Incipient Fault Diagnosis of a Grid-Connected T-Type Multilevel Inverter Using Multilayer Perceptron and Walsh Transform
Abstract
:1. Introduction
2. Structure of the Grid-Connected Systems with a T-Type Three-Level
3. Fault Detection and Diagnosis Method
3.1. Feature Extraction Using Walsh Transform
3.2. Diagnosis with Artificial Neural Network
4. Results of Experimental Tests
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Milligan, M.; Frew, B.; Kirby, B.; Schuerger, M.; Clark, K.; Lew, D.; Denholm, P.; Zavadil, B.; O’Malley, M.; Tsuchida, B. Alternatives No More: Wind and Solar Power Are Mainstays of a Clean, Reliable, Affordable Grid. IEEE Power Energy Mag. 2015, 13, 78–87. [Google Scholar] [CrossRef]
- Ali Khan, M.Y.; Liu, H.; Yang, Z.; Yuan, X. A Comprehensive Review on Grid Connected Photovoltaic Inverters, Their Modulation Techniques, and Control Strategies. Energies 2020, 13, 4185. [Google Scholar] [CrossRef]
- Siu, K.K.M.; Ho, C.N.M. Generalized design approach of a family of grid-connected converters based on active virtual ground technique for single-phase AC microgrid applications. CPSS Trans. Power Electron. Appl. 2020, 5, 203–212. [Google Scholar] [CrossRef]
- Barrero-González, F.; Roncero-Clemente, C.; Milanés-Montero, M.I.; González-Romera, E.; Romero-Cadaval, E.; Husev, O.; Pires, V.F. Improvements on the Carrier-Based Control Method for a Three-Level T-Type, Quasi-Impedance-Source Inverter. Electronics 2019, 8, 677. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.W.; Zhang, T.; Chen, N.; Jin, T. Reliability modeling and analysis for a novel design of modular converter system of wind turbines. Reliab. Eng. Syst. Saf. 2013, 111, 86–94. [Google Scholar] [CrossRef] [Green Version]
- Madasamy, P.; Suresh Kumar, V.; Sanjeevikumar, P.; Holm-Nielsen, J.B.; Hosain, E.; Bharatiraja, C. A Three-Phase Transformerless T-Type- NPC-MLI for Grid Connected PV Systems with Common-Mode Leakage Current Mitigation. Energies 2019, 12, 2434. [Google Scholar] [CrossRef] [Green Version]
- Kan, S.; Ruan, X.; Huang, X.; Dang, H. Second Harmonic Current Reduction for Flying Capacitor Clamped Boost Three-Level Converter in Photovoltaic Grid-Connected Inverter. IEEE Trans. Power Electron. 2021, 36, 1669–1679. [Google Scholar] [CrossRef]
- Shawky, A.; Ahmed, M.; Orabi, M.; Aroudi, A.E. Classification of Three-Phase Grid-Tied Microinverters in Photovoltaic Applications. Energies 2020, 13, 2929. [Google Scholar] [CrossRef]
- Xu, S.; Zhang, J.; Huang, Y.; Jatskevich, J. Dynamic Average-Value Modeling of Three-Level T-Type Grid-Connected Converter System. IEEE J. Emerg. Sel. Top. Power Electron. 2019, 7, 2428–2442. [Google Scholar] [CrossRef]
- Amaral, T.G.; Pires, V.F.; Cordeiro, A.; Foito, D. A Skewness Based Method for Diagnosis in Quasi-Z T-Type Grid-Connected Converters. In Proceedings of the 8th International Conference on Renewable Energy Research and Applications, Brasov, Romania, 3–6 November 2019; pp. 131–136. [Google Scholar] [CrossRef]
- Zio, E. The Monte Carlo Simulation Method for System Reliability and Risk Analysis. In Springer Series in Reliability Engineering; Springer: Berlin/Heidelberg, Germany, 2013; Volume XIV, ISBN 978-1-4471-4587-5. [Google Scholar]
- Hu, K.; Liu, Z.; Yang, Y.; Iannuzzo, F.; Blaabjerg, F. Ensuring a Reliable Operation of Two-Level IGBT-Based Power Converters: A Review of Monitoring and Fault-Tolerant Approaches. IEEE Access 2020, 8, 89988–90022. [Google Scholar] [CrossRef]
- Yang, S.; Bryant, A.; Mawby, P.; Xiang, D.; Ran, L.; Tavner, P. An Industry-Based Survey of Reliability in Power Electronic Converters. IEEE Trans. Ind. Appl. 2011, 47, 1441–1451. [Google Scholar] [CrossRef]
- Spertino, F.; Amato, A.; Casali, G.; Ciocia, A.; Malgaroli, G. Reliability Analysis and Repair Activity for the Components of 350 kW Inverters in a Large Scale Grid-Connected Photovoltaic System. Electronics 2021, 10, 564. [Google Scholar] [CrossRef]
- Mullali Kunnontakath Puthiyapurayil, M.R.; Nadir Nasirudeen, M.; Saywan, Y.A.; Ahmad, M.W.; Malik, H. A Review of Open-Circuit Switch Fault Diagnostic Methods for Neutral Point Clamped Inverter. Electronics 2022, 11, 3169. [Google Scholar] [CrossRef]
- Khan, S.S.; Wen, H. A Comprehensive Review of Fault Diagnosis and Tolerant Control in DC-DC Converters for DC Microgrids. IEEE Access 2021, 9, 80100–80127. [Google Scholar] [CrossRef]
- Jaen-Cuellar, A.Y.; Elvira-Ortiz, D.A.; Osornio-Rios, R.A.; Antonino-Daviu, J.A. Advances in Fault Condition Monitoring for Solar Photovoltaic and Wind Turbine Energy Generation: A Review. Energies 2022, 15, 5404. [Google Scholar] [CrossRef]
- Gao, Z.; Cecati, C.; Ding, S.X. A Survey of Fault Diagnosis and Fault-Tolerant Techniques—Part I: Fault Diagnosis with Model-Based and Signal-Based Approaches. IEEE Trans. Ind. Electron. 2015, 62, 3757–3767. [Google Scholar] [CrossRef] [Green Version]
- Gao, Z.; Cecati, C.; Ding, S.X. A Survey of Fault Diagnosis and Fault-Tolerant Techniques—Part II: Fault Diagnosis with Knowledge-Based and Hybrid/Active Approaches. IEEE Trans. Ind. Electron. 2015, 62, 3768–3774. [Google Scholar] [CrossRef] [Green Version]
- Qiu, G.; Wu, F.; Chen, K.; Wang, L. A Robust Accuracy Weighted Random Forests Algorithm for IGBTs Fault Diagnosis in PWM Converters without Additional Sensors. Appl. Sci. 2022, 12, 2121. [Google Scholar] [CrossRef]
- Pires, V.F.; Cordeiro, A.; Foito, D.; Martins, J.F. Quasi-Z-Source Inverter With a T-Type Converter in Normal and Failure Mode. IEEE Trans. Power Electron. 2016, 31, 7462–7470. [Google Scholar] [CrossRef]
- Fahad, M.; Tariq, M.; Sarwar, A.; Modabbir, M.; Zaid, M.A.; Satpathi, K.; Hussan, M.R.; Tayyab, M.; Alamri, B.; Alahmadi, A. Asymmetric Multilevel Inverter Topology and Its Fault Management Strategy for High-Reliability Applications. Energies 2021, 14, 4302. [Google Scholar] [CrossRef]
- He, J.; Yang, Q.; Wang, Z. On-line fault diagnosis and fault-tolerant operation of modular multilevel converters—A comprehensive review. CES Trans. Electr. Mach. Syst. 2020, 4, 360–372. [Google Scholar] [CrossRef]
- Abadi, M.B.; Mendes, A.M.S.; Cruz, S.M.A. Three-level NPC inverter fault diagnosis by the Average Current Park’s Vector approach. In Proceedings of the 2012 XXth International Conference on Electrical Machines, Marseille, France, 2–5 September 2012; pp. 1893–1898. [Google Scholar] [CrossRef]
- Zhang, Y. Current behavior-based open-switch fault on-line diagnosis of inverters in PMSM drive systems. Measurement 2022, 202, 111810. [Google Scholar] [CrossRef]
- Iglesias-Rojas, J.C.; Velázquez-Lozada, E.; Baca-Arroyo, R. Online Failure Diagnostic in Full-Bridge Module for Optimum Setup of an IGBT-Based Multilevel Inverter. Energies 2022, 15, 5203. [Google Scholar] [CrossRef]
- Cheng, Y.; Dong, W.; Gao, F.; Xin, G. Open-circuit fault diagnosis of traction inverter based on compressed sensing theory. Chin. J. Electr. Eng. 2020, 6, 52–63. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, Z.; Li, X. Blockchain-based decentralized federated transfer learning methodology for collaborative machinery fault diagnosis. Reliab. Eng. Syst. Saf. 2022, 229, 108885. [Google Scholar] [CrossRef]
- Ding, Y.; Jia, M.; Zhuang, J.; Cao, Y.; Zhao, X.; Lee, C.-G. Deep imbalanced domain adaptation for transfer learning fault diagnosis of bearings under multiple working conditions. Reliab. Eng. Syst. Saf. 2022, 230, 108890. [Google Scholar] [CrossRef]
- Park, C.H.; Kim, H.; Suh, C.; Chae, M.; Yoon, H.; Youn, B.D. A health image for deep learning-based fault diagnosis of a permanent magnet synchronous motor under variable operating conditions: Instantaneous current residual map. Reliab. Eng. Syst. Saf. 2022, 226, 108715. [Google Scholar] [CrossRef]
- Zuo, L.; Xu, F.; Zhang, C.; Xiahou, T.; Liu, Y. A multi-layer spiking neural network-based approach to bearing fault diagnosis. Reliab. Eng. Syst. Saf. 2022, 225, 108561. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, X.; Yang, R. Incipient fault detection based on Just-in-time-learning and wavelet transform for DAB DC-DC converter. In Proceedings of the 33rd Chinese Control and Decision Conference, Kunming, China, 22–24 May 2021; pp. 6245–6250. [Google Scholar] [CrossRef]
- Baghli, M.; Delpha, C.; Diallo, D.; Hallouche, A.; Mba, D.; Wang, T. Three-Level NPC Inverter Incipient Fault Detection and Classification using Output Current Statistical Analysis. Energies 2019, 12, 1372. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Urrego, L.; García, E.; Quiles, E.; Correcher, A.; Morant, F.; Pizá, R. Diagnosis of Intermittent Faults in IGBTs Using the Latent Nestling Method with Hybrid Coloured Petri Nets. Math. Probl. Eng. 2015, 2015, 130790. [Google Scholar] [CrossRef] [Green Version]
- Freire, N.M.; AEstima, J.O.; Marques Cardoso, A.J. Open-Circuit Fault Diagnosis in PMSG Drives for Wind Turbine Applications. IEEE Trans. Ind. Electron. 2013, 60, 3957–3967. [Google Scholar] [CrossRef]
- Mendes, A.M.S.; Bandarabadi, M.; Cruz, S.M.A. Fault diagnostic algorithm for three-level neutral point clamped AC motor drives, based on the average current Park’s vector. IET Power Electron. 2014, 7, 1127–1137. [Google Scholar] [CrossRef]
- Estima, J.O.; Marques Cardoso, A.J. A New Algorithm for Real-Time Multiple Open-Circuit Fault Diagnosis in Voltage-Fed PWM Motor Drives by the Reference Current Errors. IEEE Trans. Ind. Electron. 2013, 60, 3496–3505. [Google Scholar] [CrossRef]
- Gonzalez-Jimenez, D.; del-Olmo, J.; Poza, J.; Garramiola, F.; Madina, P. Data-Driven Fault Diagnosis for Electric Drives: A Review. Sensors 2021, 21, 4024. [Google Scholar] [CrossRef]
- Liu, S.; Jiang, B.; Mao, Z.; Ma, Y. Observer based fault estimation for inverter devices of traction systems with disturbance. In Proceedings of the Chinese Automation Congress (CAC), Jinan, China, 20–22 October 2017; pp. 2006–2010. [Google Scholar] [CrossRef]
- Wang, B.; Li, Z.; Bai, Z.; Krein, P.T.; Ma, H. A Voltage Vector Residual Estimation Method Based on Current Path Tracking for T-Type Inverter Open-Circuit Fault Diagnosis. IEEE Trans. Power Electron. 2021, 36, 13460–13477. [Google Scholar] [CrossRef]
- Xiao, C.; Wu, W.; Gao, N.; Koutroulis, E.; Chung, H.S.; Blaabjerg, F. Fault Diagnosis and Reconfiguration for H6 Grid-Tied Inverter Using Kalman Filter. In Proceedings of the 47th Annual Conference of the IEEE Industrial Electronics Society (IECON 2021), Toronto, ON, Canada, 13–16 October 2021; pp. 1–5. [Google Scholar] [CrossRef]
- Youssef, A.B.; El Khil, S.K.; Belkhodja, I.S. Open-circuit fault diagnosis and voltage sensor fault tolerant control of a single phase pulsed width modulated rectifier. Math. Comput. Simul. 2017, 131, 234–252. [Google Scholar] [CrossRef]
- Chen, J.-L.; Kuo, C.-L.; Chen, S.-J.; Kao, C.-C.; Zhan, T.-S.; Lin, C.-H.; Chen, Y.-S. DC-side fault detection for photovoltaic energy conversion system using fractional-order dynamic-error-based fuzzy Petri net integrated with intelligent meters. IET Renew. Power Gener. 2016, 10, 1318–1327. [Google Scholar] [CrossRef]
- Wu, Y.; Jiang, B.; Zhu, Z.; Zeng, Q. Data-driven based ToMFIR Design with Application to Incipient Fault Detection in High-speed Rail Vehicle Suspension System. In Proceedings of the Symposium on Fault Detection, Supervision and Safety for Technical Processes (SAFEPROCESS), Xiamen, China, 5–7 July 2019; pp. 645–650. [Google Scholar] [CrossRef]
- Karmacharya, I.M.; Gokaraju, R. Fault Location in Ungrounded Photovoltaic System Using Wavelets and ANN. IEEE Trans. Power Deliv. 2018, 33, 549–559. [Google Scholar] [CrossRef]
- Xiao, C.; Liu, Z.; Zhang, T.; Zhang, X. Deep Learning Method for Fault Detection of Wind Turbine Converter. Appl. Sci. 2021, 11, 1280. [Google Scholar] [CrossRef]
- Rajeswaran, N.; Thangaraj, R.; Mihet-Popa, L.; Krishna Vajjala, K.V.; Özer, Ö. FPGA Implementation of AI-Based Inverter IGBT Open Circuit Fault Diagnosis of Induction Motor Drive. Micromachines 2022, 13, 663. [Google Scholar] [CrossRef]
- Foito, D.; Martins, J.F.; Pires, V.F.; Maia, J. An Eigenvalue/Eigenvector 3D Current Reference Method for Detection and Fault Diagnosis in a Voltage Source Inverter. In Proceedings of the 35th Annual Conference of the IEEE Industrial Electronics Society (IECON), Porto, Portugal, 3–5 November 2009; pp. 195–199. [Google Scholar]
- Yuan, W.; Wang, T.; Diallo, D.; Delpha, C. A Fault Diagnosis Strategy Based on Multilevel Classification for a Cascaded Photovoltaic Grid-Connected Inverter. Electronics 2020, 9, 429. [Google Scholar] [CrossRef] [Green Version]
- Jin, G.; Wang, T.; Amirat, Y.; Zhou, Z.; Xie, T. A Layering Linear Discriminant Analysis-Based Fault Diagnosis Method for Grid-Connected Inverter. Mar. Sci. Eng. 2022, 10, 939. [Google Scholar] [CrossRef]
- Bouyeddou, B.; Harrou, F.; Taghezouit, B.; Sun, Y.; Hadj Arab, A. Improved Semi-Supervised Data-Mining-Based Schemes for Fault Detection in a Grid-Connected Photovoltaic System. Energies 2022, 15, 7978. [Google Scholar] [CrossRef]
- Hu, H.; Feng, F.; Wang, T. Open-circuit fault diagnosis of NPC inverter IGBT based on independent component analysis and neural network. Energy Rep. 2020, 6, 134–143. [Google Scholar] [CrossRef]
- Sarita, K.; Kumar, S.; Saket, R.K. OC fault diagnosis of multilevel inverter using SVM technique and detection algorithm. Comput. Electr. Eng. 2021, 96, 107481. [Google Scholar] [CrossRef]
- Chowdhury, D.; Villez, K. Qualitative trend analysis based on a mixed-integer representation. Comput. Chem. Eng. 2023, 170, 108109. [Google Scholar] [CrossRef]
- Hua, J.; Lu, L.; Ouyang, M.; Li, J.; Xu, L. Proton exchange membrane fuel cell system diagnosis based on the signed directed graph method. Power Sources 2011, 196, 14. [Google Scholar] [CrossRef]
- Gmati, B.; Jlassi, I.; El Khil, S.K.; Marques Cardoso, A.J. Open-switch fault diagnosis in voltage source inverters of PMSM drives using predictive current errors and fuzzy logic approach. IET Power Electron. 2021, 14, 1059–1072. [Google Scholar] [CrossRef]
- Hussain, I.; Khalil, I.U.; Islam, A.; Ahsan, M.U.; Iqbal, T.; Chowdhury, M.S.; Techato, K.; Ullah, N. Unified Fuzzy Logic Based Approach for Detection and Classification of PV Faults Using I–V Trend Line. Energies 2022, 15, 5106. [Google Scholar] [CrossRef]
- Yan, H.; Xu, Y.; Cai, F.; Zhang, H.; Zhao, W.; Gerada, C. PWM-VSI Fault Diagnosis for a PMSM Drive Based on the Fuzzy Logic Approach. IEEE Trans. Power Electron. 2019, 34, 759–768. [Google Scholar] [CrossRef]
- Nasser, A.R.; Azar, A.T.; Humaidi, A.J.; Al-Mhdawi, A.K.; Ibraheem, I.K. Intelligent Fault Detection and Identification Approach for Analog Electronic Circuits Based on Fuzzy Logic Classifier. Electronics 2021, 10, 2888. [Google Scholar] [CrossRef]
- Yang, F.; Xiao, D.Y. Review of SDG modeling and its application. Control Theory Appl. 2005, 22, 767–774. [Google Scholar]
- Tsai, D.; Wu, S.; Chiu, W. Defect detection in solar modules using ICA basis images. IEEE Trans. Ind. Inform. 2013, 9, 122–131. [Google Scholar] [CrossRef]
- Seshadrinath, J.; Singh, B.; Panigrahi, B. Vibration analysis based interturn fault diagnosis in induction machines. IEEE Trans. Ind. Inform. 2014, 10, 340–350. [Google Scholar] [CrossRef]
- Abiodun, O.I.; Jantan, A.; Omolara, A.E.; Dada, K.V.; Umar, A.M.; Linus, O.U.; Arshad, U.; Gana, U.; Kiru, M.U. Comprehensive Review of Artificial Neural Network Applications to Pattern Recognition. IEEE Access 2019, 7, 158820–158846. [Google Scholar] [CrossRef]
- Diniz, A.P.M.; Ciarelli, P.M.; Salles, E.O.T.; Coco, K.F. Long short-term memory neural networks for clogging detection in the submerged entry nozzle. Decis. Mak. Appl. Manag. Eng. 2022, 5, 154–168. [Google Scholar] [CrossRef]
- Ghosh, I.; Datta Chaudhuri, T. FEB-Stacking and FEB-DNN Models for Stock Trend Prediction: A Performance Analysis for Pre and Post COVID-19 Periods. Decis. Mak. Appl. Manag. Eng. 2021, 4, 51–84. [Google Scholar] [CrossRef]
- Martins, J.F.; Pires, V.F.; Lima, C.; Pires, A.J. Fault detection and diagnosis of grid-connected power inverters using PCA and current mean value. In Proceedings of the 38th Annual Conference on IEEE Industrial Electronics Society (IECON 2012), Montreal, QC, Canada, 25–28 October 2012; pp. 5185–5190. [Google Scholar] [CrossRef]
- Huang, Z.; Wang, Z.; Zhang, H. Multilevel feature moving average ratio method for fault diagnosis of the microgrid inverter switch. IEEE/CAA J. Autom. Sin. 2017, 4, 177–185. [Google Scholar] [CrossRef]
- Huang, Z.; Wang, Z.; Zhang, H. Multiple Open-Circuit Fault Diagnosis Based on Multistate Data Processing and Subsection Fluctuation Analysis for Photovoltaic Inverter. IEEE Trans. Instrum. Meas. 2018, 67, 516–526. [Google Scholar] [CrossRef]
- Hong, Y.-Y.; Wei, Y.-H.; Chang, Y.-R.; Lee, Y.-D.; Liu, P.-W. Fault detection and location by static switches in microgrids using wavelet transform and adaptive network-based fuzzy inference system. Energies 2014, 7, 2658–2675. [Google Scholar] [CrossRef] [Green Version]
- Ye, F.; Zhang, Z.; Chakrabarty, K.; Gu, X. Board-level functional fault diagnosis using multikernel support vector machines and incremental learning. IEEE Trans. Comput.-Aided Design Integr. Circuits Syst. 2014, 33, 279–290. [Google Scholar] [CrossRef]
- Sheibat-Othman, N.; Laouti, N.; Valour, J.; Othman, S. Support vector machines combined to observers for fault diagnosis in chemical reactors. Can. J. Chem. Eng. 2014, 92, 685–694. [Google Scholar] [CrossRef]
- Schweizer, M.; Kolar, J.W. Design and Implementation of a Highly Efficient Three-Level T-Type Converter for Low-Voltage Applications. IEEE Trans. Power Electron. 2013, 28, 899–907. [Google Scholar] [CrossRef]
- Ngo, V.-Q.-B.; Nguyen, M.-K.; Tran, T.-T.; Choi, J.-H.; Lim, Y.-C. A Modified Model Predictive Power Control for Grid-Connected T-Type Inverter with Reduced Computational Complexity. Electronics 2019, 8, 217. [Google Scholar] [CrossRef] [Green Version]
- Yin, Z.; Hu, C.; Luo, K.; Rui, T.; Feng, Z.; Lu, G.; Zhang, P. A Novel Model-Free Predictive Control for T-Type Three-Level Grid-Tied Inverters. Energies 2022, 15, 6557. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Sharma, S.K.; Mascarella, D.; Joos, G. Subfundamental Cycle Switching Frequency Variation Based on Output Current Ripple Analysis of a Three-Level Inverter. IEEE J. Emerg. Sel. Top. Power Electron. 2017, 5, 1797–1806. [Google Scholar] [CrossRef]
- Chao, K.-H.; Chang, L.-Y.; Hung, C.-C. Fault Diagnosis and Tolerant Control for Three-Level T-Type Inverters. Electronics 2022, 11, 2496. [Google Scholar] [CrossRef]
- Brito, R.; Carvalho, A.; Gericota, M. A new three-phase voltage sourced converter laplace model. In Proceedings of the 9th International Conference on Compatibility and Power Electronics (CPE), Costa da Caparica, Portugal, 24–26 June 2015; pp. 160–166. [Google Scholar] [CrossRef]
- Akagi, H.; Inoue, S.; Yoshii, T. Control and performance of a transformerless cascade PWM STATCOM with star configuration. IEEE Trans. Ind. Appl. 2007, 43, 1041–1049. [Google Scholar] [CrossRef]
- Thompson, A. The Cascading Haar Wavelet Algorithm for Computing the Walsh–Hadamard Transform. IEEE Signal Process. Lett. 2017, 24, 1020–1023. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Yue, Q.; Li, F. More Functions with Three-Valued Walsh Transform from Linear Combinations. IEEE Commun. Lett. 2019, 23, 564–567. [Google Scholar] [CrossRef]
- Zheng, P.; Huang, J. Efficient Encrypted Images Filtering and Transform Coding with Walsh-Hadamard Transform and Parallelization. IEEE Trans. Image Process. 2018, 27, 2541–2556. [Google Scholar] [CrossRef]
- Jeong, S.; Lee, J. Modulation Code and Multilayer Perceptron Decoding for Bit-Patterned Media Recording. IEEE Magn. Lett. 2020, 11, 1–5. [Google Scholar] [CrossRef]
- Liao, S.; Jiang, X.; Ge, Z. Weakly Supervised Multilayer Perceptron for Industrial Fault Classification with Inaccurate and Incomplete Labels. IEEE Trans. Autom. Sci. Eng. 2022, 19, 1192–1201. [Google Scholar] [CrossRef]
- Guo, W.; Yang, Y.; Zhou, Y.; Tan, Y.; Wei, H.; Song, A.; Pang, G. Influence Area of Overlap Singularity in Multilayer Perceptrons. IEEE Access 2018, 6, 60214–60223. [Google Scholar] [CrossRef]
- Ripley, B.D. Pattern Recognition and Neural Networks; University of Oxford: Oxford, UK; Cambridge University Press: Cambridge, UK, 1996. [Google Scholar]
- Møller, M.F. A scaled conjugate gradient algorithm for fast supervised learning. Neural Netw. 1993, 6, 525–533. [Google Scholar] [CrossRef]
- Hagan, M.; Demuth, H.; Beale, M. Neural Netw. Design; PWS Publisher: Boston, MA, USA, 1996. [Google Scholar]
Parameters | Value |
---|---|
Grid RMS voltage | 110 V |
Grid frequency | 50 Hz |
Input DC voltage | 500 V |
Transistor switching frequency | 20 kHz |
Inductance | 10 mH |
Internal resistance of the inductance | 0.1 Ω |
DC capacitors | 1000 μF |
Transistor States | Target Output Value | Training Data | Testing Data | Validation Data |
---|---|---|---|---|
No-fault | 100000 | 96 | 32 | 32 |
T1U | 010000 | 96 | 32 | 32 |
T1ML | 001000 | 96 | 32 | 32 |
T1MR | 000100 | 96 | 32 | 32 |
T1ML, T1MR | 000010 | 96 | 32 | 32 |
T1L | 000001 | 96 | 32 | 32 |
Switches States | SVM | ANN-MRA | Proposed WT-MLT |
---|---|---|---|
No-fault | 96% | 100% | 100% |
T1U | 79% | 87% | 90% |
T1ML | 76% | 81% | 84% |
T1MR | 76% | 82% | 84% |
T1ML, T1MR | 75% | 84% | 84% |
T1L | 80% | 88% | 90% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amaral, T.G.; Pires, V.F.; Cordeiro, A.; Foito, D.; Martins, J.F.; Yamnenko, J.; Tereschenko, T.; Laikova, L.; Fedin, I. Incipient Fault Diagnosis of a Grid-Connected T-Type Multilevel Inverter Using Multilayer Perceptron and Walsh Transform. Energies 2023, 16, 2668. https://doi.org/10.3390/en16062668
Amaral TG, Pires VF, Cordeiro A, Foito D, Martins JF, Yamnenko J, Tereschenko T, Laikova L, Fedin I. Incipient Fault Diagnosis of a Grid-Connected T-Type Multilevel Inverter Using Multilayer Perceptron and Walsh Transform. Energies. 2023; 16(6):2668. https://doi.org/10.3390/en16062668
Chicago/Turabian StyleAmaral, Tito G., Vitor Fernão Pires, Armando Cordeiro, Daniel Foito, João F. Martins, Julia Yamnenko, Tetyana Tereschenko, Liudmyla Laikova, and Ihor Fedin. 2023. "Incipient Fault Diagnosis of a Grid-Connected T-Type Multilevel Inverter Using Multilayer Perceptron and Walsh Transform" Energies 16, no. 6: 2668. https://doi.org/10.3390/en16062668
APA StyleAmaral, T. G., Pires, V. F., Cordeiro, A., Foito, D., Martins, J. F., Yamnenko, J., Tereschenko, T., Laikova, L., & Fedin, I. (2023). Incipient Fault Diagnosis of a Grid-Connected T-Type Multilevel Inverter Using Multilayer Perceptron and Walsh Transform. Energies, 16(6), 2668. https://doi.org/10.3390/en16062668