The Effect of Boost Coil and Alignment of Transmitting and Receiving Coils on Transmission Efficiency in EV Wireless Power Transfer Systems
Abstract
:1. Introduction
1.1. Wireless Power Transfer Method
1.2. Wireless Power Transmission System for Electric Vehicles
2. Materials and Methods
2.1. Series Resonant Converters
2.2. Full-Bridge Series Resonant Converter
2.3. Circuit Design Specifications and Prototype
2.4. Modeling of Coils for Simulation
2.4.1. Modeling of the Circular Two-Coil System
2.4.2. Modeling of Circular Five-Coil System
2.5. Configuration of Experimental System
3. Results
3.1. Effect of Coil Alignment on Efficiency
3.2. Simulation
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Global Passenger Electric Vehicle Market Share, Q1 2021—Q4 2022. Available online: https://www.counterpointresearch.com/ko/global-electric-vehicle-market-share/ (accessed on 9 March 2023).
- New SAE Wireless Charging Standard is EV Game-Changer. Available online: https://www.sae.org/news/2020/10/new-sae-wireless-charging-standard-is-ev-game-changer (accessed on 23 March 2023).
- Yousuf, M.A.; Das, T.K.; Khallil, M.E.; Aziz NA, A.; Rana, M.J.; Hossain, S. Comparison Study of Inductive Coupling and Magnetic Resonant Coupling Method for Wireless Power Transmission of Electric Vehicles. In Proceedings of the 2021 2nd International Conference on Robotics, Electrical and Signal Processing Techniques (ICREST), DHAKA, Bangladesh, 5–7 January 2021. [Google Scholar]
- Yiming, Z.; Shuxin, C.; Xin, L.; Yi, T. Design of high-power static wireless power transfer via magnetic induction: An overview. CPSS Trans. Power Electron. Appl. 2021, 6, 4. [Google Scholar]
- Park, J.-H.; Park, B.-C.; Lee, J.-H.; Ryu, Y.-H.; Park, E.-S.; Kwon, S.-W. Optimum frequency of high Q-factor resonator for magnetic resonance coupling. In Proceedings of the 2011 41st European Microwave Conference, Manchester, UK, 15 December 2011. [Google Scholar]
- Liu, K.-H.; Lee, F. Zero-voltage switching technique in DC/DC converters. IEEE Trans. Power Electron. 1990, 5, 293–304. [Google Scholar] [CrossRef]
- Chen, W.; Lee, F.C.; Jovanović, M.M.; Sabate, J.A. A Comparative Study of a Class of Full Bridge Zero-Voltage-Switched PWM Converters. In Proceedings of the IEEE APEC’95 Conference, Dallas, TX, USA, 5–9 March 1995; Volume 2, pp. 893–899. [Google Scholar]
- Pahlevaninezhad, M.; Das, P.; Drobnik, J.; Jain, P.K.; Bakhshai, A. A Novel ZVZCS Full-Bridge DC/DC Converter Used for Electric Vehicles. IEEE Trans. Power Electron. 2012, 27, 2752–2769. [Google Scholar] [CrossRef]
- McRobbie, D. Guidelines for limiting exposure to time-varying electric and magnetic fields (1 Hz to 100 kHz). Health Phys. 2011, 100, 442. [Google Scholar] [CrossRef] [PubMed]
- Douglas, M.G.; Roman, J.M.; Cooper, E.B.; Sample, A.P.; Waters, B.H.; Smith, J.R.; Kuster, N. Evaluation of Wireless Resonant Power Transfer Systems With Human Electromagnetic Exposure Limits. IEEE Trans. Electromagn. Compat. 2013, 55, 2. [Google Scholar]
- El-Shahat, A.; Danjuma, J.; Abdelaziz, A.Y.; Aleem, S.H.E.A. Human Exposure Influence Analysis for Wireless Electric Vehicle Battery Charging. Clean Technol. 2022, 4, 785–805. [Google Scholar] [CrossRef]
- Triviño, A.; González-González, J.; Aguado, J. Wireless Power Transfer Technologies Applied to Electric Vehicles: A Review. Energies 2021, 14, 1547. [Google Scholar] [CrossRef]
- Sun, H.; Liu, C.; Zhang, H.; Cheng, Y.; Qu, Y. Research on a Self-Coupling PID Control Strategy for a ZVS Phase-Shift Full-Bridge Converter. Math. Probl. Eng. 2021, 2021, 6670382. [Google Scholar] [CrossRef]
- Fortuna, L.; Buscarino, A. Nonlinear Technologies in Advanced Power Systems: Analysis and Control. Energies 2022, 15, 5167. [Google Scholar] [CrossRef]
- Young, K.D.; Utkin, V.I.; Umit, O. A Control Engineer’s Guide to Sliding Mode Control. IEEE Trans. Control. Syst. Technol. 1999, 7, 3. [Google Scholar] [CrossRef] [Green Version]
- Rawlings, J. Tutorial overview of model predictive control. IEEE Control Syst. 2000, 20, 38–52. [Google Scholar]
- Xie, Y.; Ghaemi, R.; Sun, J.; Freudenberg, J.S. Model Predictive Control for a Full Bridge DC/DC Converter. IEEE Trans. Control. Syst. Technol. 2012, 20, 164–172. [Google Scholar]
- Jeong, G.-Y.; Kwon, S.-H.; Park, G.-Y. Simple High Efficiency Full-Bridge DC-DC Converter using a Series Resonant Capacitor. J. Electr. Eng. Technol. 2016, 11, 100–108. [Google Scholar] [CrossRef] [Green Version]
- Mortazavizadeh, S.A.; Palazzo, S.; Amendola, A.; De Santis, E.; Di Ruzza, D.; Panariello, G.; Sanseverino, A.; Velardi, F.; Busatto, G. High Frequency, High Efficiency, and High Power Density GaN-Based LLC Resonant Converter: State-of-the-Art and Perspectives. Appl. Sci. 2021, 11, 11350. [Google Scholar] [CrossRef]
- Wang, P.; Cui, G.; Chen, L. Analysis and design of LLC with new current driven synchronous rectifiers. In Proceedings of the 2011 International Conference on Electrical and Control Engineering, Yichang, China, 16–18 September 2011; pp. 4344–4347. Available online: https://ieeexplore.ieee.org/document/6057321/metrics#metrics (accessed on 20 September 2022).
- Wu, S.-T.; Han, C.-H. Design and Implementation of a Full-Bridge LLC Converter with Wireless Power Transfer for Dual Mode Output Load. IEEE Access 2021, 9, 120392–120406. [Google Scholar] [CrossRef]
- SAE International: ‘Agreement on Frequency of Operation and Power Classes for Wireless Power Transfer for Its Electric and Plug-In Electric Vehicle Guideline’. 2015. Available online: http://www.sae.org/ (accessed on 20 September 2022).
Input voltage (Vdc) | DC 400 V |
Output voltage (Vo) | DC 400 V |
Output power (Po) | 3.3 k W |
Operating frequency (fo) | 85 kHz |
400 V | 49.25 uH | ||
400 V | 0.29 | ||
8.25 A | 136.18 uH | ||
3300 W | 102.31 uH | ||
193 uH | 56.82 uH | ||
145 uH | 85 kHz | ||
176 uH | 20.30 nF | ||
11 Turn | 27.02 nF | ||
10 Turn | 173 uH | ||
1 | 39.30 |
Horizontal Distance 0 cm | Horizontal Distance 10 cm | Horizontal Distance 15 cm | |||
---|---|---|---|---|---|
Pout (W) | Efficiency (%) | Pout (W) | Efficiency (%) | Pout (W) | Efficiency (%) |
501 | 67.0 | 504 | 66.8 | 509 | 66.4 |
1046 | 81.0 | 1016 | 80.1 | 1069 | 80.4 |
1525 | 86.2 | 1584 | 86.1 | 1535 | 84.9 |
2025 | 89.1 | 2020 | 88.5 | 2115 | 88.1 |
2518 | 90.9 | 2537 | 90.4 | 2528 | 89.4 |
3031 | 92.3 | 3017 | 91.6 | 3076 | 90.6 |
3325 | 92.9 | 3310 | 92.3 | 3314 | 90.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, Y.-K.; Lee, D.-J.; Park, S.-J. The Effect of Boost Coil and Alignment of Transmitting and Receiving Coils on Transmission Efficiency in EV Wireless Power Transfer Systems. Energies 2023, 16, 3213. https://doi.org/10.3390/en16073213
Choi Y-K, Lee D-J, Park S-J. The Effect of Boost Coil and Alignment of Transmitting and Receiving Coils on Transmission Efficiency in EV Wireless Power Transfer Systems. Energies. 2023; 16(7):3213. https://doi.org/10.3390/en16073213
Chicago/Turabian StyleChoi, Young-Kuk, Don-Jung Lee, and Sung-Jun Park. 2023. "The Effect of Boost Coil and Alignment of Transmitting and Receiving Coils on Transmission Efficiency in EV Wireless Power Transfer Systems" Energies 16, no. 7: 3213. https://doi.org/10.3390/en16073213
APA StyleChoi, Y. -K., Lee, D. -J., & Park, S. -J. (2023). The Effect of Boost Coil and Alignment of Transmitting and Receiving Coils on Transmission Efficiency in EV Wireless Power Transfer Systems. Energies, 16(7), 3213. https://doi.org/10.3390/en16073213