Process Improvement of Biogas Production from Sewage Sludge Applying Iron Oxides-Based Additives
Abstract
:1. Introduction
2. Methodology
2.1. Research Object
2.2. Additives
2.3. Lab-Scale Test
2.4. Full-Scale Test
2.5. Methods of Sample Analysis
3. Results and Discussion
3.1. VSs Destruction
3.2. Biogas Production and Quality
3.3. Quality of Supernatant
3.4. Full-Scale Test
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ibrahim, S.H.; Abdulaziz, M. The Effect of Different Zero-Valent Iron Sources on Biogas Production from Waste Sludge Anaerobic Digestion. J. Biotechnol. Res. 2016, 2, 59–67. [Google Scholar]
- Filer, J.; Ding, H.H.; Chang, S. Biochemical Methane Potential (BMP) Assay Method for Anaerobic Digestion Research. Water 2019, 11, 921. [Google Scholar] [CrossRef] [Green Version]
- Vongvichiankul, C.; Deebao, J.; Khongnakorn, W. Relationship between pH, Oxidation Reduction Potential (ORP) and Biogas Production in Mesophilic Screw Anaerobic Digester. Energy Procedia 2017, 138, 877–882. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Z.; Ye, X.; Pan, X.; Lv, N.; Fang, H.; Chen, S. Enhanced solubilization and biochemical methane potential of waste activated sludge by combined free nitrous acid and potassium ferrate pretreatment. Bioresour. Technol. 2020, 297, 122376. [Google Scholar] [CrossRef]
- Dauknys, R.; Mažeikienė, A.; Paliulis, D. Effect of ultrasound and high voltage disintegration on sludge digestion process. J. Environ. Manag. 2020, 270, 110833. [Google Scholar] [CrossRef]
- Zagorskis, A.; Dauknys, R.; Pranskevičius, M.; Khliestova, O. Research on Biogas Yield from Macroalgae with Inoculants at Different Organic Loading Rates in a Three-Stage Bioreactor. Int. J. Environ. Res. Public Health 2023, 20, 969. [Google Scholar] [CrossRef] [PubMed]
- Reddy, K.; Nasr, M.; Kumari, S.; Kumar, S.; Gupta, S.K.; Enitan, A.M.; Bux, F. Biohydrogen production from sugarcane bagasse hydrolysate: Effects of pH, S/X, Fe2+, and magnetite nanoparticles. Environ. Sci. Pollut. Res. 2017, 24, 8790–8804. [Google Scholar] [CrossRef]
- Paulo, L.M.; Hidayat, M.R.; Moretti, G.; Stams, A.J.M.; Sousa, D.Z. Effect of nickel, cobalt, and iron on methanogenesis from methanol and cometabolic conversion of 1,2-dichloroethene by Methanosarcina barkeri. Biotechnol. Appl. Biochem. 2020, 67, 744–750. [Google Scholar] [CrossRef] [Green Version]
- Al Bkoor Alrawashdeh, K.; Al-Zboon, K.K.; Al Rabadi, S.; Gul, E.; AL-Samrraie, L.A.; Ali, R.; Al-Tabbal, J.A. Impact of Iron oxide nanoparticles on sustainable production of biogas through anaerobic co-digestion of chicken waste and wastewater. Front. Chem. Eng. 2022, 4, 70. [Google Scholar] [CrossRef]
- Singh, D.; Malik, K.; Sindhu, M.; Kumari, N.; Rani, V.; Mehta, S.; Malik, K.; Ranga, P.; Sharma, K.; Dhull, N.; et al. Biostimulation of Anaerobic Digestion Using Iron Oxide Nanoparticles (IONPs) for Increasing Biogas Production from Cattle Manure. Nanomaterials 2022, 12, 497. [Google Scholar] [CrossRef]
- Muddasar, M. Biogas Production from Organic wastes and Iron as an Additive—A Short Review. Preprints 2022, 2022010026. [Google Scholar] [CrossRef]
- Ma, W.; Xin, H.; Zhong, D.; Qian, F.; Han, H.; Yuan, Y. Effects of different states of Fe on anaerobic digestion: A review. J. Harbin Inst. Technol. 2015, 22, 69–75. [Google Scholar] [CrossRef]
- Feng, Y.; Zhang, Y.; Quan, X.; Chen, S. Enhanced anaerobic digestion of waste activated sludge digestion by the addition of zero valent iron. Water Res. 2014, 52, 242–250. [Google Scholar] [CrossRef] [PubMed]
- Park, C.M.; Novak, J.T. The effect of direct addition of iron(III) on anaerobic digestion efficiency and odor causing compounds. Water Sci. Technol. 2013, 68, 2391–2396. [Google Scholar] [CrossRef] [PubMed]
- Ignace, A.C.; Fidèle, S.; Dimon, B.; Franck, Y.; Lyde, T.A.S.; Daouda, M.; Eni, A.C. Biogas Recovery from Sewage Sludge during Anaerobic Digestion Process: Effect of Iron powder on Methane yield. Int. Res. J. Environ. Sci. 2016, 5, 7–12. [Google Scholar]
- Agani, G.C.; Suanon, F.; Dimon, B.; Ifon, E.B.; Yovo, F.; Wotto, V.D.; Kazeem Abass, O.; Kumwimba, M.N. Enhancement of Fecal Sludge Conversion into Biogas Using Iron Powder during Anaerobic Digestion Process. Earth Energy Environ. 2017, 5, 179. [Google Scholar] [CrossRef] [Green Version]
- Zhuan, R.; Yang, G.; Zhang, G.M.; Wang, W. Effects of Ferric Salts on Sludge Anaerobic Digestion and Desulphurization. Mater. Sci. Forum 2018, 913, 887–892. [Google Scholar] [CrossRef]
- Farghali, M.; Andriamanohiarisoamanana, F.J.; Ahmed, M.M.; Kotb, S.; Yamamoto, Y.; Iwasaki, M.; Yamashiro, T.; Umetsu, K. Prospects for biogas production and H2S control from the anaerobic digestion of cattle manure: The influence of microscale waste iron powder and iron oxide nanoparticles. Waste Manag. 2020, 101, 141–149. [Google Scholar] [CrossRef]
- Cheremisina, E.; Cheremisina, O.; Ponomareva, M.; Bolotov, V.; Fedorov, A. Kinetic Features of the Hydrogen Sulfide Sorption on the Ferro-Manganese Material. Metals 2021, 11, 90. [Google Scholar] [CrossRef]
- Persson, T.; Persson, K.M.; Åström, J. Ferric Oxide-Containing Waterworks Sludge Reduces Emissions of Hydrogen Sulfide in Biogas Plants and the Needs for Virgin Chemicals. Sustainability 2021, 13, 7416. [Google Scholar] [CrossRef]
- Rana, M.S.; Bhushan, S.; Prajapati, S.K. New insights on improved growth and biogas production potential of Chlorella pyrenoidosa through intermittent iron oxide nanoparticle supplementation. Sci. Rep. 2020, 10, 14119. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, D.; Fang, H. Comparison of enhancement of anaerobic digestion of waste activated sludge through adding nano-zero valent iron and zero valent iron. RSC Adv. 2018, 8, 27181–27190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, R.; Liu, X.; Hu, Y.; Li, J.; Chen, J.; Pang, L.; Yang, P. Stronger Stimulation of Waste Activated Sludge Anaerobic Fermentation by a Particular Amount of Micron-Sized Zero Valent Iron. Appl. Biochem. Biotechnol. 2020, 192, 313–324. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Wang, W.; He, Y.; Zhang, R.; Liu, G. Effect of ammonia on methane production, methanogenesis pathway, microbial community and reactor performance under mesophilic and thermophilic conditions. Renew. Energy 2018, 125, 915–925. [Google Scholar] [CrossRef]
- Ofverstrom, S.; Dauknys, R.; Sapkaitė, I. The effect of iron salt on anaerobic digestion and phosphate release to sludge liquor. Moksl.–Liet. Ateitis/Sci.–Future Lith. 2011, 3, 123–126. [Google Scholar] [CrossRef]
- Qin, Y.; Chen, L.; Wang, T.; Ren, J.; Cao, Y.; Zhou, S. Impacts of ferric chloride, ferrous chloride and solid retention time on the methane-producing and physicochemical characterization in high-solids sludge anaerobic digestion. Renew. Energy 2019, 139, 1290–1298. [Google Scholar] [CrossRef]
- Zhan, W.; Tian, Y.; Zhang, J.; Zuo, W.; Li, L.; Jin, Y.; Lei, Y.; Xie, A.; Zhang, X. Mechanistic insights into the roles of ferric chloride on methane production in anaerobic digestion of waste activated sludge. J. Clean. Prod. 2021, 296, 126527. [Google Scholar] [CrossRef]
- Yu, Z.; Xiao, K.; Zhu, Y.; Sun, M.; Liang, S.; Hu, J.; Hou, H.; Liu, B.; Yang, J. Comparison of different valent iron on anaerobic sludge digestion: Focusing on oxidation reduction potential, dissolved organic nitrogen and microbial community. Front. Environ. Sci. Eng. 2022, 16, 80. [Google Scholar] [CrossRef]
- Alepu, O.E.; Li, Z.; Ikhumhen, H.O.; Kalakodio, L.; Wang, K.; Segun, G. Effect of Hydraulic Retention Time on Anaerobic Digestion of Xiao Jiahe Municipal Sludge. Int. J. Waste Resour. 2016, 6, 1000231. [Google Scholar] [CrossRef]
- Abdelsalam, E.; Samer, M.; Abdel-Hadi, M.A.; Hassan, H.E.; Badr, Y. Effect of CoCl2, NiCl2 and FeCl3 additives on biogas and methane production. Misr J. Agric. Eng. 2015, 32, 843–862. [Google Scholar] [CrossRef]
- Petrovič, A.; Zirngast, K.; Predikaka, T.C.; Simonič, M.; Čuček, L. The advantages of co-digestion of vegetable oil industry by-products and sewage sludge: Biogas production potential, kinetic analysis and digestate valorisation. J. Environ. Manag. 2022, 318, 115566. [Google Scholar] [CrossRef] [PubMed]
- Markou, G.; Vandamme, D.; Muylaert, K. Ammonia inhibition on Arthrospira platensis in relation to the initial biomass density and pH. Bioresour. Technol. 2014, 166, 259–265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalamaras, S.D.; Vitoulis, G.; Christou, M.L.; Sfetsas, T.; Tziakas, S.; Fragos, V.; Samaras, P.; Kotsopoulos, T.A. The effect of ammonia toxicity on methane production of a full-scale biogas plant—An estimation method. Energies 2021, 14, 5031. [Google Scholar] [CrossRef]
- Cheng, J.; Zhu, C.; Zhu, J.; Jing, X.; Kong, F.; Zhang, C. Effects of waste rusted iron shavings on enhancing anaerobic digestion of food wastes and municipal sludge. J. Clean. Prod. 2020, 242, 118195. [Google Scholar] [CrossRef]
- Ghodsi, V.; Sarathy, S.R.; Walton, J.R.; Watson, I.; Elbeshbishy, E.; Santoro, D. Enhancing sludge dewaterability and phosphate removal through a novel chemical dosing strategy using ferric chloride and hydrogen peroxide. Water Environ. Res. 2021, 93, 232–240. [Google Scholar] [CrossRef]
Parameter | Composition of the Additive, % | ||
---|---|---|---|
No 1 | No 2 | No 3 | |
Fe (in compounds below) | >60 | ≥62.5 | ≥71 |
FeO | >41.5 | - | - |
Fe2O3 (hematite) | >41.5 | - | - |
Fe3O4 (magnetite) | - | ≥86 | ≥98 |
Particle size | 200 µm ± 100 µm | 200 µm ± 100 µm | 100 µm ± 50 µm |
Phase of Tests | Reactor No 1 | Reactor No 2 | ||
---|---|---|---|---|
No of Additive | Dose, g/g DS/20 d | No of Additive | Dose, g/g DS/20 d | |
1 | No additive | - | 1 | 0.30 |
2 | 1 | 0.15 | FeCl3 | 0.56 |
3 | 2 | 0.30 | 2 | 0.15 |
4 | 3 | 0.30 | 3 | 0.15 |
5 | FeCl3 | 0.15 | FeCl3 | 0.07 |
Parameter | n | Average | STDEV |
---|---|---|---|
DS (g/L) | 9 | 30.40 | 0.16 |
VS (g/L) | 9 | 21.22 | 0.95 |
Parameter | Lab-Scale Test | Full-Scale Test | Note |
---|---|---|---|
Average dose of additive, kg/t DSs | 7.5 | 7.4 | - |
Average increase in VSs destruction,% | 2.2 | 0.7 | 7.8 without decreased VSs destruction in the period from day 18 to day 35 (Figure 8) |
Average increase in specific biogas production,% | 15 | 18 | 52 when dose was 120 kg/d |
Average increase in the content of methane in biogas | 6.3 | 5.0 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dauknys, R.; Mažeikienė, A. Process Improvement of Biogas Production from Sewage Sludge Applying Iron Oxides-Based Additives. Energies 2023, 16, 3285. https://doi.org/10.3390/en16073285
Dauknys R, Mažeikienė A. Process Improvement of Biogas Production from Sewage Sludge Applying Iron Oxides-Based Additives. Energies. 2023; 16(7):3285. https://doi.org/10.3390/en16073285
Chicago/Turabian StyleDauknys, Regimantas, and Aušra Mažeikienė. 2023. "Process Improvement of Biogas Production from Sewage Sludge Applying Iron Oxides-Based Additives" Energies 16, no. 7: 3285. https://doi.org/10.3390/en16073285
APA StyleDauknys, R., & Mažeikienė, A. (2023). Process Improvement of Biogas Production from Sewage Sludge Applying Iron Oxides-Based Additives. Energies, 16(7), 3285. https://doi.org/10.3390/en16073285