A Sustainable Forage-Grass-Power Fuel Cell Solution for Edge-Computing Wireless Sensing Processing in Agriculture 4.0 Applications
Abstract
:1. Introduction
- A 0.015 m-single chamber prototype of a grass-forage fuel cell with carbon plates electrodes is developed, with a demonstrated maximum power generation of 1.8 mW.
- A proven capacity of up to 18 consecutive LoRa transmissions with the edge sensing device powered with the forage-grass-power fuel cell approach.
- An inverse problem phenomenology fused with a system identification solution for an accurate sensing response of soil analysis on each sensor node.
- A low-power consumption of 1.51 mW@ 0.457 mA for the edge sensing system based on the MSP430FR5994 microcontroller unit (MCU), which implements the constrained regularization algorithm fused with the system identification.
2. Forage-Grass-Power Fuel Cell Structure Design and Characterization
2.1. Stenotaphrum secundatum PMFC
2.2. Fuel Cell Fabrication
2.3. Fuel Cell Characterization
3. Self-Powered Edge Computing System and Inverse Problem Framework
3.1. Energy Harvester Circuit
3.2. Front-End and Sensors
3.3. Wireless Communication Module
3.4. Low-Power Edge Computing Controller
3.4.1. System Modeling
3.4.2. Power Management Strategy
Algorithm 1: FSM pseudo-code of the power management |
|
4. Experimental Results
4.1. Grass Forage-Power Generation Results
4.2. Edge Signal Processing Response
4.3. Power Consumption of the Sensing Node
5. Sustainability Discussion and Power Capacity Interpretation
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
CCS | Code Composer Studio |
DRL | Deep Reinforcement Learning |
DSP | Digital Signal Processing |
EH | Energy Harvesting |
FRAM | Ferroelectric Random Access Memory |
FSM | Finite State Machine |
GQD | Graphene Quantum Dots |
GSM | Global System for Mobile |
IoT | Internet of Things |
LEA | Low-Energy Accelerator |
LTE | Long Term Evolution |
MCU | Microcontroller Unit |
MEC | Mobile Edge Computing |
MPPT | Maximum Power Point Tracking |
NB-IoT | Narrow Band IoT |
PMFC | Plant Microbial Fuel Cell |
STG | State Transition Graph |
STT | State Transition Table |
WSN | Wireless Sensor Networks |
References
- Sharma, A.; Singh, P.K.; Kumar, Y. An integrated fire detection system using IoT and image processing technique for smart cities. Sustain. Cities Soc. 2020, 61, 102332. [Google Scholar] [CrossRef]
- Ayala-Ruiz, D.; Castillo-Atoche, A.; Ruiz-Ibarra, E.; Osorio de la Rosa, E.; Vázquez-Castillo, J. A self-powered PMFC-based wireless sensor node for smart city applications. Wirel. Commun. Mob. Comput. 2019, 2019, 8986302. [Google Scholar] [CrossRef]
- Muttillo, M.; Stornelli, V.; Alaggio, R.; Paolucci, R.; Di Battista, L.; de Rubeis, T.; Ferri, G. Structural health monitoring: An IoT sensor system for structural damage indicator evaluation. Sensors 2020, 20, 4908. [Google Scholar] [CrossRef]
- Chang, H.F.; Shokrolah Shirazi, M. Integration with 3D visualization and IoT-based sensors for real-time structural health monitoring. Sensors 2021, 21, 6988. [Google Scholar] [CrossRef]
- Kim, S.; Lee, M.; Shin, C. IoT-based strawberry disease prediction system for smart farming. Sensors 2018, 18, 4051. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akhtar, M.N.; Shaikh, A.J.; Khan, A.; Awais, H.; Bakar, E.A.; Othman, A.R. Smart sensing with edge computing in precision agriculture for soil assessment and heavy metal monitoring: A review. Agriculture 2021, 11, 475. [Google Scholar] [CrossRef]
- Ghayvat, H.; Mukhopadhyay, S.; Gui, X.; Suryadevara, N. WSN- and IoT-based smart homes and their extension to smart buildings. Sensors 2015, 15, 10350–10379. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Li, S.; Sun, W. Resource allocation for edge computing without using cloud center in smart home environment: A pricing approach. Sensors 2020, 20, 6545. [Google Scholar] [CrossRef] [PubMed]
- Minh, Q.N.; Nguyen, V.H.; Quy, V.K.; Ngoc, L.A.; Chehri, A.; Jeon, G. Edge Computing for IoT-Enabled Smart Grid: The Future of Energy. Energies 2022, 15, 6140. [Google Scholar] [CrossRef]
- Cruz, M.; Mafra, S.; Teixeira, E.; Figueiredo, F. Smart Strawberry Farming Using Edge Computing and IoT. Sensors 2022, 22, 5866. [Google Scholar] [CrossRef]
- Saeed, A.; Khattak, M.A.K.; Rashid, S. Role of big data analytics and edge computing in modern IoT applications: A systematic literature review. In Proceedings of the 2022 2nd International Conference on Digital Futures and Transformative Technologies (ICoDT2), Rawalpindi, Pakistan, 24–26 May 2022; pp. 1–5. [Google Scholar] [CrossRef]
- Xu, J.; Palanisamy, B.; Wang, Q.; Ludwig, H.; Gopisetty, S. Amnis: Optimized stream processing for edge computing. J. Parallel Distrib. Comput. 2022, 160, 49–64. [Google Scholar] [CrossRef]
- Jiang, C.; Fan, T.; Gao, H.; Shi, W.; Liu, L.; Cérin, C.; Wan, J. Energy aware edge computing: A survey. Comput. Commun. 2020, 151, 556–580. [Google Scholar] [CrossRef]
- Zhang, J.; Zhou, X.; Ge, T.; Wang, X.; Hwang, T. Joint Task Scheduling and Containerizing for Efficient Edge Computing. IEEE Trans. Parallel Distrib. Syst. 2021, 32, 2086–2100. [Google Scholar] [CrossRef]
- Zeng, D.; Pan, S.; Chen, Z.; Gu, L. An MDP-Based Wireless Energy Harvesting Decision Strategy for Mobile Device in Edge Computing. IEEE Netw. 2019, 33, 109–115. [Google Scholar] [CrossRef]
- Sharma, A.; Sharma, P. Energy Harvesting Technology for IoT Edge Applications. In Smart Manufacturing; Kheng, T.Y., Ed.; IntechOpen: Rijeka, Croatia, 2021; Chapter 6. [Google Scholar] [CrossRef]
- Zeng, D.; Li, P.; Guo, S.; Miyazaki, T.; Hu, J.; Xiang, Y. Energy Minimization in Multi-Task Software-Defined Sensor Networks. IEEE Trans. Comput. 2015, 64, 3128–3139. [Google Scholar] [CrossRef]
- Zhang, J.; Du, J.; Shen, Y.; Wang, J. Dynamic computation offloading with energy harvesting devices: A hybrid-decision-based deep reinforcement learning approach. IEEE Internet Things J. 2020, 7, 9303–9317. [Google Scholar] [CrossRef]
- Xu, Y.; Lu, Y.; Zhu, X. Toward Plant Energy Harvesting for 5G Signal Amplification. ACS Sustain. Chem. Eng. 2021, 9, 1099–1104. [Google Scholar] [CrossRef]
- Nitisoravut, R.; Regmi, R. Plant microbial fuel cells: A promising biosystems engineering. Renew. Sustain. Energy Rev. 2017, 76, 81–89. [Google Scholar] [CrossRef]
- Sarma, P.; Malakar, B.; Mohanty, K. Self-sustaining bioelectricity generation in plant-based microbial fuel cells (PMFCs) with microalgae-assisted oxygen-reducing biocathode. Biomass Conv. Bioref. 2023. [Google Scholar] [CrossRef]
- Nguyen, V.; Nitisoravut, R. Bioelectricity Generation in Plant Microbial Fuel Cell Using Forage Grass under Variations of Circadian Rhythm, Ambient Temperature, and Soil Water Contents. In Proceedings of the 2019 IEEE Asia Power and Energy Engineering Conference (APEEC), Chengdu, China, 29–31 March 2019; pp. 240–244. [Google Scholar] [CrossRef]
- Takanezawa, K.; Nishio, K.; Kato, S.; Hashimoto, K.; Watanabe, K. Factors Affecting Electric Output from Rice-Paddy Microbial Fuel Cells. Biosci. Biotechnol. Biochem. 2010, 74, 1271–1273. [Google Scholar] [CrossRef] [Green Version]
- Harrington, D.A.; van den Driessche, P. Mechanism and equivalent circuits in electrochemical impedance spectroscopy. Electrochim. Acta 2011, 56, 8005–8013. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Long, X.; Sun, Y.; Wang, D.; Wang, Z.; Meng, H.; Jiang, C.; Dong, W.; Lu, N. Electrochemical impedance spectroscopy applied to microbial fuel cells: A review. Front. Microbiol. 2022, 13, 973501. [Google Scholar] [CrossRef]
- Chiranjeevi, P.; Yeruva, D.K.; Kumar, A.K.; Mohan, S.V.; Varjani, S. Chapter 3.8—Plant-Microbial Fuel Cell Technology. In Microbial Electrochemical Technology; Mohan, S.V., Varjani, S., Pandey, A., Eds.; Biomass, Biofuels and Biochemicals; Elsevier: Amsterdam, The Netherlands, 2019; pp. 549–564. [Google Scholar] [CrossRef]
- Merl, T.; Rasmussen, M.R.; Koch, L.R.; Søndergaard, J.V.; Bust, F.F.; Koren, K. Measuring soil pH at in situ like conditions using optical pH sensors (pH-optodes). Soil Biol. Biochem. 2022, 175, 108862. [Google Scholar] [CrossRef]
- Devkota, M.; Singh, Y.; Yigezu, Y.A.; Bashour, I.; Mussadek, R.; Mrabet, R. Chapter Five—Conservation Agriculture in the drylands of the Middle East and North Africa (MENA) region: Past trend, current opportunities, challenges and future outlook. Adv. Agron. 2022, 172, 253–305. [Google Scholar] [CrossRef]
- Mekki, K.; Bajic, E.; Chaxel, F.; Meyer, F. A comparative study of LPWAN technologies for large-scale IoT deployment. ICT Express 2019, 5, 1–7. [Google Scholar] [CrossRef]
- Ruan, T.; Chew, Z.J.; Zhu, M. Energy-Aware Approaches for Energy Harvesting Powered Wireless Sensor Nodes. IEEE Sens. J. 2017, 17, 2165–2173. [Google Scholar] [CrossRef]
- Sánchez Fernández, L.P. Environmental noise indicators and acoustic indexes based on fuzzy modelling for urban spaces. Ecol. Indic. 2021, 126, 107631. [Google Scholar] [CrossRef]
Inputs | ||||||||
---|---|---|---|---|---|---|---|---|
States | 000 | 001 | 010 | 011 | 100 | 101 | 110 | 111 |
Sleep | – | Stdby | – | – | – | – | – | – |
Stdby | – | – | Acq. Temp | Acq. Hum | Acq. pH | – | – | LoRaTx |
Acq. Temp | – | – | – | – | – | SI process | – | – |
Acq. Hum | – | – | – | – | – | SI process | – | – |
Acq. pH | – | – | – | – | – | SI process | – | – |
SI process | – | – | – | – | – | – | Stdby | – |
LoRa Tx | Sleep | – | – | – | – | – | – | – |
Single-Edge Sensing Node States | Power Consumption |
---|---|
Sleep state (MCU) and peripherals turn-off | mW @ 96.9 A |
Sensing on | 14 mW @ mA |
MCU SI processing | mW @ mA |
LoRa transmission | 228 mW @ 69 mA |
Complete Sensor Node System | Average Power Consumption |
mW @ A |
Reference | Plant Type | Number of PMFCs | Power Generation | Electrodes | Harvester Circuit | Wireless Communication |
---|---|---|---|---|---|---|
[19] | Zephyranthes Grandflora | Array | 4.84 mW | Graphene Quantum Dots | – | WiFi |
[20] | C. indica | 3 | 2.72 mW | Carbon Cloth | – | – |
[21] | Epipremnum aureum | – | 1.48 mW | Carbon Cloth | – | – |
[22] | Purple guinea | – | 1.53 mW | Carbon Cloth | – | – |
This Work | Stenotaphrum secundatum | 3 | 1.8 mW | Carbon Plates | Bq25570 | LoRa |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Estrada-López, J.J.; Vázquez-Castillo, J.; Castillo-Atoche, A.; Osorio-de-la-Rosa, E.; Heredia-Lozano, J.; Castillo-Atoche, A. A Sustainable Forage-Grass-Power Fuel Cell Solution for Edge-Computing Wireless Sensing Processing in Agriculture 4.0 Applications. Energies 2023, 16, 2943. https://doi.org/10.3390/en16072943
Estrada-López JJ, Vázquez-Castillo J, Castillo-Atoche A, Osorio-de-la-Rosa E, Heredia-Lozano J, Castillo-Atoche A. A Sustainable Forage-Grass-Power Fuel Cell Solution for Edge-Computing Wireless Sensing Processing in Agriculture 4.0 Applications. Energies. 2023; 16(7):2943. https://doi.org/10.3390/en16072943
Chicago/Turabian StyleEstrada-López, Johan J., Javier Vázquez-Castillo, Andrea Castillo-Atoche, Edith Osorio-de-la-Rosa, Julio Heredia-Lozano, and Alejandro Castillo-Atoche. 2023. "A Sustainable Forage-Grass-Power Fuel Cell Solution for Edge-Computing Wireless Sensing Processing in Agriculture 4.0 Applications" Energies 16, no. 7: 2943. https://doi.org/10.3390/en16072943
APA StyleEstrada-López, J. J., Vázquez-Castillo, J., Castillo-Atoche, A., Osorio-de-la-Rosa, E., Heredia-Lozano, J., & Castillo-Atoche, A. (2023). A Sustainable Forage-Grass-Power Fuel Cell Solution for Edge-Computing Wireless Sensing Processing in Agriculture 4.0 Applications. Energies, 16(7), 2943. https://doi.org/10.3390/en16072943