Experimental Evaluation of a Photovoltaic/Thermal Air Heater with Metal Mesh-Integrated Thermal Energy Storage System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Setup
2.2. Test Procedure
3. Theoretical Analysis
4. Results and Discussion
5. Conclusions
- Employing a TESS with metallic mesh layers improved average electric power and gained thermal energy values by 13.67% and 33.25%, respectively, in comparison to the unmodified PV/T air heater.
- Using only a paraffin-containing TESS upgraded the mean thermal and electrical yields by 14.85% and 6.65%, respectively. By adding mesh layers to the TESS, there was a significant enhancement in the overall performance of the PV/T system, with thermal and electrical efficiencies surpassing the values achieved by the unmodified system by 33.17% and 14.82%, respectively.
- The average LCOH value of the unmodified system was reduced from 0.0386 USD/kWh to 0.0347 USD/kWh using a metallic mesh layer-embedded TESS.
- Utilizing the TESS with mesh layers enhanced the yearly carbon dioxide savings by 30.37% compared to the unmodified PV/T air heater.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
surface area of the PV/T, m2 | |
specific heat capacity of the air, kJ/kgK | |
capital cost of the PV/T system, USD | |
capital recovery factor, - | |
energy rate, W | |
exergy rate, W | |
fuel depletion savings, USD | |
fill factor of the PV panel, - | |
solar irradiation, W/m2 | |
effective solar radiation, W | |
enthalpy, kJ/kg | |
electric current, A | |
levelized cost of heating, USD/kWh | |
mass, kg | |
mass flow rate of air in the PV/T, kg/s | |
electric power, W | |
payback time of the PV/T, year | |
entropy, kJ/kgK | |
sustainability index, - | |
temperature, K | |
electric voltage, V | |
Greek symbols | |
absorptivity, - | |
temperature difference, K | |
transmissivity, - | |
efficiency, % | |
flow exergy, - | |
yearly CO2 savings, tons/year | |
average CO2 emission for power production by coal, kgCO2/kWh | |
Subscripts | |
dest | destructed |
elec | electrical |
ef | effective |
exg | exergy |
in | inlet |
ma | air mass |
meas | measured |
npo | normalized power output |
OC | open circuit |
out | outlet |
SC | short circuit |
STC | Standard Test Conditions |
ther | thermal |
References
- Farzan, H.; Zaim, E.H.; Ameri, M.; Amiri, T. Study on effects of wind velocity on thermal efficiency and heat dynamics of pavement solar collectors: An experimental and numerical study. Renew. Energy 2021, 163, 1718–1728. [Google Scholar] [CrossRef]
- Khanlari, A.; Tuncer, A.D.; Sözen, A.; Aytaç, İ.; Çiftçi, E.; Variyenli, H.İ. Energy and exergy analysis of a vertical solar air heater with nano-enhanced absorber coating and perforated baffles. Renew. Energy 2022, 187, 586–602. [Google Scholar] [CrossRef]
- Farzan, H.; Zaim, E.H. Study on thermal performance of a new combined perforated metallic/asphalt solar air heater for heating Applications: An experimental study. Sol. Energy 2023, 249, 485–494. [Google Scholar] [CrossRef]
- Nižetić, S.; Jurčević, M.; Čoko, D.; Arıcı, M. A novel and effective passive cooling strategy for photovoltaic panel. Renew. Sustain. Energy Rev. 2021, 145, 111164. [Google Scholar] [CrossRef]
- Tuncer, A.D.; Khanlari, A.; Sözen, A. Seasonal energy-exergy analysis of a new foldable photovoltaic-thermal air collector: An experimental and numerical study. Heat Transf. Res. 2022, 53, 25–53. [Google Scholar] [CrossRef]
- Azad, A.K.; Parvin, S. Bibliometric analysis of photovoltaic thermal (PV/T) system: From citation mapping to research agenda. Energy Rep. 2022, 8, 2699–2711. [Google Scholar] [CrossRef]
- Vengadesan, E.; Senthil, R. A review on recent developments in thermal performance enhancement methods of flat plate solar air collector. Renew. Sustain. Energy Rev. 2020, 134, 110315. [Google Scholar] [CrossRef]
- Jamshed, W.; Şirin, C.; Selimefendigil, F.; Shamshuddin, M.D.; Altowairqi, Y.; Eid, M.R. Thermal characterization of coolant Maxwell type nanofluid flowing in Parabolic Trough Solar Collector (PTSC) used inside solar powered ship application. Coatings 2021, 11, 1552. [Google Scholar] [CrossRef]
- Khadiran, T.; Hussein, M.Z.; Zainal, Z.; Rusli, R. Advanced energy storage materials for building applications and their thermal performance characterization: A review. Renew. Sustain. Energy Rev. 2016, 57, 916–928. [Google Scholar] [CrossRef]
- Bayrak, F.; Oztop, H.F.; Selimefendigil, F. Effects of different fin parameters on temperature and efficiency for cooling of photovoltaic panels under natural convection. Sol. Energy 2019, 188, 484–494. [Google Scholar] [CrossRef]
- Herrando, M.; Ramos, A. Photovoltaic-Thermal (PV-T) systems for combined cooling, heating and power in buildings: A review. Energies 2022, 15, 3021. [Google Scholar] [CrossRef]
- Kumar, R.; Rosen, M.A. Performance evaluation of a double pass PV/T solar air heater with and without fins. Appl. Therm. Eng. 2011, 31, 1402–1410. [Google Scholar] [CrossRef]
- Othman, M.Y.; Hamid, S.A.; Tabook, M.A.S.; Sopian, K.; Roslan, M.H.; Ibarahim, Z. Performance analysis of PV/T combi with water and air heating system: An experimental study. Renew. Energy 2016, 86, 716–722. [Google Scholar] [CrossRef]
- Mourshed, M.; Masuk, N.I.; Nguyen, H.Q.; Shabani, B. An experimental approach to energy and exergy analyses of a hybrid PV/T system with simultaneous water and air cooling. Energies 2022, 15, 6764. [Google Scholar] [CrossRef]
- Vassiliades, C.; Barone, G.; Buonomano, A.; Forzano, C.; Giuzio, G.F.; Palombo, A. Assessment of an innovative plug and play PV/T system integrated in a prefabricated house unit: Active and passive behaviour and life cycle cost analysis. Renew. Energy 2022, 186, 845–863. [Google Scholar] [CrossRef]
- Kang, Z.; Lu, Z.; Song, G.; Yao, Q. A numerical study of dual-inlet air-cooled PV/T solar collectors with various airflow channel configurations. Sustainability 2022, 14, 9897. [Google Scholar] [CrossRef]
- Gopi, S.; Muraleedharan, C. Modelling and experimental studies on a double-pass hybrid photovoltaic-thermal solar air heater with vertical slats attached in the lower channel. Int. J. Amb. Energy 2022, 43, 4664–4674. [Google Scholar] [CrossRef]
- Shahsavar, A.; Arıcı, M. Energy and exergy analysis and optimization of a novel heating, cooling, and electricity generation system composed of PV/T-heat pipe system and thermal wheel. Renew. Energy 2023, 203, 394–406. [Google Scholar] [CrossRef]
- Roshdan, W.N.A.W.; Jarimi, H.; Al-Waeli, A.H.; Ramadan, O.; Sopian, K. Performance enhancement of double pass photovoltaic/thermal solar collector using asymmetric compound parabolic concentrator (PV/T-ACPC) for façade application in different climates. Case Stud. Therm. Eng. 2022, 34, 101998. [Google Scholar] [CrossRef]
- Farzan, H.; Zaim, E.H.; Amiri, T. Performance study on a new solar air heater with integrated phase change materials and external recycle: A numerical and experimental study. Appl. Therm. Eng. 2023, 223, 120000. [Google Scholar] [CrossRef]
- Selimefendigil, F.; Şirin, C. Energy and exergy analysis of a hybrid photovoltaic/thermal-air collector modified with nano-enhanced latent heat thermal energy storage unit. J. Energy Storage 2022, 45, 103467. [Google Scholar] [CrossRef]
- Gürbüz, E.Y.; Kusun, B.; Tuncer, A.D.; Ural, T. Experimental investigation of a double-flow photovoltaic/thermal air collector with natural dolomite powder-embedded thermal energy storage unit. J. Energy Storage 2023, 64, 107220. [Google Scholar] [CrossRef]
- Şirin, C.; Selimefendigil, F.; Öztop, H.F. Performance analysis and identification of an indirect photovoltaic thermal dryer with aluminum oxide nano-embedded thermal energy storage modification. Sustainability 2023, 15, 2422. [Google Scholar] [CrossRef]
- Selimefendigil, F.; Şirin, C.; Ghachem, K.; Kolsi, L. Exergy and environmental analysis of an active greenhouse dryer with Al2O3 nano-embedded latent heat thermal storage system: An experimental study. Appl. Therm. Eng. 2022, 217, 119167. [Google Scholar] [CrossRef]
- Selimefendigil, F.; Şirin, C.; Öztop, H.F. Experimental analysis of combined utilization of CuO nanoparticles in latent heat storage unit and absorber coating in a single-slope solar desalination system. Sol. Energy 2022, 233, 278–286. [Google Scholar] [CrossRef]
- Browne, M.C.; Quigley, D.; Hard, H.R.; Gilligan, S.; Ribeiro, N.C.; Almeida, N.; McCormack, S.J. Assessing the thermal performance of phase change material in a photovoltaic/thermal system. Energy Procedia 2016, 91, 113–121. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Sun, L.; Yuan, Y.; Zhao, X.; Cao, X. Experimental investigation on performance comparison of PV/T-PCM system and PV/T system. Renew. Energy 2018, 119, 152–159. [Google Scholar] [CrossRef]
- Selimefendigil, F.; Şirin, C.; Öztop, H.F. Effect of different heat transfer fluids on discharging performance of phase change material included cylindrical container during forced convection. J. Cent. South Univ. 2021, 28, 3521–3533. [Google Scholar] [CrossRef]
- Sopian, K.; Al-Waeli, A.H.; Kazem, H.A. Energy, exergy and efficiency of four photovoltaic thermal collectors with different energy storage material. J. Energy Storage 2020, 29, 101245. [Google Scholar] [CrossRef]
- Behzadi, A.; Arabkoohsar, A. Feasibility study of a smart building energy system comprising solar PV/T panels and a heat storage unit. Energy 2020, 210, 118528. [Google Scholar] [CrossRef]
- Yao, J.; Xu, H.; Dai, Y.; Huang, M. Performance analysis of solar assisted heat pump coupled with build-in PCM heat storage based on PV/T panel. Sol. Energy 2020, 197, 279–291. [Google Scholar] [CrossRef]
- Mao, Y.; Wu, J.; Zhang, W. An effective operation strategy for CCHP system integrated with photovoltaic/thermal panels and thermal energy storage. Energies 2020, 13, 6418. [Google Scholar] [CrossRef]
- Gulfam, R.; Zhang, P.; Meng, Z. Advanced thermal systems driven by paraffin-based phase change materials–A review. Appl. Energy 2019, 238, 582–611. [Google Scholar] [CrossRef]
- Wei, G.; Wang, G.; Xu, C.; Ju, X.; Xing, L.; Du, X.; Yang, Y. Selection principles and thermophysical properties of high temperature phase change materials for thermal energy storage: A review. Renew. Sustain. Energy Rev. 2018, 81, 1771–1786. [Google Scholar] [CrossRef]
- Yang, L.; Huang, J.; Zhou, F. Thermophysical properties and applications of nano-enhanced PCMs: An update review. Energy Convers. Manag. 2020, 214, 112876. [Google Scholar] [CrossRef]
- Kabeel, A.E.; Khalil, A.; Shalaby, S.M.; Zayed, M.E. Experimental investigation of thermal performance of flat and v-corrugated plate solar air heaters with and without PCM as thermal energy storage. Energy Convers. Manag. 2016, 113, 264–272. [Google Scholar] [CrossRef]
- Sajawal, M.; Rehman, T.U.; Ali, H.M.; Sajjad, U.; Raza, A.; Bhatti, M.S. Experimental thermal performance analysis of finned tube-phase change material based double pass solar air heater. Case Stud. Therm. Eng. 2019, 15, 100543. [Google Scholar] [CrossRef]
- Salih, S.M.; Jalil, J.M.; Najim, S.E. Experimental and numerical analysis of double-pass solar air heater utilizing multiple capsules PCM. Renew. Energy 2019, 143, 1053–1066. [Google Scholar] [CrossRef]
- Abuşka, M.; Şevik, S.; Kayapunar, A. A comparative investigation of the effect of honeycomb core on the latent heat storage with PCM in solar air heater. Appl. Therm. Eng. 2019, 148, 684–693. [Google Scholar] [CrossRef]
- Dinesh, S.N.; Saminathan, R.; Patil, M.M.; Baviskar, P.R.; Hadidi, H.; Vignesh, S.; Kumar, P.M. Investigating the single pass baffled solar air heater (SAH) with an organic PCM (OPCM). Mater. Today Proceed. 2022, 62, 5245–5249. [Google Scholar] [CrossRef]
- Farzan, H.; Zaim, E.H.; Amiri, T. Performance investigation on a new solar air heater using phase change material/expanded metal mesh composite as heat storage unit: An experimental study. J. Energy Storage 2022, 47, 103602. [Google Scholar] [CrossRef]
- Kazemian, A.; Taheri, A.; Sardarabadi, A.; Ma, T.; Passandideh-Fard, M.; Peng, J. Energy, exergy and environmental analysis of glazed and unglazed PVT system integrated with phase change material: An experimental approach. Sol. Energy 2020, 201, 178–189. [Google Scholar] [CrossRef]
- Granstrom, M.; Petritsch, K.; Arias, A.C.; Lux, A.; Andersson, M.R.; Friend, R.H. Laminated fabrication of polymeric photovoltaic diodes. Nature 1998, 395, 257–260. [Google Scholar] [CrossRef]
- Khanlari, A.; Tuncer, A.D.; Afshari, F.; Sözen, G. Utilization of recyclable aluminum cans as fins in a vertical solar air heating system: An experimental and numerical study. J. Build. Eng. 2023, 63, 105446. [Google Scholar] [CrossRef]
- Selimefendigil, F.; Şirin, C.; Ghachem, K.; Kolsi, L.; Alqahtani, T.; Algarni, S. Enhancing the performance of a greenhouse drying system by using triple-flow solar air collector with nano-enhanced absorber coating. Case Stud. Therm. Eng. 2022, 34, 102011. [Google Scholar] [CrossRef]
- Park, S.R.; Pandey, A.K.; Tyagi, V.V.; Tyag, S.K. Energy and exergy analysis of typical renewable energy systems. Renew. Sustain. Energy Rev. 2014, 30, 105–123. [Google Scholar] [CrossRef]
- Chow, T.T.; Pei, G.; Fong, K.F.; Lin, Z.; Chan, A.L.S.; Ji, J. Energy and exergy analysis of photovoltaic–thermal collector with and without glass cover. Appl. Energy 2009, 86, 310–316. [Google Scholar] [CrossRef]
- Tuncer, A.D.; Khanlari, A.; Afshari, F.; Sözen, A.; Çiftçi, E.; Kusun, B.; Şahinkesen, İ. Experimental and numerical analysis of a grooved hybrid photovoltaic-thermal solar drying system. Appl. Therm. Eng. 2023, 218, 119288. [Google Scholar] [CrossRef]
- Tuncer, A.D.; Khanlari, A.; Aytaç, İ.; Çiftçi, E.; Sözen, A.; Variyenli, H.İ. Passive thermal management of photovoltaic panel by using phase change material-filled aluminum cans: An experimental study. Heat Transf. Res. 2022, 53, 72–86. [Google Scholar] [CrossRef]
- Mugi, V.R.; Chandramohan, V.P. Energy and exergy analysis of forced and natural convection indirect solar dryers: Estimation of exergy inflow, outflow, losses, exergy efficiencies and sustainability indicators from drying experiments. J. Clean. Prod. 2021, 282, 124421. [Google Scholar] [CrossRef]
- Variyenli, H.İ.; Amini, A.; Tuncer, A.D.; Khanlari, A.; Kolay, Ş. Experimental and numerical analysis of a helically-coiled solar water collector at various angular placements. Int. J. Therm. Sci. 2023, 188, 108177. [Google Scholar] [CrossRef]
- Khanlari, A.; Güler, H.Ö.; Tuncer, A.D.; Şirin, C.; Bilge, Y.C.; Yılmaz, Y.; Güngör, A. Experimental and numerical study of the effect of integrating plus-shaped perforated baffles to solar air collector in drying application. Renew. Energy 2020, 145, 1677–1692. [Google Scholar] [CrossRef]
- Alic, E.; Das, M.; Akpinar, E.K. Design, manufacturing, numerical analysis and environmental effects of single-pass forced convection solar air collector. J. Clean. Prod. 2021, 311, 127518. [Google Scholar] [CrossRef]
- Aytaç, İ.; Tuncer, A.D.; Khanlari, A.; Variyenli, H.İ.; Mantıcı, S.; Güngör, L.; Ünvar, S. Investigating the effects of using MgO-CuO/water hybrid nanofluid in an evacuated solar water collector: A comprehensive survey. Therm. Sci. Eng. Prog. 2023, 39, 101688. [Google Scholar] [CrossRef]
- Abuşka, M.; Şevik, S. Energy, exergy, economic and environmental (4E) analyses of flat-plate and V-groove solar air collectors based on aluminium and copper. Sol. Energy 2017, 158, 259–277. [Google Scholar] [CrossRef]
- Tripathi, R.; Tiwari, G.N.; Dwivedi, V.K. Overall energy, exergy and carbon credit analysis of N partially covered Photovoltaic Thermal (PVT) concentrating collector connected in series. Sol. Energy 2016, 136, 260–267. [Google Scholar] [CrossRef]
- Ahmadi, R.; Monadinia, F.; Maleki, M. Passive/active photovoltaic-thermal (PVT) system implementing infiltrated phase change material (PCM) in PS-CNT foam. Sol. Energy Mater. Sol. Cells 2021, 222, 110942. [Google Scholar] [CrossRef]
- Diallo, T.M.; Yu, M.; Zhou, J.; Zhao, X.; Shittu, S.; Li, G.; Hardy, D. Energy performance analysis of a novel solar PVT loop heat pipe employing a microchannel heat pipe evaporator and a PCM triple heat exchanger. Energy 2019, 167, 866–888. [Google Scholar] [CrossRef]
- Choubineh, N.; Jannesari, H.; Kasaeian, A. Experimental study of the effect of using phase change materials on the performance of an air-cooled photovoltaic system. Renew. Sustain. Energy Rev. 2019, 101, 103–111. [Google Scholar] [CrossRef]
- Agrawal, S.; Tiwari, G.N.; Pandey, H.D. Indoor experimental analysis of glazed hybrid photovoltaic thermal tiles air collector connected in series. Energy Build. 2012, 53, 145–151. [Google Scholar] [CrossRef]
- Jahromi, S.N.; Vadiee, A.; Yaghoubi, M. Exergy and economic evaluation of a commercially available PV/T collector for different climates in Iran. Energy Procedia 2015, 75, 444–456. [Google Scholar] [CrossRef] [Green Version]
- Sarhaddi, F.; Farahat, S.; Ajam, H.; Behzadmehr, A. Exergetic performance assessment of a solar photovoltaic thermal (PV/T) air collector. Energy Build. 2010, 42, 2184–2199. [Google Scholar] [CrossRef]
- Slimani, M.E.A.; Amirat, M.; Kurucz, I.; Bahria, S.; Hamidat, A.; Chaouch, W.B. A detailed thermal-electrical model of three photovoltaic/thermal (PV/T) hybrid air collectors and photovoltaic (PV) module: Comparative study under Algiers climatic conditions. Energy Convers. Manag. 2017, 133, 458–476. [Google Scholar] [CrossRef]
- Abdelkader, T.K.; Zhang, Y.; Gaballah, E.S.; Wang, S.; Wan, Q.; Fan, Q. Energy and exergy analysis of a flat-plate solar air heater coated with carbon nanotubes and cupric oxide nanoparticles embedded in black paint. J. Clean. Prod. 2020, 250, 119501. [Google Scholar] [CrossRef]
- Nayak, S.; Tiwari, G.N. Energy and exergy analysis of photovoltaic/thermal integrated with a solar greenhouse. Energy Build. 2008, 40, 2015–2021. [Google Scholar] [CrossRef]
- Wongwuttanasatian, T.; Sarikarin, T.; Suksri, A. Performance enhancement of a photovoltaic module by passive cooling using phase change material in a finned container heat sink. Sol. Energy 2020, 195, 47–53. [Google Scholar] [CrossRef]
- Jha, P.; Mondol, J.D.; Das, B.; Gupta, R. Energy metrics assessment of a photovoltaic thermal air collector (PVTAC): A comparison between flat and wavy collector. Energy Sources Part A 2020, 42, 1–19. [Google Scholar] [CrossRef]
- Daghigh, R.; Shahidian, R.; Oramipoor, H. A multistate investigation of a solar dryer coupled with photovoltaic thermal collector and evacuated tube collector. Sol. Energy 2020, 199, 694–703. [Google Scholar] [CrossRef]
- Yao, J.; Zheng, S.; Chen, D.; Dai, Y.; Huang, M. Performance improvement of vapor-injection heat pump system by employing PVT collector/evaporator for residential heating in cold climate region. Energy 2021, 219, 119636. [Google Scholar] [CrossRef]
- Riggs, B.C.; Biedenharn, R.; Dougher, C.; Ji, Y.V.; Xu, Q.; Romanin, V.; Escarra, M.D. Techno-economic analysis of hybrid PV/T systems for process heat using electricity to subsidize the cost of heat. Appl. Energy 2017, 208, 1370–1378. [Google Scholar] [CrossRef]
- Rekha, L.; Vijayalakshmi, M.M.; Natarajan, E. Green house saving potential of a photovoltaic thermal hybrid solar system for residential applications. Int. J. Innov. Res. Sci. Eng. Technol. 2013, 2, 370–376. [Google Scholar]
Specification | Value |
---|---|
Pmax | 12 W |
Ip,max | 0.52 A |
Vp,max | 23.25 V |
Isc | 0.58 A |
Voc | 23.45 V |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tuncer, A.D.; Gürbüz, E.Y.; Keçebaş, A.; Georgiev, A.G. Experimental Evaluation of a Photovoltaic/Thermal Air Heater with Metal Mesh-Integrated Thermal Energy Storage System. Energies 2023, 16, 3449. https://doi.org/10.3390/en16083449
Tuncer AD, Gürbüz EY, Keçebaş A, Georgiev AG. Experimental Evaluation of a Photovoltaic/Thermal Air Heater with Metal Mesh-Integrated Thermal Energy Storage System. Energies. 2023; 16(8):3449. https://doi.org/10.3390/en16083449
Chicago/Turabian StyleTuncer, Azim Doğuş, Emine Yağız Gürbüz, Ali Keçebaş, and Aleksandar G. Georgiev. 2023. "Experimental Evaluation of a Photovoltaic/Thermal Air Heater with Metal Mesh-Integrated Thermal Energy Storage System" Energies 16, no. 8: 3449. https://doi.org/10.3390/en16083449
APA StyleTuncer, A. D., Gürbüz, E. Y., Keçebaş, A., & Georgiev, A. G. (2023). Experimental Evaluation of a Photovoltaic/Thermal Air Heater with Metal Mesh-Integrated Thermal Energy Storage System. Energies, 16(8), 3449. https://doi.org/10.3390/en16083449