures up to 250 MPa. J. Incl. Phenom. Macrocycl. Chem. 2010, 67, 353–359. [Google Scholar] [CrossRef]
- Lee, W.; Kang, D.W.; Ahn, Y.-H.; Lee, J.W. Rapid Formation of Hydrogen-Enriched Hydrocarbon Gas Hydrates under Static Conditions. ACS Sustain. Chem. Eng. 2021, 9, 8414–8424. [Google Scholar] [CrossRef]
- Papadimitriou, N.; Tsimpanogiannis, I.; Stubos, A. Monte Carlo study of sI hydrogen hydrates. Mol. Simul. 2010, 36, 736–744. [Google Scholar] [CrossRef]
- Suguhara, T.; Hashimoto, S.; Mori, H.; Sakamoto, J.; Ogata, K.; Ohgaki, K. Cage Occupancies of Hydrogen Molecule and Thermodynamic Stabilities of Hydrogen-Containing Hydrates. 2008. Available online: https://www.osti.gov/etdeweb/biblio/21104841 (accessed on 22 December 2022).
- Strobel, T.A.; Koh, C.A.; Sloan, E.D. Water Cavities of sH Clathrate Hydrate Stabilized by Molecular Hydrogen. J. Phys. Chem. B 2008, 112, 1885–1887. [Google Scholar] [CrossRef]
- Duarte, A.R.C.; Shariati, A.; Rovetto, L.J.; Peters, C.J. Water Cavities of sH Clathrate Hydrate Stabilized by Molecular Hydrogen: Phase Equilibrium Measurements. J. Phys. Chem. B 2008, 112, 1888–1889. [Google Scholar] [CrossRef]
- Martín, A.; Peters, C.J. Hydrogen Storage in sH Clathrate Hydrates: Thermodynamic Model. J. Phys. Chem. B 2009, 113, 7558–7563. [Google Scholar] [CrossRef]
- Valdés, Á.; Kroes, G.-J. Theoretical Investigation of Two H2 Molecules Inside the Cages of the Structure H Clathrate Hydrate. J. Phys. Chem. C 2012, 116, 21664–21672. [Google Scholar] [CrossRef]
- Luo, Y.; Li, X.; Guo, G.; Yue, G.; Xu, Z.; Sun, Q.; Liu, A.; Guo, X. Equilibrium Conditions of Binary Gas Mixture CH4 + H2 in Semiclathrate Hydrates of Tetra- n -butyl Ammonium Bromide. J. Chem. Eng. Data 2018, 63, 3975–3979. [Google Scholar] [CrossRef]
- Yu, C.; Fan, S.; Lang, X.; Wang, Y.; Li, G.; Wang, S. Hydrogen and chemical energy storage in gas hydrate at mild conditions. Int. J. Hydrogen Energy 2020, 45, 14915–14921. [Google Scholar] [CrossRef]
- Deschamps, J.; Dalmazzone, D. Hydrogen Storage in Semiclathrate Hydrates of Tetrabutyl Ammonium Chloride and Tetrabutyl Phosphonium Bromide. J. Chem. Eng. Data 2010, 55, 3395–3399. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saikia, T.; Patil, S.; Sultan, A. Hydrogen Hydrate Promoters for Gas Storage—A Review. Energies 2023, 16, 2667. https://doi.org/10.3390/en16062667
Saikia T, Patil S, Sultan A. Hydrogen Hydrate Promoters for Gas Storage—A Review. Energies. 2023; 16(6):2667. https://doi.org/10.3390/en16062667
Chicago/Turabian StyleSaikia, Tinku, Shirish Patil, and Abdullah Sultan. 2023. "Hydrogen Hydrate Promoters for Gas Storage—A Review" Energies 16, no. 6: 2667. https://doi.org/10.3390/en16062667
APA StyleSaikia, T., Patil, S., & Sultan, A. (2023). Hydrogen Hydrate Promoters for Gas Storage—A Review. Energies, 16(6), 2667. https://doi.org/10.3390/en16062667