Electrochemical Production of Sodium Hypochlorite from Salty Wastewater Using a Flow-by Porous Graphite Electrode
Abstract
:1. Introduction
2. Materials and Methods
2.1. Physical and Chemical Characteristics of Salty Wastewater
2.2. Cell Construction
2.3. Characterizations of Graphite Bed
2.4. Experimental Work
3. Results and Discussion
3.1. Influence of Influent Feed Flow Rate on NaOCl Concentration in the Effluent Stream with the Effect of Porous Electrode
3.2. Effect of the Porous Electrode on the Cell Performance
3.3. Influence of Current Density and Salinity on the Produced NaOCl Concentration
3.4. Influence of Inter-Electrode Spacing on NaOCl Concentration in the Effluent
4. Statistical Analysis
5. Comparison between Proposed Electrochemical Cell Using Flow-by Porous Graphite Electrode and Traditional Electrochemical Technologies
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Al-Sayed, A.; Hellal, M.S.; Al-Shemy, M.T.; Hassan, G.K. Performance Evaluation of Submerged Membrane Bioreactor for Municipal Wastewater Treatment: Experimental Study and Model Validation with GPS-X Software Simulator. Water Environ. J. 2023; online ahead of print. [Google Scholar] [CrossRef]
- Tawfik, A.; Al-Sayed, A.; Hassan, G.K.; Nasr, M.; El-Shafai, S.A.; Alhajeri, N.S.; Khan, M.S.; Akhtar, M.S.; Ahmad, Z.; Rojas, P. Electron Donor Addition for Stimulating the Microbial Degradation of 1, 4 Dioxane by Sequential Batch Membrane Bioreactor: A Techno-Economic Approach. Chemosphere 2022, 306, 135580. [Google Scholar] [CrossRef] [PubMed]
- El-Qelish, M.; Hassan, G.K.; Leaper, S.; Dessì, P.; Abdel-Karim, A. Membrane-Based Technologies for Biohydrogen Production: A Review. J. Environ. Manag. 2022, 316, 115239. [Google Scholar] [CrossRef]
- Ding, J.; Wang, S.; Xie, P.; Zou, Y.; Wan, Y.; Chen, Y.; Wiesner, M.R. Chemical Cleaning of Algae-Fouled Ultrafiltration (UF) Membrane by Sodium Hypochlorite (NaClO): Characterization of Membrane and Formation of Halogenated by-Products. J. Membr. Sci. 2020, 598, 117662. [Google Scholar] [CrossRef]
- Al-Hazmi, H.E.; Shokrani, H.; Shokrani, A.; Jabbour, K.; Abida, O.; Khadem, S.S.M.; Habibzadeh, S.; Sonawane, S.H.; Saeb, M.R.; Bonilla-Petriciolet, A. Recent Advances in Aqueous Virus Removal Technologies. Chemosphere 2022, 305, 135441. [Google Scholar] [CrossRef]
- Henwood, A.F. Coronavirus Disinfection in Histopathology. J. Histotechnol. 2020, 43, 102–104. [Google Scholar] [CrossRef] [Green Version]
- Gebendorfer, K.M.; Drazic, A.; Le, Y.; Gundlach, J.; Bepperling, A.; Kastenmüller, A.; Ganzinger, K.A.; Braun, N.; Franzmann, T.M.; Winter, J. Identification of a Hypochlorite-Specific Transcription Factor from Escherichia coli. J. Biol. Chem. 2012, 287, 6892–6903. [Google Scholar] [CrossRef] [Green Version]
- Baert, L.; Vandekinderen, I.; Devlieghere, F.; Van Coillie, E.; Debevere, J.; Uyttendaele, M. Efficacy of Sodium Hypochlorite and Peroxyacetic Acid to Reduce Murine Norovirus 1, B40-8, Listeria Monocytogenes, and Escherichia Coli O157: H7 on Shredded Iceberg Lettuce and in Residual Wash Water. J. Food Prot. 2009, 72, 1047–1054. [Google Scholar] [CrossRef]
- Slaughter, R.J.; Watts, M.; Vale, J.A.; Grieve, J.R.; Schep, L.J. The Clinical Toxicology of Sodium Hypochlorite. Clin. Toxicol. 2019, 57, 303–311. [Google Scholar] [CrossRef]
- Young, S.B.; Setlow, P. Mechanisms of Killing of Bacillus Subtilis Spores by Hypochlorite and Chlorine Dioxide. J. Appl. Microbiol. 2003, 95, 54–67. [Google Scholar] [CrossRef]
- Wang, J.; Shen, J.; Ye, D.; Yan, X.; Zhang, Y.; Yang, W.; Li, X.; Wang, J.; Zhang, L.; Pan, L. Disinfection Technology of Hospital Wastes and Wastewater: Suggestions for Disinfection Strategy during Coronavirus Disease 2019 (COVID-19) Pandemic in China. Environ. Pollut. 2020, 262, 114665. [Google Scholar] [CrossRef]
- Yang, X.; Shen, Q.; Guo, W.; Peng, J.; Liang, Y. Precursors and Nitrogen Origins of Trichloronitromethane and Dichloroacetonitrile during Chlorination/Chloramination. Chemosphere 2012, 88, 25–32. [Google Scholar] [CrossRef]
- Asokan, K.; Subramanian, K. Design of a Tank Electrolyser for In-Situ Generation of NaClO. In Proceedings of the World Congress on Engineering and Computer Science, London, UK, 3–5 July 2009; Volume 1, pp. 139–142. [Google Scholar]
- Zhu, J.; Ba, X.; Guo, X.; Zhang, Q.; Qi, Y.; Li, Y.; Wang, J.; Sun, H.; Jiang, B. Oxychlorides Induced Over-Evaluation of Electrochemical COD Removal Performance over Dimensionally Stable Anode (DSA): The Roles of Cathode Materials. Sep. Purif. Technol. 2022, 303, 122197. [Google Scholar] [CrossRef]
- Rajkumar, D.; Guk Kim, J.; Palanivelu, K. Indirect Electrochemical Oxidation of Phenol in the Presence of Chloride for Wastewater Treatment. Chem. Eng. Technol. Ind. Chem. Equip. Process Eng. 2005, 28, 98–105. [Google Scholar] [CrossRef]
- Elmaadawy, K.; Liu, B.; Hassan, G.K.; Wang, X.; Wang, Q.; Hu, J.; Hou, H.; Yang, J.; Wu, X. Microalgae-Assisted Fixed-Film Activated Sludge MFC for Landfill Leachate Treatment and Energy Recovery. Process Saf. Environ. Prot. 2022, 160, 221–231. [Google Scholar] [CrossRef]
- Hassan, G.K.; El-Gohary, F.A. Evaluation of Partial Nitritation/Anammox Process for Reduction of Pollutants from Sanitary Landfill Leachate. Water Air Soil Pollut. 2021, 232, 134. [Google Scholar] [CrossRef]
- Alvarado-Ávila, M.I.; Toledo-Carrillo, E.; Dutta, J. Cerium Oxide on a Fluorinated Carbon-Based Electrode as a Promising Catalyst for Hypochlorite Production. ACS Omega 2022, 7, 37465–37475. [Google Scholar] [CrossRef] [PubMed]
- Balagopal, S.; Malhotra, V.; Pendleton, J.; Reid, K.J. Electrolytic Process to Produce Sodium Hypochlorite Using Sodium Ion Conductive Ceramic Membranes. U.S. Patent No. 8,268,159, 18 September 2012. [Google Scholar]
- Altaf, A.; Noor, S.; Sharif, Q.M.; Najeebullah, M. Different Techniques Recently Used for the Treatment of Textile Dyeing Effluents: A Review. J. Chem. Soc. Pakistan 2010, 32, 115–116. [Google Scholar]
- Huang, L.; Huang, X.; Yan, J.; Liu, Y.; Jiang, H.; Zhang, H.; Tang, J.; Liu, Q. Research progresses on the application of perovskite in adsorption and photocatalytic removal of water pollutants. J. Hazard. Mater. 2022, 442, 130024. [Google Scholar] [CrossRef] [PubMed]
- Key, J.D.V. Development of a Small-Scale Electro-Chlorination System for Rural Water Supplies. Master’s Thesis, University of the Western Cape, Cape Town, South Africa, 2010. [Google Scholar]
- Abdel-Monem, N.M.; Abdel-Salam, O.E.; Nassar, A.F.; Mahmoud, M.H. Oxidation of Urea in Human Urine Using Flow-by Porous Graphite Electrode. Int. J. Sci. Eng. Res. 2013, 4, 1715–1723. [Google Scholar]
- Trainham, J.A.; Newman, J. A Comparison between Flow-through and Flow-by Porous Electrodes for Redox Energy Storage. Electrochim. Acta 1981, 26, 455–469. [Google Scholar] [CrossRef]
- Pathak, A.; Sharma, A.K.; Gupta, A.K. Dimensional Analysis of a Flow-by Porous Electrode and Demonstration to All-Vanadium Redox Flow Batteries Thereon. J. Energy Storage 2021, 44, 103258. [Google Scholar] [CrossRef]
- APHA. Standard, Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 2012. [Google Scholar]
- Abbar, A.H.; Sulaymon, A.H.; Mohammed, S.A.M. Mass Transfer Characteristics of a Flow-by Fixed Bed Electrochemical Reactor Composed of Vertical Stack Stainless Steel Screens Cathode. Heat Mass Transf. 2019, 55, 2419–2428. [Google Scholar] [CrossRef]
- Pletcher, D.; WHYTE, I.; Walsh, F.C.; Millington, J.P. Reticulated Vitreous Carbon Cathodes for Metal Ion Removal from Process Streams. III: Studies of a Single Pass Reactor. J. Appl. Electrochem. 1993, 23, 82–85. [Google Scholar] [CrossRef]
- Meseldzija, S.; Petrovic, J.; Onjia, A.; Volkov-Husovic, T.; Nesic, A.; Vukelic, N. Utilization of Agro-Industrial Waste for Removal of Copper Ions from Aqueous Solutions and Mining-Wastewater. J. Ind. Eng. Chem. 2019, 75, 246–252. [Google Scholar] [CrossRef]
- Adeyiga, A.A.; Hu, L.; Greer, T. Removal of Metal Ions from Wastewater with Natural Wastes. In Proceedings of the Sixth Annual Historically Black Colleges and Universities and Other Minority Institutions Symposium, Ocean City, MD, USA, 28–29 April 1998. [Google Scholar]
- Naderi, M.; Nasseri, S. Optimization of Free Chlorine, Electric and Current Efficiency in an Electrochemical Reactor for Water Disinfection Purposes by RSM. J. Environ. Health Sci. Eng. 2020, 18, 1343–1350. [Google Scholar] [CrossRef] [PubMed]
- Kamel, M.; El-Ashtoukhy, E.S.Z.; Abdel-Aziz, M.H.; Zahran, R.R.; Sedahmed, G.H.; El Gheriany, I. Effect of Additives and Electrode Roughness on the Production of Hypochlorite Sanitizer by the Electrolysis of NaCl Solution in a Batch Recycle Reactor. Chem. Eng. Process. Intensif. 2022, 176, 108959. [Google Scholar] [CrossRef]
- Hassan, G.K.; Al-Shemy, M.; Adel, A.M.; Al-Sayed, A. Boosting Brackish Water Treatment via Integration of Mesoporous γ-Al2O3NPs with Thin-Film Nanofiltration Membranes. Sci. Rep. 2022, 12, 19666. [Google Scholar] [CrossRef]
- Pohl, A. Removal of Heavy Metal Ions from Water and Wastewaters by Sulfur-Containing Precipitation Agents. Water Air Soil Pollut. 2020, 231, 503. [Google Scholar] [CrossRef]
- Sealey, S. Modern Chlor-Alkali Technology; Royal Society of Chemistry: London, UK, 1998; Volume 7, ISBN 0854047239. [Google Scholar]
- Slade, P.E. Handbook of Fiber Finish Technology; CRC Press: Boca Raton, FL, USA, 2018; ISBN 020371928X. [Google Scholar]
- Saleem, M.; Chakrabarti, M.H.; Hasan, D.B.; Islam, M.; Yusoff, R.; Hajimolana, S.A.; Hussain, M.A.; Khan, G.M.A.; Ali, B.S. On Site Electrochemical Production of Sodium Hypochlorite Disinfectant for a Power Plant Utilizing Seawater. Int. J. Electrochem. Sci. 2012, 7, 3929–3938. [Google Scholar]
- Saleem, M. Biofouling Management in the Cooling Circuit of a Power Industry Using Electrochemical Process. J. Chem. Soc. Pakistan 2011, 33, 295. [Google Scholar]
- Hsu, G.-S.W.; Lu, Y.-F.; Hsu, S.-Y. Effects of Electrolysis Time and Electric Potential on Chlorine Generation of Electrolyzed Deep Ocean Water. J. Food Drug Anal. 2017, 25, 759–765. [Google Scholar] [CrossRef] [Green Version]
- Ghalwa, N.A.; Tamos, H.; ElAskalni, M.; El Agha, A.R. Generation of Sodium Hypochlorite (NaOCl) from Sodium Chloride Solution Using C/PbO 2 and Pb/PbO 2 Electrodes. Int. J. Miner. Metall. Mater. 2012, 19, 561–566. [Google Scholar] [CrossRef]
- Doumbi, R.T.; Noumi, G.B.; Ngobtchok, B. Tannery Wastewater Treatment by Electro-Fenton and Electro-Persulfate Processes Using Graphite from Used Batteries as Free-Cost Electrode Materials. Case Stud. Chem. Environ. Eng. 2022, 5, 100190. [Google Scholar] [CrossRef]
- Rhees, R.C.; Behrens, R.E.; Reid, K.J.; Morgan, L.B. Method for Producing Chlorine or Hypochlorite Product; Royal Society of Chemistry: London, UK, 1997. [Google Scholar]
Characteristics | Value |
---|---|
pH | 6.4–9.8 |
Conductivity, mS/cm | 63.4 |
Hardness as CaCO3, ppm | 8475 |
Total dissolved solids (TDS), ppm | 40,000 |
Total alkalinity as CaCO3, ppm | 112 |
Sodium as Na+, ppm | 12,456 |
Potassium as K+, ppm | 294 |
Sulfate as SO4−, ppm | 1276 |
Chloride as Cl−, ppm | 24,607 |
Calcium as Ca++, ppm | 740 |
Magnesium as Mg++, ppm | 1576 |
Nitrate as NO3−, ppm | 13.6 |
Manganese as Mn++, ppm | 0.39 |
Iron as Fe++, ppm | 0.6 |
Salinity, % | 42.8 |
Mesh No. | Screen Opening | Mass Fraction Retained |
---|---|---|
1 | 2 μm | 0 |
2 | 1.4 μm | 2.3 × 10−3 |
3 | 1.0 μm | 0.283 |
4 | 710 microns | 0.495 |
5 | 300 microns | 0.195 |
6 | 150 microns | 0.012 |
7 | 75 microns | 3.6 × 10−3 |
8 | Pan | 4 × 10−3 |
Parameter | Diameter, mm | Height, mm | Mass of Graphite, g | Specific Gravity | Shape Factor | Specific Area of Graphite, (m2/m3) |
---|---|---|---|---|---|---|
Value | 100 | 200 | 450 | 1.089 | 0.86 | 0.86 |
Flow Rate mL/min | TDS in (ppm) | TDS out (ppm) | I in (A) | I out (A) | V in (v) | V out (v) | pH in | pH out | Salinity (ppm) | Electrode Gap (cm) | NaOCl Conc. (g/L) % | Current Density mA/cm2 | Power Kwh |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
4.5 | 40,000 | 12,000 | 4 | 4 | 12 | 10.3 | 6.4 | 7.25 | 40,000 | 0.5 | 20.632% | 3.183 | 0.0137 |
Coefficients | Values | p-Values |
---|---|---|
bo | −6.229683692 | 0.021540278 |
b1 | −273.9949222 | 1.28663 × 10−6 |
b2 | 5.954517056 | 3.57137 × 10−7 |
b3 | 0.000719633 | 0.000194301 |
b4 | −4.888991478 | 2.31529 × 10−6 |
b5 | −0.02147953 | 2.16509 × 10−5 |
b6 | −1.00524 × 10−8 | 0.001746191 |
Anode and Cathode | Current (A) | Current Density, (mA/cm2) | Electrolysis Time, h | NaOCl Conc. (g/L) % | NaOCl Conc. (g/L) | Voltage, (V) | System | Ref. |
---|---|---|---|---|---|---|---|---|
Graphite granules anode using flow-by technique | 4 | 3.183 | 0.33 | 20.632 | 8.2528 | 10.3 | Continuous | Our Study |
Stainless steel | 20 | - | - | 5.5 | - | - | Batch | [42] |
Titanium | 100 | - | - | 0.86 | - | - | - | [42] |
Pepcon systems 100 AMP cell titanium cathode, graphite anode | 30 | - | - | 0.1 | - | - | Continuous | [19] |
Cathode stainless steel anode RuO on Ti | 7.2 | - | - | 10.2 | 30 | - | Continuous | [19] |
Ceramic membrane (Na3Zr2Si2POC)12 | - | 74 | 1.79 | 26 | - | Continuous | [19] | |
Anode RuO on Ti cathode SS | 3.6 | - | - | 6.8 | 30 | - | Continuous | [19] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Afify, A.A.; Hassan, G.K.; Al-Hazmi, H.E.; Kamal, R.M.; Mohamed, R.M.; Drewnowski, J.; Majtacz, J.; Mąkinia, J.; El-Gawad, H.A. Electrochemical Production of Sodium Hypochlorite from Salty Wastewater Using a Flow-by Porous Graphite Electrode. Energies 2023, 16, 4754. https://doi.org/10.3390/en16124754
Afify AA, Hassan GK, Al-Hazmi HE, Kamal RM, Mohamed RM, Drewnowski J, Majtacz J, Mąkinia J, El-Gawad HA. Electrochemical Production of Sodium Hypochlorite from Salty Wastewater Using a Flow-by Porous Graphite Electrode. Energies. 2023; 16(12):4754. https://doi.org/10.3390/en16124754
Chicago/Turabian StyleAfify, Ahmed A., Gamal K. Hassan, Hussein E. Al-Hazmi, Rozan M. Kamal, Rehab M. Mohamed, Jakub Drewnowski, Joanna Majtacz, Jacek Mąkinia, and Heba A. El-Gawad. 2023. "Electrochemical Production of Sodium Hypochlorite from Salty Wastewater Using a Flow-by Porous Graphite Electrode" Energies 16, no. 12: 4754. https://doi.org/10.3390/en16124754
APA StyleAfify, A. A., Hassan, G. K., Al-Hazmi, H. E., Kamal, R. M., Mohamed, R. M., Drewnowski, J., Majtacz, J., Mąkinia, J., & El-Gawad, H. A. (2023). Electrochemical Production of Sodium Hypochlorite from Salty Wastewater Using a Flow-by Porous Graphite Electrode. Energies, 16(12), 4754. https://doi.org/10.3390/en16124754