Optimum Conditions for Enhanced Biohydrogen Production from a Mixture of Food Waste and Sewage Sludge with Alkali Pretreatment
Abstract
:1. Introduction
2. Material and Methods
2.1. Preparation of Alkali-Treated Feedstocks
2.2. Batch Assay
2.3. Analytical Methods
3. Results and Discussion
3.1. Effect of Alkaline Treatment on Solubilization and Disinfection
3.2. Enhanced Fermentation of Alkaline-Treated FW and SS for Hydrogen Production
4. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- van der Spek, M.; Banet, C.; Bauer, C.; Gabrielli, P.; Goldthorpe, W.; Mazzotti, M.; Munkejord, S.T.; Røkke, N.A.; Shah, N.; Sunny, N. Perspective on the hydrogen economy as a pathway to reach net-zero CO2 emissions in Europe. Energy Environ. Sci. 2022, 15, 1034–1077. [Google Scholar] [CrossRef]
- Moreno-Andrade, I.; Berrocal-Bravo, M.J.; Valdez-Vazquez, I. Biohydrogen production from food waste and waste activated sludge in codigestion: Influence of organic loading rate and changes in microbial community. J. Chem. Technol. Biotechnol. 2023, 98, 230–237. [Google Scholar] [CrossRef]
- Yun, Y.-M.; Lee, M.-K.; Im, S.-W.; Marone, A.; Trably, E.; Shin, S.-R.; Kim, M.-G.; Cho, S.-K.; Kim, D.-H. Biohydrogen production from food waste: Current status, limitations, and future perspectives. Bioresour. Technol. 2018, 248, 79–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Megía, P.J.; Vizcaíno, A.J.; Calles, J.A.; Carrero, A. Hydrogen Production Technologies: From Fossil Fuels toward Renewable Sources. A Mini Review. Energy Fuels 2021, 35, 16403–16415. [Google Scholar] [CrossRef]
- Ewan, B.C.R.; Allen, R.W.K. A figure of merit assessment of the routes to hydrogen. Int. J. Hydrogen Energy 2005, 30, 809–819. [Google Scholar] [CrossRef]
- Qyyum, M.A.; Ismail, S.; Ni, S.-Q.; Ihsanullah, I.; Ahmad, R.; Khan, A.; Tawfik, A.; Nizami, A.-S.; Lee, M. Harvesting biohydrogen from industrial wastewater: Production potential, pilot-scale bioreactors, commercialization status, techno-economics, and policy analysis. J. Clean. Prod. 2022, 340, 130809. [Google Scholar] [CrossRef]
- Yaashikaa, P.R.; Keerthana Devi, M.; Senthil Kumar, P. Biohydrogen production: An outlook on methods, constraints, economic analysis and future prospect. Int. J. Hydrogen Energy 2022, 47, 41488–41506. [Google Scholar] [CrossRef]
- Akhlaghi, N.; Najafpour-Darzi, G. A comprehensive review on biological hydrogen production. Int. J. Hydrogen Energy 2020, 45, 22492–22512. [Google Scholar] [CrossRef]
- Balachandar, G.; Khanna, N.; Das, D. Chapter 6—Biohydrogen Production from Organic Wastes by Dark Fermentation. In Biohydrogen; Pandey, A., Chang, J.-S., Hallenbecka, P.C., Larroche, C., Eds.; Elsevier: Amsterdam, The Netherlands, 2013; pp. 103–144. [Google Scholar]
- El-Qelish, M.; Chatterjee, P.; Dessì, P.; Kokko, M.; El-Gohary, F.; Abo-Aly, M.; Rintala, J. Bio-hydrogen Production from Sewage Sludge: Screening for Pretreatments and Semi-continuous Reactor Operation. Waste Biomass Valorization 2020, 11, 4225–4234. [Google Scholar] [CrossRef]
- Kim, M.; Yang, Y.; Morikawa-Sakura, M.S.; Wang, Q.; Lee, M.V.; Lee, D.-Y.; Feng, C.; Zhou, Y.; Zhang, Z. Hydrogen production by anaerobic co-digestion of rice straw and sewage sludge. Int. J. Hydrogen Energy 2012, 37, 3142–3149. [Google Scholar] [CrossRef]
- Bundhoo, M.A.Z.; Mohee, R. Inhibition of dark fermentative bio-hydrogen production: A review. Int. J. Hydrogen Energy 2016, 41, 6713–6733. [Google Scholar] [CrossRef]
- Kim, S.-H.; Han, S.-K.; Shin, H.-S. Feasibility of biohydrogen production by anaerobic co-digestion of food waste and sewage sludge. Int. J. Hydrogen Energy 2004, 29, 1607–1616. [Google Scholar] [CrossRef]
- Lertsriwong, S.; Glinwong, C. Newly-isolated hydrogen-producing bacteria and biohydrogen production by Bacillus coagulans MO11 and Clostridium beijerinckii CN on molasses and agricultural wastewater. Int. J. Hydrogen Energy 2020, 45, 26812–26821. [Google Scholar] [CrossRef]
- Tian, H.; Li, J.; Yan, M.; Tong, Y.W.; Wang, C.-H.; Wang, X. Organic waste to biohydrogen: A critical review from technological development and environmental impact analysis perspective. Appl. Energy 2019, 256, 113961. [Google Scholar] [CrossRef]
- Yang, G.; Wang, J. Biohydrogen production by co-fermentation of sewage sludge and grass residue: Effect of various substrate concentrations. Fuel 2019, 237, 1203–1208. [Google Scholar] [CrossRef]
- Barber, W.P.F. Thermal hydrolysis for sewage treatment: A critical review. Water Res. 2016, 104, 53–71. [Google Scholar] [CrossRef]
- Han, W.; Yan, Y.; Shi, Y.; Gu, J.; Tang, J.; Zhao, H. Biohydrogen production from enzymatic hydrolysis of food waste in batch and continuous systems. Sci. Rep. 2016, 6, 38395. [Google Scholar] [CrossRef] [Green Version]
- Yao, Z.; Su, W.; Wu, D.; Tang, J.; Wu, W.; Liu, J.; Han, W. A state-of-the-art review of biohydrogen producing from sewage sludge. Int. J. Energy Res. 2018, 42, 4301–4312. [Google Scholar] [CrossRef]
- Cesaro, A.; Belgiorno, V. Pretreatment methods to improve anaerobic biodegradability of organic municipal solid waste fractions. Chem. Eng. J. 2014, 240, 24–37. [Google Scholar] [CrossRef]
- Ahmed, B.; Kumar Tyagi, V.; Kazmi, A.A.; Khursheed, A. New insights into thermal-chemical pretreatment of organic fraction of municipal solid waste: Solubilization effects, recalcitrant formation, biogas yield and energy efficiency. Fuel 2022, 319, 123725. [Google Scholar] [CrossRef]
- Mozhiarasi, V. Overview of pretreatment technologies on vegetable, fruit and flower market wastes disintegration and bioenergy potential: Indian scenario. Chemosphere 2022, 288, 132604. [Google Scholar] [CrossRef] [PubMed]
- Sinbuathong, N.; Charnnok, B.; Sillapacharoenkul, B.; Sakdaronnarong, C. Preparation of active hydrogen-producing cultures from palm oil mill sludge for biohydrogen production system. Int. J. Hydrogen Energy 2021, 46, 29100–29107. [Google Scholar] [CrossRef]
- Mahata, C.; Dhar, S.; Ray, S.; Das, D. Effect of thermal pretreated organic wastes on the dark fermentative hydrogen production using mixed microbial consortia. Fuel 2021, 284, 119062. [Google Scholar] [CrossRef]
- Rice, E.W.; Baird, R.B.; Eaton, A.D.; Clesceri, L.S. Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 2012. [Google Scholar]
- Dubois, M.; Gilles, K.; Hamilton, J.; Rebers, P.; Smith, F. A colorimetric method for the determination of sugars. Nature 1951, 168, 4265. [Google Scholar] [CrossRef] [PubMed]
- Miron, Y.; Zeeman, G.; van Lier, J.B.; Lettinga, G. The role of sludge retention time in the hydrolysis and acidification of lipids, carbohydrates and proteins during digestion of primary sludge in CSTR systems. Water Res. 2000, 34, 1705–1713. [Google Scholar] [CrossRef]
- Brown, M.J.; Lester, J.N. Comparison of bacterial extracellular polymer extraction methods. Appl. Environ. Microbiol. 1980, 40, 179–185. [Google Scholar] [CrossRef] [Green Version]
- Guo, L.; Lu, M.; Li, Q.; Zhang, J.; She, Z. A comparison of different pretreatments on hydrogen fermentation from waste sludge by fluorescence excitation-emission matrix with regional integration analysis. Int. J. Hydrogen Energy 2015, 40, 197–208. [Google Scholar] [CrossRef]
- Xiao, B.; Liu, J. Biological hydrogen production from sterilized sewage sludge by anaerobic self-fermentation. J. Hazard. Mater. 2009, 168, 163–167. [Google Scholar] [CrossRef]
- Shen, M.-Y.; Torre, M.; Chu, C.-Y.; Tratzi, P.; Carnevale, M.; Gallucci, F.; Paolini, V.; Petracchini, F. Green biohydrogen production in a Co-digestion process from mixture of high carbohydrate food waste and cattle/chicken manure digestate. Int. J. Hydrogen Energy 2022, 47, 40696–40703. [Google Scholar] [CrossRef]
- Wang, W.; Xie, L.; Chen, J.; Luo, G.; Zhou, Q. Biohydrogen and methane production by co-digestion of cassava stillage and excess sludge under thermophilic condition. Bioresour. Technol. 2011, 102, 3833–3839. [Google Scholar] [CrossRef]
- Zhao, M.; Liu, Z.; Xu, J.; Liu, H.; Dai, X.; Gu, S.; Ruan, W. Dosing effect of nano zero valent iron (NZVI) on the dark hydrogen fermentation performance via lake algae and food waste co-digestion. Energy Rep. 2020, 6, 3192–3199. [Google Scholar] [CrossRef]
- Eker, S.; Sarp, M. Hydrogen gas production from waste paper by dark fermentation: Effects of initial substrate and biomass concentrations. Int. J. Hydrogen Energy 2017, 42, 2562–2568. [Google Scholar] [CrossRef]
- Bundhoo, M.A.Z.; Mohee, R.; Hassan, M.A. Effects of pre-treatment technologies on dark fermentative biohydrogen production: A review. J. Environ. Manag. 2015, 157, 20–48. [Google Scholar] [CrossRef] [PubMed]
Parameter | Unit | Food Waste | Sewage Sludge |
---|---|---|---|
Total solids | % | 15.9 | 1.5 |
Volatile solids | % | 15.2 | 1.2 |
Total COD | g/L | 158.4 | 19.5 |
Total carbohydrate | g COD/L | 84.9 | 2.0 |
Total protein | g COD/L | 37.7 | 8.7 |
Total Kjeldahl nitrogen | g N/L | 4.4 | 1.0 |
pH | 4.6 | 7.5 |
VS (%) | FW:MSW (VS Basis) | Carbohydrate (g/L) | Protein (g/L) | Rm (mL/Day) | P (mL H2) | λ (Days) | Rs (mL/g VSS/h) | Ps (mL/g VS) | R2 |
---|---|---|---|---|---|---|---|---|---|
1.5 | 100:0 | 12.9 | 3.4 | 844.7 | 296.0 | 0.43 | 113.8 | 98.7 | 0.999 |
1.5 | 80:20 | 10.9 | 5.1 | 590.4 | 396.8 | 0.23 | 79.5 | 132.3 | 0.994 |
1.5 | 60:40 | 8.8 | 6.5 | 715.3 | 172.2 | 0.29 | 96.3 | 57.4 | 0.999 |
1.5 | 40:60 | 6.7 | 8.1 | 453.9 | 92.4 | 0.29 | 61.1 | 30.8 | 0.999 |
2 | 100:0 | 16.5 | 4.9 | 805.9 | 634.8 | 0.40 | 108.6 | 158.7 | 0.997 |
2 | 80:20 | 14.5 | 6.8 | 807.1 | 552.9 | 0.28 | 108.7 | 138.2 | 0.997 |
2 | 60:40 | 12.4 | 8.7 | 871.2 | 390.2 | 0.27 | 117.4 | 97.6 | 0.999 |
2 | 40:60 | 9.0 | 10.8 | 582.8 | 130.5 | 0.29 | 78.5 | 32.6 | 0.999 |
2 | 0:100 | 3.5 | 13.7 | - | - | - | - | - | - |
3 | 100:0 | 24.8 | 7.4 | 717.6 | 1004.6 | 0.20 | 96.7 | 167.3 | 0.996 |
3 | 80:20 | 21.7 | 10.2 | 804.0 | 629.3 | 0.20 | 108.3 | 104.9 | 0.997 |
3 | 60:40 | 22.8 | 12.7 | 1075.2 | 337.8 | 0.34 | 150.0 | 56.3 | 0.998 |
3 | 40:60 | 13.5 | 16.1 | 840.4 | 215.2 | 0.29 | 113.2 | 35.9 | 0.999 |
3 | 0:100 | 5.3 | 20.5 | - | - | - | - | - | - |
5 | 100:0 | 57.5 | 12.3 | 964.8 | 1039.8 | 0.42 | 134.6 | 104.0 | 0.999 |
5 | 80:20 | 47.8 | 16.7 | 1320.0 | 827.7 | 0.43 | 184.2 | 82.8 | 0.997 |
5 | 60:40 | 38.1 | 21.1 | 1058.4 | 542.2 | 0.35 | 147.7 | 54.2 | 0.998 |
DF (1) | SS (2) | MS (3) | F | p | |
---|---|---|---|---|---|
Regression | 5 | 32,435.61 | 6487.123 | 18.2253 | <0.0001 |
Residual | 11 | 3915.343 | 355.9402 | ||
Total | 16 | 36,350.96 | 2271.935 |
DF | SS | MS | F | p | |
---|---|---|---|---|---|
Regression | 5 | 37,269.96 | 7453.993 | 14.4392 | 0.0002 |
Residual | 11 | 5678.557 | 516.2325 | ||
Total | 16 | 42,948.52 | 2684.283 |
DF | SS | MS | F | p | |
---|---|---|---|---|---|
Regression | 5 | 54,520.2 | 10,904.04 | 7.9881 | 0.0021 |
Residual | 11 | 15,015.39 | 1365.035 | ||
Total | 16 | 69,535.59 | 4345.974 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nam, J.-Y. Optimum Conditions for Enhanced Biohydrogen Production from a Mixture of Food Waste and Sewage Sludge with Alkali Pretreatment. Energies 2023, 16, 3281. https://doi.org/10.3390/en16073281
Nam J-Y. Optimum Conditions for Enhanced Biohydrogen Production from a Mixture of Food Waste and Sewage Sludge with Alkali Pretreatment. Energies. 2023; 16(7):3281. https://doi.org/10.3390/en16073281
Chicago/Turabian StyleNam, Joo-Youn. 2023. "Optimum Conditions for Enhanced Biohydrogen Production from a Mixture of Food Waste and Sewage Sludge with Alkali Pretreatment" Energies 16, no. 7: 3281. https://doi.org/10.3390/en16073281
APA StyleNam, J. -Y. (2023). Optimum Conditions for Enhanced Biohydrogen Production from a Mixture of Food Waste and Sewage Sludge with Alkali Pretreatment. Energies, 16(7), 3281. https://doi.org/10.3390/en16073281