Online Lifetime Prediction for Lithium-Ion Batteries with Cycle-by-Cycle Updates, Variance Reduction, and Model Ensembling
Abstract
:1. Introduction
2. Data Description
3. Model Description and Associated Methodology
3.1. Model from In-Cycle Variability
3.2. Model from In-Cycle Variability with Exponential-Smoothing-Memory (e-Forgetting)
3.3. Model from Cycle-to-Cycle Variability
3.4. Model from Summary Information (Lookup Model)
4. Model Performance
4.1. Performance Metrics (not Online Framework)
4.2. The One-Cycle Model in the Online Framework (with Full Curve Prediction)
4.3. 2nd Life Assessment: Knee Region Classifier
4.4. Model Ensemble
5. Conclusions and Outlook
6. Methods
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, A.G.; West, A.C.; Preindl, M. Towards unified machine learning characterization of lithium-ion battery degradation across multiple levels: A critical review. Appl. Energy 2022, 316, 119030. [Google Scholar] [CrossRef]
- Tian, J.; Xiong, R.; Shen, W. A review on state of health estimation for lithium ion batteries in photovoltaic systems. eTransportation 2019, 2, 100028. [Google Scholar] [CrossRef]
- Nuroldayeva, G.; Serik, Y.; Adair, D.; Uzakbaiuly, B.; Bakenov, Z. State of Health Estimation Methods for Lithium-Ion Batteries. Int. J. Energy Res. 2023, 2023, 21. [Google Scholar] [CrossRef]
- Joshi, U.D.; Gambhir, A.V.; Mandhana, A. Machine Learning Approaches for Lithium-Ion Battery Health Parameters Estimation; Technical Report; SAE Technical Paper; SAE International: Warrendale, PA, USA, 2022. [Google Scholar]
- Wang, S.; Jin, S.; Deng, D.; Fernandez, C. A critical review of online battery remaining useful lifetime prediction methods. Front. Mech. Eng. 2021, 7, 719718. [Google Scholar] [CrossRef]
- Su, L.; Wu, M.; Li, Z.; Zhang, J. Cycle life prediction of lithium-ion batteries based on data-driven methods. eTransportation 2021, 10, 100137. [Google Scholar] [CrossRef]
- Guo, W.; Sun, Z.; Vilsen, S.B.; Meng, J.; Stroe, D.I. Review of “grey box” lifetime modeling for lithium-ion battery: Combining physics and data-driven methods. J. Energy Storage 2022, 56, 105992. [Google Scholar] [CrossRef]
- Finegan, D.P.; Zhu, J.; Feng, X.; Keyser, M.; Ulmefors, M.; Li, W.; Bazant, M.Z.; Cooper, S.J. The application of data-driven methods and physics-based learning for improving battery safety. Joule 2021, 5, 316–329. [Google Scholar] [CrossRef]
- Celik, B.; Sandt, R.; dos Santos, L.C.P.; Spatschek, R. Prediction of Battery Cycle Life Using Early-Cycle Data, Machine Learning and Data Management. Batteries 2022, 8, 266. [Google Scholar] [CrossRef]
- Fermín, P.; McTurk, E.; Allerhand, M.; Medina-Lopez, E.; Anjos, M.F.; Sylvester, J.; dos Reis, G. Identification and machine learning prediction of knee-point and knee-onset in capacity degradation curves of lithium-ion cells. Energy AI 2020, 1, 100006. [Google Scholar] [CrossRef]
- Sohn, S.; Byun, H.E.; Lee, J.H. Two-stage deep learning for online prediction of knee-point in Li-ion battery capacity degradation. Appl. Energy 2022, 328, 120204. [Google Scholar] [CrossRef]
- Strange, C.; Li, S.; Gilchrist, R.; dos Reis, G. Elbows of Internal Resistance Rise Curves in Li-Ion Cells. Energies 2021, 14, 1206. [Google Scholar] [CrossRef]
- Attia, P.M.; Bills, A.A.; Brosa Planella, F.; Dechent, P.; dos Reis, G.; Dubarry, M.; Gasper, P.; Gilchrist, R.; Greenbank, S.; Howey, D.; et al. Review—“Knees” in Lithium-Ion Battery Aging Trajectories. J. Electrochem. Soc. 2022, 169, 060517. [Google Scholar] [CrossRef]
- Paulson, N.H.; Kubal, J.; Ward, L.; Saxena, S.; Lu, W.; Babinec, S.J. Feature engineering for machine learning enabled early prediction of battery lifetime. J. Power Sources 2022, 527, 231127. [Google Scholar] [CrossRef]
- Severson, K.; Attia, P.; Jin, N.; Perkins, N.; Jiang, B.; Yang, Z.; Chen, M.; Aykol, M.; Herring, P.; Fraggedakis, D.; et al. Data-driven prediction of battery cycle life before capacity degradation. Nat. Energy 2019, 4, 383–391. [Google Scholar] [CrossRef] [Green Version]
- Greenbank, S.; Howey, D. Automated Feature Extraction and Selection for Data-Driven Models of Rapid Battery Capacity Fade and End of Life. IEEE Trans. Ind. Inform. 2022, 18, 2965–2973. [Google Scholar] [CrossRef]
- Saxena, S.; Ward, L.; Kubal, J.; Lu, W.; Babinec, S.; Paulson, N. A convolutional neural network model for battery capacity fade curve prediction using early life data. J. Power Sources 2022, 542, 231736. [Google Scholar] [CrossRef]
- Rieger, L.H.; Flores, E.; Nielsen, K.F.; Norby, P.; Ayerbe, E.; Winther, O.; Vegge, T.; Bhowmik, A. Uncertainty-aware and explainable machine learning for early prediction of battery degradation trajectory. Digit. Discov. 2023, 2, 112–122. [Google Scholar] [CrossRef]
- Li, W.; Sengupta, N.; Dechent, P.; Howey, D.; Annaswamy, A.; Sauer, D.U. One-shot battery degradation trajectory prediction with deep learning. J. Power Sources 2021, 506, 230024. [Google Scholar] [CrossRef]
- Strange, C.; dos Reis, G. Prediction of future capacity and internal resistance of Li-ion cells from one cycle of input data. Energy AI 2021, 5, 100097. [Google Scholar] [CrossRef]
- Li, W.; Zhang, H.; van Vlijmen, B.; Dechent, P.; Sauer, D.U. Forecasting battery capacity and power degradation with multi-task learning. Energy Storage Mater. 2022, 53, 453–466. [Google Scholar] [CrossRef]
- Ibraheem, R.; Strange, C.; dos Reis, G. Capacity and Internal Resistance of lithium-ion batteries: Full degradation curve prediction from Voltage response at constant Current at discharge. J. Power Sources 2023, 556, 232477. [Google Scholar] [CrossRef]
- Sohn, S.; Byun, H.E.; Lee, J.H. CNN-based Online Diagnosis of Knee-point in Li-ion Battery Capacity Fade Curve. In Proceedings of the 13th IFAC Symposium on Dynamics and Control of Process Systems, including Biosystems DYCOPS, Busan, Republic of Korea, 14–17 June 2022; IFAC-PapersOnLine: Amsterdam, The Netherlands, 2022; Volume 55, pp. 181–185. [Google Scholar] [CrossRef]
- Kim, K.; Kim, M.; Churr, H.; Lee, G.; Han, S. G-K curve-based knee point prediction method for Li-ion batteries. In Proceedings of the 2021 21st International Conference on Control, Automation and Systems (ICCAS), Jeju, Republic of Korea, 12–15 October 2021; pp. 1190–1193. [Google Scholar] [CrossRef]
- LeDell, E.; Poirier, S. H2O automl: Scalable automatic machine learning. In Proceedings of the AutoML Workshop at ICML, Virtual Event, 13–18 July 2020; Volume 2020. [Google Scholar]
- Zhang, C.; Zhao, S.; He, Y. An integrated method of the future capacity and RUL prediction for lithium-ion battery pack. IEEE Trans. Veh. Technol. 2021, 71, 2601–2613. [Google Scholar] [CrossRef]
- Zhao, S.; Zhang, C.; Wang, Y. Lithium-ion battery capacity and remaining useful life prediction using board learning system and long short-term memory neural network. J. Energy Storage 2022, 52, 104901. [Google Scholar] [CrossRef]
- Zhang, H.; Su, Y.; Altaf, F.; Wik, T.; Gros, S. Interpretable Battery Cycle Life Range Prediction Using Early Cell Degradation Data. IEEE Trans. Transp. Electrif. 2022, 1. [Google Scholar] [CrossRef]
- Amey, J.L.; Keeley, J.; Choudhury, T.; Kuprov, I. Neural network interpretation using descrambler groups. Proc. Natl. Acad. Sci. USA 2021, 118, e2016917118. [Google Scholar] [CrossRef]
- Ma, Y.; Wu, L.; Guan, Y.; Peng, Z. The capacity estimation and cycle life prediction of lithium-ion batteries using a new broad extreme learning machine approach. J. Power Sources 2020, 476, 228581. [Google Scholar] [CrossRef]
- Shen, S.; Nemani, V.; Liu, J.; Hu, C.; Wang, Z. A Hybrid Machine Learning Model for Battery Cycle Life Prediction with Early Cycle Data. In Proceedings of the 2020 IEEE Transportation Electrification Conference & Expo (ITEC), IEEE, Chicago, IL, USA, 21–25 June 2021; pp. 181–184. [Google Scholar]
- Yang, F.; Wang, D.; Xu, F.; Huang, Z.; Tsui, K.L. Lifespan prediction of lithium-ion batteries based on various extracted features and gradient boosting regression tree model. J. Power Sources 2020, 476, 228654. [Google Scholar] [CrossRef]
- Diao, W.; Saxena, S.; Han, B.; Pecht, M. Algorithm to Determine the Knee Point on Capacity Fade Curves of Lithium-Ion Cells. Energies 2019, 12, 2910. [Google Scholar] [CrossRef] [Green Version]
- Jones, P.K.; Stimming, U.; Lee, A.A. Impedance-based forecasting of lithium-ion battery performance amid uneven usage. Nat. Commun. 2022, 13, 4806. [Google Scholar] [CrossRef]
- Tian, J.; Xiong, R.; Shen, W.; Lu, J. Data-driven battery degradation prediction: Forecasting voltage-capacity curves using one-cycle data. EcoMat 2022, 4, e12213. [Google Scholar] [CrossRef]
- Planella, F.B.; Sheikh, M.; Widanage, W.D. Systematic derivation and validation of a reduced thermal-electrochemical model for lithium-ion batteries using asymptotic methods. Electrochim. Acta 2021, 388, 138524. [Google Scholar] [CrossRef]
- Chen, C.H.; Planella, F.B.; O’regan, K.; Gastol, D.; Widanage, W.D.; Kendrick, E. Development of experimental techniques for parameterization of multi-scale lithium-ion battery models. J. Electrochem. Soc. 2020, 167, 080534. [Google Scholar] [CrossRef]
- Ecker, M.; Tran, T.K.D.; Dechent, P.; Käbitz, S.; Warnecke, A.; Sauer, D.U. Parameterization of a physico-chemical model of a lithium-ion battery: I. Determination of parameters. J. Electrochem. Soc. 2015, 162, A1836. [Google Scholar] [CrossRef]
- Ecker, M.; Käbitz, S.; Laresgoiti, I.; Sauer, D.U. Parameterization of a physico-chemical model of a lithium-ion battery: II. Model validation. J. Electrochem. Soc. 2015, 162, A1849. [Google Scholar] [CrossRef]
- Park, S.; Kato, D.; Gima, Z.; Klein, R.; Moura, S. Optimal experimental design for parameterization of an electrochemical lithium-ion battery model. J. Electrochem. Soc. 2018, 165, A1309. [Google Scholar] [CrossRef]
- Liu, H.; Bie, C.; Luo, F.; Kang, J.; Zhang, Y. Rapid Prediction of Retired Ni-MH Batteries Capacity Based on Reliable Multi-Parameter Driven Analysis. Energies 2022, 15, 9156. [Google Scholar] [CrossRef]
- Ruan, H.; Xiao, P.; Xiao, L.; Kelly, J.R. Joint Iterative Optimization-Based Low-Complexity Adaptive Hybrid Beamforming for Massive MU-MIMO Systems. IEEE Trans. Commun. 2021, 69, 1707–1722. [Google Scholar] [CrossRef]
- Hu, J.; Morais, H.; Sousa, T.; Lind, M. Electric vehicle fleet management in smart grids: A review of services, optimization and control aspects. Renew. Sustain. Energy Rev. 2016, 56, 1207–1226. [Google Scholar] [CrossRef] [Green Version]
- You, S.; Hu, J.; Ziras, C. An overview of modeling approaches applied to aggregation-based fleet management and integration of plug-in electric vehicles. Energies 2016, 9, 968. [Google Scholar] [CrossRef] [Green Version]
- von Bülow, F.; Heinrich, F.; Meisen, T. Fleet Management Approach for Manufacturers displayed at the Use Case of Battery Electric Vehicles. In Proceedings of the 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Melbourne, Australia, 17–20 October 2021; pp. 3218–3225. [Google Scholar]
- Kumtepeli, V.; Howey, D.A. Understanding battery aging in grid energy storage systems. Joule 2022, 6, 2250–2252. [Google Scholar] [CrossRef]
- Reniers, J.M.; Howey, D.A. Digital twin of a MWh-scale grid battery system for efficiency and degradation analysis. Appl. Energy 2023, 336, 120774. [Google Scholar] [CrossRef]
- Mohamed, A.; Ruan, H.; Abdelwahab, M.H.H.; Dorneanu, B.; Xiao, P.; Arellano-Garcia, H.; Gao, Y.; Tafazolli, R. An Inter-Disciplinary Modelling Approach in Industrial 5G/6G and Machine Learning Era. In Proceedings of the 2020 IEEE International Conference on Communications Workshops (ICC Workshops), Dublin, Ireland, 7–11 June 2020; pp. 1–6. [Google Scholar]
- Gubbi, J.; Buyya, R.; Marusic, S.; Palaniswami, M. Internet of Things (IoT): A vision, architectural elements, and future directions. Future Gener. Comput. Syst. 2013, 29, 1645–1660. [Google Scholar] [CrossRef] [Green Version]
- Samanta, A.; Williamson, S.S. A Survey of Wireless Battery Management System: Topology, Emerging Trends, and Challenges. Electronics 2021, 10, 2193. [Google Scholar] [CrossRef]
- Sulzer, V.; Mohtat, P.; Aitio, A.; Lee, S.; Yeh, Y.T.; Steinbacher, F.; Khan, M.U.; Lee, J.W.; Siegel, J.B.; Stefanopoulou, A.G.; et al. The challenge and opportunity of battery lifetime prediction from field data. Joule 2021, 5, 1934–1955. [Google Scholar] [CrossRef]
- Song, L.; Zhang, K.; Liang, T.; Han, X.; Zhang, Y. Intelligent state of health estimation for lithium-ion battery pack based on big data analysis. J. Energy Storage 2020, 32, 101836. [Google Scholar] [CrossRef]
- Li, W.; Sengupta, N.; Dechent, P.; Howey, D.; Annaswamy, A.; Sauer, D.U. Online capacity estimation of lithium-ion batteries with deep long short-term memory networks. J. Power Sources 2021, 482, 228863. [Google Scholar] [CrossRef]
- Yao, L.; Xu, S.; Tang, A.; Zhou, F.; Hou, J.; Xiao, Y.; Fu, Z. A Review of Lithium-Ion Battery State of Health Estimation and Prediction Methods. World Electr. Veh. J. 2021, 12, 113. [Google Scholar] [CrossRef]
- Huang, Y.; Lu, Y.; Wang, F.; Fan, X.; Liu, J.; Leung, V.C. An Edge Computing Framework for Real-Time Monitoring in Smart Grid. In Proceedings of the 2018 IEEE International Conference on Industrial Internet (ICII), Bellevue, WA, USA, 21–23 October 2018; pp. 99–108. [Google Scholar] [CrossRef]
- Albataineh, H.; Nijim, M.; Bollampall, D. The Design of a Novel Smart Home Control System using Smart Grid Based on Edge and Cloud Computing. In Proceedings of the 2020 IEEE 8th International Conference on Smart Energy Grid Engineering (SEGE), Oshawa, ON, Canada, 12–14 August 2020; pp. 88–91. [Google Scholar] [CrossRef]
- Feng, C.; Wang, Y.; Chen, Q.; Ding, Y.; Strbac, G.; Kang, C. Smart grid encounters edge computing: Opportunities and applications. Adv. Appl. Energy 2021, 1, 100006. [Google Scholar] [CrossRef]
- Sarroca, P.G.; Sánchez-Artigas, M. MLLess: Achieving Cost Efficiency in Serverless Machine Learning Training. arXiv 2022, arXiv:2206.05786. [Google Scholar]
- Hui, H.; Ding, Y.; Shi, Q.; Li, F.; Song, Y.; Yan, J. 5G network-based Internet of Things for demand response in smart grid: A survey on application potential. Appl. Energy 2020, 257, 113972. [Google Scholar] [CrossRef]
- Borgaonkar, R.; Anne Tøndel, I.; Zenebe Degefa, M.; Gilje Jaatun, M. Improving smart grid security through 5G enabled IoT and edge computing. Concurr. Comput. Pract. Exp. 2021, 33, e6466. [Google Scholar] [CrossRef]
- Lei, L.; Chen, Q.; Pei, S.; Maharjan, S.; Yan, Z. Vehicular Edge Computing and Networking: A Survey. Mob. Netw. Appl. 2021, 26, 1145–1168. [Google Scholar] [CrossRef]
- Gu, X.; Zhang, G. Energy-efficient computation offloading for vehicular edge computing networks. Comput. Commun. 2021, 166, 244–253. [Google Scholar] [CrossRef]
- Jiang, Z.; Li, H.; Qu, Z.; Zhang, J. Recent progress in lithium-ion battery thermal management for a wide range of temperature and abuse conditions. Int. J. Hydrogen Energy 2022, 47, 9428–9459. [Google Scholar] [CrossRef]
- Baumhöfer, T.; Brühl, M.; Rothgang, S.; Sauer, D.U. Production caused variation in capacity aging trend and correlation to initial cell performance. J. Power Sources 2014, 247, 332–338. [Google Scholar] [CrossRef]
- Sauer, D.U. Time-Series Cyclic Aging Data on 48 Commercial NMC/Graphite Sanyo/Panasonic UR18650E Cylindrical Cells. 2021. Available online: https://publications.rwth-aachen.de/record/818642 (accessed on 15 February 2023).
- dos Reis, G.; Strange, C.; Yadav, M.; Li, S. Lithium-ion battery data and where to find it. Energy AI 2021, 5, 100081. [Google Scholar] [CrossRef]
- Strange, C.; Allerhand, M.; Dechent, P.; dos Reis, G. Automatic method for the estimation of Li-ion degradation test sample sizes required to understand cell-to-cell variability. Energy AI 2022, 9, 100174. [Google Scholar] [CrossRef]
- Attia, P.M.; Grover, A.; Jin, N.; Severson, K.A.; Markov, T.M.; Liao, Y.H.; Chen, M.H.; Cheong, B.; Perkins, N.; Yang, Z.; et al. Closed-loop optimization of fast-charging protocols for batteries with machine learning. Nature 2020, 578, 397–402. [Google Scholar] [CrossRef] [Green Version]
- Dechent, P.; Greenbank, S.; Hildenbrand, F.; Jbabdi, S.; Sauer, D.U.; Howey, D.A. Estimation of Li-Ion Degradation Test Sample Sizes Required to Understand Cell-to-Cell Variability. Batter. Supercaps 2021, 4, 1821–1829. [Google Scholar] [CrossRef]
- Gasper, P.; Collath, N.; Hesse, H.C.; Jossen, A.; Smith, K. Machine-Learning Assisted Identification of Accurate Battery Lifetime Models with Uncertainty. J. Electrochem. Soc. 2022, 169, 080518. [Google Scholar] [CrossRef]
- Sagi, O.; Rokach, L. Ensemble learning: A survey. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2018, 8, e1249. [Google Scholar] [CrossRef]
- Shen, S.; Sadoughi, M.; Li, M.; Wang, Z.; Hu, C. Deep convolutional neural networks with ensemble learning and transfer learning for capacity estimation of lithium-ion batteries. Appl. Energy 2020, 260, 114296. [Google Scholar] [CrossRef]
- Gou, B.; Xu, Y.; Feng, X. An Ensemble Learning-based Data-Driven Method for Online State-of-Health Estimation of Lithium-ion Batteries. IEEE Trans. Transp. Electrif. 2020, 7, 422–436. [Google Scholar] [CrossRef]
- Berrar, D. Cross-Validation. In Encyclopedia of Bioinformatics and Computational Biology; Ranganathan, S., Gribskov, M., Nakai, K., Schönbach, C., Eds.; Academic Press: Oxford, UK, 2019; pp. 542–545. [Google Scholar] [CrossRef]
Predictions | Category |
---|---|
ttk-o, ttk-p, tte-o, tte-p, RUL | Time-to (Cycles) |
Q@k-o, Q@k-p, IR@e-o, IR@e-p | Capacity (Ah)/IR values () |
RMSE (Cycles) | MAPE (%) | |||
---|---|---|---|---|
Train | Test | Train | Test | |
ttk-o | ||||
ttk-p | ||||
RUL | ||||
tte-o | ||||
tte-p |
RMSE | MAPE (%) | |||
---|---|---|---|---|
Train | Test | Train | Test | |
Q@k-o | ||||
Q@k-p | ||||
IR@e-o | 0.0030 ± 8.5 × 10−5 | 0.0024 ± 1.1 × 10−4 | ||
IR@e-p | 0.0029 ± 1.0 × 10−4 | 0.0032 ± 2.2× 10−4 |
Knee-Onset | Knee-Point | EOL | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
RMSE (Cycles) | MAPE (%) | RMSE (Cycles) | MAPE (%) | RMSE (Cycles) | MAPE (%) | |||||||
Model | Train | Test | Train | Test | Train | Test | Train | Test | Train | Test | Train | Test |
One-cycle (e-smoothing) | 22 | 59 | 3.7 | 9.5 | 20 | 71 | 2.2 | 7.9 | 25 | 77 | 2.5 | 6.6 |
RVM | 37 | 66 | 6.2 | 10.9 | 31 | 67 | 4.1 | 8.4 | 29 | 78 | 2.8 | 7.6 |
Lookup table | 119 | 101 | 24.4 | 19.2 | 132 | 134 | 19.5 | 19.0 | 161 | 165 | 18.4 | 18.3 |
Ensemble | 36 | 49 | 7.2 | 34 | 56 | 5.0 | 38 | 66 | 4.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Strange, C.; Ibraheem, R.; dos Reis, G. Online Lifetime Prediction for Lithium-Ion Batteries with Cycle-by-Cycle Updates, Variance Reduction, and Model Ensembling. Energies 2023, 16, 3273. https://doi.org/10.3390/en16073273
Strange C, Ibraheem R, dos Reis G. Online Lifetime Prediction for Lithium-Ion Batteries with Cycle-by-Cycle Updates, Variance Reduction, and Model Ensembling. Energies. 2023; 16(7):3273. https://doi.org/10.3390/en16073273
Chicago/Turabian StyleStrange, Calum, Rasheed Ibraheem, and Gonçalo dos Reis. 2023. "Online Lifetime Prediction for Lithium-Ion Batteries with Cycle-by-Cycle Updates, Variance Reduction, and Model Ensembling" Energies 16, no. 7: 3273. https://doi.org/10.3390/en16073273
APA StyleStrange, C., Ibraheem, R., & dos Reis, G. (2023). Online Lifetime Prediction for Lithium-Ion Batteries with Cycle-by-Cycle Updates, Variance Reduction, and Model Ensembling. Energies, 16(7), 3273. https://doi.org/10.3390/en16073273