Soft-Sensor Modeling of Temperature Variation in a Room under Cooling Conditions
Abstract
:1. Introduction
1.1. Literature Review
1.2. Research Objective and Paper’s Organization
- A new soft-sensor model used to predict the transient local temperature at the target position in space is developed based on the heat transfer process mechanism, and the effects of fluid transport on the temperature variations and model coefficients are understood by the flow visualization;
- The transient local temperature of each target position is accurately predicted by the proposed model. The accuracy of the model for the top layer is improved by a dead time correction;
- The model accuracy is barely affected within a 10% flow rate difference. The efforts in the soft sensor development of the air-conditioner system in practice can be reduced.
2. Methodology
2.1. Experimental Setup and Methods
2.2. Mathematical Model
3. Results and Discussion
3.1. Experiments
3.1.1. Temperature Variation
3.1.2. PIV Analysis
3.2. Model Training and Validation
3.2.1. Correlation Analysis
3.2.2. Case Study
3.2.3. Dead Time Correction
3.2.4. Model Comparison between Different Flow Rates
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
MAE | Mean absolute error |
rXY | Correlation coefficient |
R2 | Coefficient of determination |
t0 | Dead time, s |
Tinitial | Initial temperature, °C |
Tmeasured | Measured temperature, °C |
Tpredicted | Predicted temperature, °C |
Ts | Feed temperature, °C |
ΔT | Temperature difference between experimental data and predicted data, K |
x | Dependent variable |
, | ith temperature data and mean temperature data at a certain position for correlation analysis |
, | ith temperature data and mean temperature data at another position for correlation analysis |
y | Independent variable |
Experimental data | |
Predicted data | |
Mean value of experimental data | |
α, β, γ, δ | Coefficients of the mathematical model |
References
- Chen, L.; Msigwa, G.; Yang, M.; Osman, A.I.; Fawzy, S.; Rooney, D.W.; Yap, P.-S. Strategies to Achieve a Carbon Neutral Society: A Review. Environ. Chem. Lett. 2022, 20, 2277–2310. [Google Scholar] [CrossRef] [PubMed]
- Yu, F.W.; Ho, W.T. Tactics for Carbon Neutral Office Buildings in Hong Kong. J. Clean. Prod. 2021, 326, 129369. [Google Scholar] [CrossRef]
- Wang, N.; Phelan, P.E.; Harris, C.; Langevin, J.; Nelson, B.; Sawyer, K. Past Visions, Current Trends, and Future Context: A Review of Building Energy, Carbon, and Sustainability. Renew. Sustain. Energy Rev. 2018, 82, 976–993. [Google Scholar] [CrossRef]
- Lundgren, K.; Kjellstrom, T. Sustainability Challenges from Climate Change and Air Conditioning Use in Urban Areas. Sustainability 2013, 5, 3116–3128. [Google Scholar] [CrossRef] [Green Version]
- Li, X.-X. Linking Residential Electricity Consumption and Outdoor Climate in a Tropical City. Energy 2018, 157, 734–743. [Google Scholar] [CrossRef]
- Chen, J.M. Carbon Neutrality: Toward a Sustainable Future. Innovation 2021, 2, 100127. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.-C.; Lee, D. Smart Sensors Enable Smart Air Conditioning Control. Sensors 2014, 14, 11179–11203. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Dong, X.; Xiao, H.; Sun, H.; Wang, B.; Shi, W.; Li, X. Investigation of Thermal Comfort of Room Air Conditioner during Heating Season. Build. Environ. 2022, 207, 108544. [Google Scholar] [CrossRef]
- Zhang, H.; Arens, E.; Zhai, Y. A Review of the Corrective Power of Personal Comfort Systems in Non-Neutral Ambient Environments. Build. Environ. 2015, 91, 15–41. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Xiao, H.; Sun, H.; Wang, B.; Lin, B.; Shi, W.; Huang, W. Performance Analysis of Room Air Conditioners via Questionnaire and Integrated Field Test. Appl. Therm. Eng. 2021, 196, 117243. [Google Scholar] [CrossRef]
- Jiang, Y.; Yin, S.; Dong, J.; Kaynak, O. A Review on Soft Sensors for Monitoring, Control, and Optimization of Industrial Processes. IEEE Sens. J. 2021, 21, 12868–12881. [Google Scholar] [CrossRef]
- Souza, F.A.A.; Araújo, R.; Mendes, J. Review of Soft Sensor Methods for Regression Applications. Chemom. Intell. Lab. Syst. 2016, 152, 69–79. [Google Scholar] [CrossRef]
- Randek, J.; Mandenius, C.-F. On-Line Soft Sensing in Upstream Bioprocessing. Crit. Rev. Biotechnol. 2018, 38, 106–121. [Google Scholar] [CrossRef]
- Vadamalraj, N.; Zingre, K.; Seshadhri, S.; Arjunan, P.; Srinivasan, S. Hybrid Ventilation System and Soft-Sensors for Maintaining Indoor Air Quality and Thermal Comfort in Buildings. Atmosphere 2020, 11, 110. [Google Scholar] [CrossRef] [Green Version]
- Ran, F.; Gao, D.; Zhang, X.; Chen, S. A Virtual Sensor Based Self-Adjusting Control for HVAC Fast Demand Response in Commercial Buildings towards Smart Grid Applications. Appl. Energy 2020, 269, 115103. [Google Scholar] [CrossRef]
- Alonso, S.; Morán, A.; Pérez, D.; Prada, M.A.; Díaz, I.; Domínguez, M. Estimating Cooling Production and Monitoring Efficiency in Chillers Using a Soft Sensor. Neural Comput. Appl. 2020, 32, 17291–17308. [Google Scholar] [CrossRef]
- Attoue, N.; Shahrour, I.; Younes, R. Smart Building: Use of the Artificial Neural Network Approach for Indoor Temperature Forecasting. Energies 2018, 11, 395. [Google Scholar] [CrossRef] [Green Version]
- Xu, C.; Chen, H.; Wang, J.; Guo, Y.; Yuan, Y. Improving Prediction Performance for Indoor Temperature in Public Buildings Based on a Novel Deep Learning Method. Build. Environ. 2019, 148, 128–135. [Google Scholar] [CrossRef]
- Candanedo, L.M.; Feldheim, V.; Deramaix, D. Reconstruction of the Indoor Temperature Dataset of a House Using Data Driven Models for Performance Evaluation. Build. Environ. 2018, 138, 250–261. [Google Scholar] [CrossRef]
- Xu, F.; Sato, Y.; Sakai, Y.; Sabu, S.; Kanayama, H.; Satou, D.; Kansha, Y. A Prediction Model for Temperature Variation and Distribution Using Soft Sensing Method. Chem. Eng. Trans. 2022, 94, 811–816. [Google Scholar] [CrossRef]
- Uyanık, G.K.; Güler, N. A Study on Multiple Linear Regression Analysis. Procedia Soc. Behav. Sci. 2013, 106, 234–240. [Google Scholar] [CrossRef] [Green Version]
- Marill, K.A. Advanced Statistics: Linear Regression, Part II: Multiple Linear Regression. Acad. Emerg. Med. 2004, 11, 94–102. [Google Scholar] [CrossRef] [PubMed]
- Kutner, M.H.; Nachtsheim, C.J.; Neter, J.; Li, W. Applied Linear Statistical Models, 5th ed.; The McGraw-Hill Companies, Inc.: New York, NY, USA, 2005; p. 283. [Google Scholar]
- Seborg, D.E.; Edgar, T.F.; Mellichamp, D.A.; Doyle, F.J., III. Process Dynamics and Control, 3rd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2011; pp. 82–83. [Google Scholar]
- Patonai, Z.; Kicsiny, R.; Géczi, G. Multiple Linear Regression Based Model for the Indoor Temperature of Mobile Containers. Heliyon 2022, 8, e12098. [Google Scholar] [CrossRef] [PubMed]
Initial Temperature | B1T | B1M | B1B | D2T | D2M | D2B |
---|---|---|---|---|---|---|
25 °C | 0.974 | 0.990 | 0.988 | 0.981 | 0.995 | 0.984 |
35 °C | 0.967 | 0.996 | 0.995 | 0.968 | 0.998 | 0.993 |
Initial Temperature | Position | α | β | γ | δ | R2 | MAE (Training) | MAE (Validation) |
---|---|---|---|---|---|---|---|---|
25 °C | B1M | 2.537 | 0.668 | 0.066 | −87.789 | 0.982 | 0.40 | 0.31 |
B1B | 3.000 | 0.577 | 0.122 | −89.831 | 0.980 | 0.38 | 0.34 | |
A1M | 2.135 | 0.886 | −0.062 | −27.331 | 0.991 | 0.28 | 0.32 | |
A1B | 4.046 | 0.902 | −0.127 | 7.548 | 0.986 | 0.31 | 0.31 | |
C1B | 0.175 | 0.834 | 0.155 | −9.052 | 0.996 | 0.15 | 0.46 | |
D1M | 2.915 | 0.802 | −0.042 | −54.226 | 0.982 | 0.40 | 0.22 | |
D1B | 1.091 | 0.794 | 0.133 | −28.877 | 0.988 | 0.31 | 0.37 | |
E1M | 3.081 | 0.755 | −0.047 | −76.419 | 0.984 | 0.38 | 0.30 | |
E1B | −0.251 | 0.902 | 0.143 | 11.478 | 0.997 | 0.15 | 0.32 | |
D2M | 1.195 | 0.854 | 0.030 | −38.915 | 0.990 | 0.30 | 0.31 | |
D2B | 3.130 | 0.513 | 0.184 | −89.685 | 0.975 | 0.41 | 0.40 | |
35 °C | B1M | −0.536 | 0.916 | 0.090 | −14.380 | 0.993 | 0.42 | 0.38 |
B1B | 0.964 | 0.776 | 0.103 | −28.760 | 0.992 | 0.40 | 0.39 | |
A1M | 0.835 | 0.984 | −0.023 | 1.074 | 0.996 | 0.28 | 0.42 | |
A1B | 3.430 | 0.976 | −0.100 | 21.437 | 0.995 | 0.30 | 0.34 | |
C1B | −0.084 | 0.882 | 0.131 | 4.499 | 0.997 | 0.23 | 0.69 | |
D1M | 0.479 | 1.006 | −0.010 | 8.852 | 0.993 | 0.42 | 0.25 | |
D1B | 0.511 | 0.927 | 0.056 | 9.821 | 0.993 | 0.36 | 0.46 | |
E1M | 0.320 | 0.982 | 0.006 | 2.203 | 0.992 | 0.43 | 0.35 | |
E1B | 0.274 | 0.918 | 0.074 | 5.558 | 0.997 | 0.22 | 0.37 | |
D2M | −0.317 | 0.963 | 0.041 | −11.902 | 0.996 | 0.32 | 0.39 | |
D2B | 1.089 | 0.711 | 0.164 | −31.064 | 0.990 | 0.43 | 0.45 |
Initial Temperature | Position | α | β | γ | δ | R2 * | MAE (Training) | MAE (Validation) |
---|---|---|---|---|---|---|---|---|
25 °C | B1T | 0.693 | 0.613 | 0.260 | −27.573 | 0.976 | 0.33 | 0.36 |
A1T | 7.355 | 0.333 | 0.132 | −99.007 | 0.981 | 0.29 | 0.29 | |
C1T | 6.293 | 0.299 | 0.124 | −143.902 | 0.988 | 0.28 | 0.33 | |
D1T | 0.777 | 0.719 | 0.197 | −38.374 | 0.982 | 0.33 | 0.31 | |
E1T | 6.045 | 0.293 | 0.143 | −154.540 | 0.988 | 0.27 | 0.30 | |
D2T | 3.988 | 0.417 | 0.173 | −129.026 | 0.985 | 0.32 | 0.33 | |
35 °C | B1T | −2.249 | 0.850 | 0.201 | −2.494 | 0.988 | 0.44 | 0.63 |
A1T | 1.334 | 0.861 | 0.135 | 31.497 | 0.993 | 0.33 | 0.44 | |
C1T | −1.602 | 0.972 | 0.098 | 25.296 | 0.994 | 0.33 | 0.42 | |
D1T | −1.872 | 0.967 | 0.149 | 29.672 | 0.992 | 0.38 | 0.43 | |
E1T | −1.849 | 0.990 | 0.093 | 20.269 | 0.992 | 0.39 | 0.39 | |
D2T | −2.435 | 0.985 | 0.113 | 18.534 | 0.990 | 0.47 | 0.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, F.; Sakurai, K.; Sato, Y.; Sakai, Y.; Sabu, S.; Kanayama, H.; Satou, D.; Kansha, Y. Soft-Sensor Modeling of Temperature Variation in a Room under Cooling Conditions. Energies 2023, 16, 2870. https://doi.org/10.3390/en16062870
Xu F, Sakurai K, Sato Y, Sakai Y, Sabu S, Kanayama H, Satou D, Kansha Y. Soft-Sensor Modeling of Temperature Variation in a Room under Cooling Conditions. Energies. 2023; 16(6):2870. https://doi.org/10.3390/en16062870
Chicago/Turabian StyleXu, Feng, Kei Sakurai, Yuki Sato, Yuka Sakai, Shunsuke Sabu, Hiroaki Kanayama, Daisuke Satou, and Yasuki Kansha. 2023. "Soft-Sensor Modeling of Temperature Variation in a Room under Cooling Conditions" Energies 16, no. 6: 2870. https://doi.org/10.3390/en16062870
APA StyleXu, F., Sakurai, K., Sato, Y., Sakai, Y., Sabu, S., Kanayama, H., Satou, D., & Kansha, Y. (2023). Soft-Sensor Modeling of Temperature Variation in a Room under Cooling Conditions. Energies, 16(6), 2870. https://doi.org/10.3390/en16062870