Optimization of Fracturing Parameters by Modified Genetic Algorithm in Shale Gas Reservoir
Abstract
:1. Introduction
2. Methodology
2.1. XGBoost Algorithm
2.2. Optimization Algorithm
2.2.1. Related Work
2.2.2. The Modified Genetic Algorithm (SGA)
3. Application
3.1. Data Description
3.2. Building the Productivity Prediction Model
3.3. Fracturing Parameters Optimization
3.4. Robustness Analysis
4. Conclusions and Future Research
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Acronyms | |
a | the control factor |
d | the ranks of fracturing parameters |
the mean values of fracturing parameters’ ranks | |
GA | Genetic Algorithm |
l | the loss function of XGBoost |
MAE | Mean Absolute Error |
m | the number of fracturing parameters |
n | the number of samples |
r | the crossover and mutation rates |
s | the ranks of the cumulative gas productions |
the mean value of the cumulative gas productions’ ranks | |
SGA | the modified Genetic Algorithm combined with the Spearman correlative coefficient |
SGD | Stochastic Gradient Descent |
XGBoost | Extreme Gradient Boosting |
y | the actual value of cumulative gas production |
the predicted value of XGBoost | |
ρ | the spearman correlative coefficient of fracturing parameter |
References
- Reymond, M. European key issues concerning natural gas: Dependence and vulnerability. Energy Policy 2007, 35, 4169–4176. [Google Scholar] [CrossRef]
- Barnes, R.; Bosworth, R. LNG is linking regional natural gas markets: Evidence from the gravity model. Energy Econ. 2015, 47, 11–17. [Google Scholar] [CrossRef]
- Najibi, H.; Rezaei, R.; Javanmardi, J.; Nasrifar, K.H.; Moshfeghian, M. Economic evaluation of natural gas transportation from Iran’s South-Pars gas field to market. Appl. Therm. Eng. 2009, 29, 2009–2015. [Google Scholar] [CrossRef]
- Wang, T.; Lin, B.Q. Impacts of unconventional gas development on China’s natural gas production and import. Renew. Sustain. Energy Rev. 2014, 39, 546–554. [Google Scholar] [CrossRef]
- Song, Y.; Li, Z.; Jiang, Z.X.; Luo, Q.; Liu, D.D.; Gao, Z.Y. Progress and development trend of unconventional oil and gas geological research. Pet. Explor. Dev. 2017, 44, 675–685. [Google Scholar] [CrossRef]
- Umbach, F. The unconventional gas revolution and the prospects for Europe and Asia. Asia Eur. J. 2013, 11, 305–322. [Google Scholar] [CrossRef]
- Guo, X.S.; Hu, D.F.; Li, Y.P.; Wei, Z.H.; Wei, X.F.; Liu, Z.J. Geological factors controlling shale gas enrichment and high production in Fuling shale gas field. Pet. Explor. Dev. 2017, 44, 513–523. [Google Scholar] [CrossRef]
- Zhang, X.T.; Jiang, X.; Yang, J.Y.; Chen, M. A Newly Developed Rate Analysis Method for a Single Shale Gas Well. Energy Explor. Exploit. 2015, 33, 309–316. [Google Scholar] [CrossRef] [Green Version]
- Xiang, Z.P.; Liang, H.B.; Qi, Z.L.; Xiao, Q.H.; Yan, W.D.; Liang, B.S.; Guo, Q.T. Mathematical Model for Isothermal Adsorption of Supercritical Shale Gas. J. Porous Media 2019, 22, 499–510. [Google Scholar] [CrossRef]
- Liang, X.; Lou, J.S.; Zhang, Y.Q.; Zhang, J.H.; Zhang, L.; Song, J.; Parlindungan, M.H.; Rana, K.H.; Dai, G.Y.; Amarjit, S.B. The First Real Time Reservoir Characterization, Well Placement and RSS Applications in Shale Gas Horizontal Well Play in Central China—A Case Study. In Proceedings of the IADC/SPE Asia Pacific Drilling Technology Conference and Exhibition, Tianjin, China, 19 July 2012. Paper Number: SPE-156239-MS. [Google Scholar] [CrossRef]
- Wang, G.; Zhou, H.; Fan, H.; Si, N.; Liu, J.; Ma, D.; Pan, W. Utilising Managed Pressure Drilling to Drill Shale Gas Horizontal Well in Fuling Shale Gas Field. In Proceedings of the SPE Asia Pacific Oil & Gas Conference and Exhibition, Perth, Australia, 17–19 October 2016. Paper Number: SPE-182490-MS. [Google Scholar] [CrossRef]
- Lin, R.; Ren, L.; Zhao, J.Z. Cluster Spacing Optimization for Horizontal-Well Fracturing in Shale Gas Reservoirs: Modeling and Field Application. In Proceedings of the SPE Europec featured at 80th EAGE Conference and Exhibition, Copenhagen, Denmark, 5–8 June 2018. Paper Number: SPE-190775-MS. [Google Scholar] [CrossRef]
- Reddy, R.M.; Rao, B.N. Fractal finite element method based shape sensitivity analysis of mixed-mode fracture. Finite Elem. Anal. Des. 2008, 44, 875–888. [Google Scholar] [CrossRef]
- Fu, J.L.; Wen, X.H. A Regularized Production-Optimization Method for Improved Reservoir Management. SPE J. 2018, 23, 467–481. [Google Scholar] [CrossRef]
- Atefeh, J.; Behnam, J. Stochastic Oilfield Optimization Under Uncertain Future Development Plans. SPE J. 2019, 24, 1526–1551. [Google Scholar] [CrossRef]
- Lin, R.; Li, G.M.; Zhao, J.Z.; Ren, L.; Wu, J.F. Productivity model of shale gas fractured horizontal well considering complex fracture morphology. J. Pet. Sci. Eng. 2022, 208, 109511. [Google Scholar] [CrossRef]
- Yuan, Y.Z.; Yan, W.D.; Chen, F.B.; Li, J.Q.; Xiao, Q.H.; Huang, X.L. Numerical Simulation for Shale Gas Flow in Complex Fracture System of Fractured Horizontal Well. Int. J. Nonlinear Sci. Numer. Simul. 2018, 19, 367–377. [Google Scholar] [CrossRef]
- Chen, X.C.; Li, J.; Gao, P.; Zhou, J.C. Prediction of shale gas horizontal wells productivity after volume fracturing using machine learning—an LSTM approach. Pet. Sci. Technol. 2022, 40, 1861–1877. [Google Scholar] [CrossRef]
- Wang, T.Y.; Wang, Q.S.; Shi, J.; Zhang, W.H.; Ren, W.X.; Wang, H.Z.; Tian, S.C. Productivity Prediction of Fractured Horizontal Well in Shale Gas Reservoirs with Machine Learning Algorithms. Appl. Sci. 2022, 11, 12064. [Google Scholar] [CrossRef]
- Xue, L.; Liu, Y.T.; Xiong, Y.F.; Liu, Y.L.; Cui, X.H.; Lei, G. A data-driven shale gas production forecasting method based on the multi-objective random forest regression. J. Pet. Sci. Eng. 2021, 196, 107801. [Google Scholar] [CrossRef]
- Al-Fatlawi, O.; Hossain, M.; Essa, A. Optimization of Fracture Parameters for Hydraulic Fractured Horizontal Well in a Heterogeneous Tight Reservoir: An Equivalent Homogeneous Modelling Approach. In Proceedings of the SPE Kuwait Oil & Gas Show and Conference, Mishref, Kuwait, 15–18 October 2019. Paper Number: SPE-198185-MS. [Google Scholar] [CrossRef]
- Wei, Z.P.; Wang, J.W.; Liu, R.M.; Wang, T.; Han, G.N. Parameter Optimization of Segmental Multicluster Fractured Horizontal Wells in Extremely Rich Gas Condensate Shale Reservoirs. Econ. Geol. 2021, 9, 730080. [Google Scholar] [CrossRef]
- Chen, Z.M.; Chen, D.; Li, W.Y.; He, Y.X.; Li, D.X.; Wang, J.N. A Parameter Optimization Workflow of Fractured Horizontal Well in Unconventional Reservoir: Case Study. In Proceedings of the International Petroleum Technology Conference, Riyadh, Saudi Arabia, 21–23 February 2022. Paper Number: IPTC-22215-MS. [Google Scholar] [CrossRef]
- Xu, S.Q.; Feng, Q.H.; Wang, S.; Javadpour, F.; Li, Y.Y. Optimization of multistage fractured horizontal well in tight oil based on embedded discrete fracture model. Comput. Chem. Eng. 2018, 117, 291–308. [Google Scholar] [CrossRef]
- Zhang, L.; Li, Z.P.; Lai, F.P.; Li, H.; Adenutsi, C.D.; Wang, K.J.; Yang, S.; Xu, W.L. Integrated optimization design for horizontal well placement and fracturing in tight oil reservoirs. J. Pet. Sci. Eng. 2019, 178, 82–96. [Google Scholar] [CrossRef]
- Wang, L.; Yao, Y.D.; Wang, K.J.; Adenutsi, C.D.; Zhao, G.X.; Lai, F.P. Data-driven multi-objective optimization design method for shale gas fracturing parameters. J. Nat. Gas Sci. Eng. 2022, 99, 104420. [Google Scholar] [CrossRef]
- Jiang, B.B.; Li, H.T.; Zhang, Y.; Wang, Y.Q.; Wang, J.C.; Patil, S. Multiple fracturing parameters optimization for horizontal gas well using a novel hybrid method. J. Nat. Gas Sci. Eng. 2016, 34, 604–615. [Google Scholar] [CrossRef]
- Ma, C.X.; Xing, Y.; Qu, Y.Q.; Cheng, X.; Wu, H.N.; Luo, P.; Xu, P.X. A New Fracture Parameter Optimization Method for the Horizontal Well Section of Shale Oil. Econ. Geol. 2022, 10, 895382. [Google Scholar] [CrossRef]
- Bian, X.B.; Ding, S.D.; Jiang, T.X.; Li, S.M.; Wang, H.T.; Wei, R.; Xiao, B.; Su, Y.; Zhong, G.Y.; Zuo, L.; et al. A Comprehensive Optimization Method of Multi Fracturing Parameters for Shale Gas Well Factory. In Proceedings of the 54th U.S. Rock Mechanics/Geomechanics Symposium, Physical Event Cancelled, Golden, CO, USA, 28 June–1 July 2020. Paper Number: ARMA-2020-1660. [Google Scholar]
- Vazquez, O.; Ross, G.; Jordan, M.M.; Baskoro, D.A.A.; Mackay, E.; Johnston, C.; Strachan, A. Automatic Optimization of Oilfield-Scale-Inhibitor Squeeze Treatments Delivered by Diving-Support Vessel. SPE J. 2018, 24, 60–70. [Google Scholar] [CrossRef]
- Dong, Z.; Wu, L.; Wang, L.; Li, W.; Wang, Z.; Liu, Z. Optimization of Fracturing Parameters with Machine-Learning and Evolutionary Algorithm Methods. Energies 2022, 15, 6063. [Google Scholar] [CrossRef]
- Guo, D.L.; Kang, Y.W.; Wang, Z.Y.; Zhao, Y.X.; Li, S.G. Optimization of fracturing parameters for tight oil production based on genetic algorithm. Petroleum 2022, 8, 252–263. [Google Scholar] [CrossRef]
- Yao, J.; Li, Z.H.; Liu, L.J.; Fan, W.P.; Zhang, M.S.; Zhang, K. Optimization of Fracturing Parameters by Modified Variable-Length Particle-Swarm Optimization in Shale-Gas Reservoir. SPE J. 2021, 26, 1032–1049. [Google Scholar] [CrossRef]
- Zhou, J.; Hua, Z.S. A correlation guided genetic algorithm and its application to feature selection. Appl. Soft Comput. 2022, 123, 108964. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), San Francisco, CA, USA, 13–17 August 2016. [Google Scholar]
- Tang, J.Z.; Fan, B.; Xiao, L.Z.; Tian, S.C.; Zhang, F.S.; Zhang, L.Y.; Weitz, D. A New Ensemble Machine-Learning Framework for Searching Sweet Spots in Shale Reservoirs. SPE J. 2021, 26, 482–497. [Google Scholar] [CrossRef]
- Carpenter, C. Dynamometer-Card Classification Uses Machine Learning. J. Pet. Technol. 2020, 72, 52–53. [Google Scholar] [CrossRef]
- Liu, W.; Liu, W.D.; Gu, J.W. Predictive model for water absorption in sublayers using a Joint Distribution Adaption based XGBoost transfer learning method. J. Pet. Sci. Eng. 2020, 188, 106937. [Google Scholar] [CrossRef]
- Zhai, L.Z.; Feng, S.H. A novel evacuation path planning method based on improved genetic algorithm. J. Intell. Fuzzy Syst. 2022, 42, 1813–1823. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Bai, W.L.; Liu, H. An optimized finite-difference scheme based on the improved PSO algorithm for wave propagation. In Proceedings of the SEG International Exposition and Annual Meeting, San Antonio, TX, USA, 15–20 September 2019. Paper Number: SEG-2019-3216363. [Google Scholar]
- John, H. Adaptation in Natural and Artificial Systems; MIT Press: Cambridge, MA, USA, 1992; ISBN 978-0262581110. [Google Scholar]
- Zhang, T.Y.; Zhang, Q.F.; Zhao, Z.N.; Cheng, L.; Liu, G.J. Optimization of boiler’s convection tubes based on Genetic Algorithm. In Proceedings of the 4th International Conference on Electrical and Electronics Engineering and Computer Science (ICEEECS), Jinan, China, 15–16 October 2016. [Google Scholar]
- Ding, K.; Ni, Y.; Fan, L.F.; Sun, T.L. Optimal Design of Water Supply Network Based on Adaptive Penalty Function and Improved Genetic Algorithm. Math. Probl. Eng. 2022, 2022, 8252086. [Google Scholar] [CrossRef]
- Li, H.; Shi, N.Y. Application of Genetic Optimization Algorithm in Financial Portfolio Problem. Comput. Intell. Neurosci. 2022, 2022, 5246309. [Google Scholar] [CrossRef]
Basic Parameters | Value | Units |
---|---|---|
Initial reservoir pressure | 28.9 | Mpa |
Total production time | 30 | day |
Depth to the tops of grid blocks | 2890 | m |
Depth to water–gas contact | 4500 | m |
Input Parameters | Units | Value | |
---|---|---|---|
Geological parameters | Porosity | % | 5–15 |
Permeability | mD | 0.0001–0.001 | |
Fracturing parameters | The number of fracturing sections | \ | 10–30 |
The length of the horizontal well | m | 300–3000 | |
Fracture width | m | 50–250 | |
Fracture half-length | m | 0.001–0.005 |
Hyperparameters | Value |
---|---|
booster | gbtree |
n_estimators | 150 |
max_depth | 12 |
min_child_weight | 9 |
eta | 0.023 |
gamma | 0.15 |
subsample | 1 |
Fracturing Parameters | Spearman Correlative Coefficient | Crossover Rate (%) | Mutation Rate (%) |
---|---|---|---|
the number of fracturing sections | 0.794 | 29.6 | 11.84 |
the length of the horizontal well | 0.525 | 36.51 | 14.6 |
fracture width | 0.356 | 40.85 | 16.34 |
fracture half-length | 0.271 | 43.04 | 17.21 |
Test Samples | Geological Parameters | The Optimal Fracturing Parameters | ||||
---|---|---|---|---|---|---|
Permeability (mD) | Porosity (%) | The Number of Fracturing Sections | The Length of the Horizontal Well (m) | Fracture Width (m) | Fracture Half-Length (m) | |
(a) | 0.00012 | 14.8 | 29 | 870 | 0.00478 | 229.95 |
(b) | 0.0005 | 14.8 | 29 | 2325 | 0.00475 | 207.43 |
(c) | 0.00098 | 14.8 | 29 | 1905 | 0.00415 | 192.37 |
(d) | 0.00012 | 10 | 28 | 2490 | 0.00476 | 244.72 |
(e) | 0.0005 | 10 | 28 | 2685 | 0.00461 | 218.92 |
(f) | 0.00098 | 10 | 28 | 2715 | 0.00447 | 181.62 |
(g) | 0.00012 | 5.2 | 28 | 2370 | 0.00496 | 242.35 |
(h) | 0.0005 | 5.2 | 29 | 1320 | 0.00484 | 228.5 |
(i) | 0.00098 | 5.2 | 28 | 1680 | 0.00488 | 229.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, X.; Ran, Q. Optimization of Fracturing Parameters by Modified Genetic Algorithm in Shale Gas Reservoir. Energies 2023, 16, 2868. https://doi.org/10.3390/en16062868
Zhou X, Ran Q. Optimization of Fracturing Parameters by Modified Genetic Algorithm in Shale Gas Reservoir. Energies. 2023; 16(6):2868. https://doi.org/10.3390/en16062868
Chicago/Turabian StyleZhou, Xin, and Qiquan Ran. 2023. "Optimization of Fracturing Parameters by Modified Genetic Algorithm in Shale Gas Reservoir" Energies 16, no. 6: 2868. https://doi.org/10.3390/en16062868
APA StyleZhou, X., & Ran, Q. (2023). Optimization of Fracturing Parameters by Modified Genetic Algorithm in Shale Gas Reservoir. Energies, 16(6), 2868. https://doi.org/10.3390/en16062868