Cracking Behavior of Heavy Petroleum Polar Species in Collision-Induced Dissociation and Thermal Visbreaking
Abstract
:1. Introduction
2. Experimental
2.1. Feedstock and Thermal Visbreaking Reactions
2.2. ESI FT-ICR MS and CID Fragmentation
2.3. Mass Calibration and Data Analysis
3. Results and Discussion
3.1. Molecular Weight Distribution
3.2. Dealkylation
3.3. Desulfurization
3.4. Deoxygenation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Speight, J.G. The Chemistry and Technology of Petroleum; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Joshi, J.B.; Pandit, A.B.; Kataria, K.L.; Kulkarni, R.P.; Sawarkar, A.N.; Tandon, D.; Ram, Y.; Kumar, M.M. Petroleum residue upgradation via visbreaking: A review. Ind. Eng. Chem. Res. 2008, 47, 8960–8988. [Google Scholar] [CrossRef]
- Marshall, A.G.; Hendrickson, C.L.; Jackson, G.S. Fourier transform ion cyclotron resonance mass spectrometry: A primer. Mass Spectrom. Rev. 1998, 17, 1–35. [Google Scholar] [CrossRef]
- Scigelova, M.; Hornshaw, M.; Giannakopulos, A.; Makarov, A. Fourier transform mass spectrometry. Mol. Cell. Proteom. 2011, 10, M111.009431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McLuckey, S.A. Principles of collisional activation in analytical mass spectrometry. J. Am. Soc. Mass Spectrom. 1992, 3, 599–614. [Google Scholar] [CrossRef] [Green Version]
- Cody, R.; Burnier, R.; Freiser, B. Collision-induced dissociation with Fourier transform mass spectrometry. Anal. Chem. 1982, 54, 96–101. [Google Scholar] [CrossRef]
- Dongre, A.R.; Somogyi, Á.; Wysocki, V.H. Surface-induced dissociation: An effective tool to probe structure, energetics and fragmentation mechanisms of protonated peptides. J. Mass Spectrom. 1996, 31, 339–350. [Google Scholar] [CrossRef]
- Mabud, M.A.; Dekrey, M.J.; Cooks, R.G. Surface-induced dissociation of molecular ions. Int. J. Mass Spectrom. Ion Process. 1985, 67, 285–294. [Google Scholar] [CrossRef]
- Bowers, W.D.; Delbert, S.S.; Hunter, R.L.; McIver, R.T., Jr. Fragmentation of oligopeptide ions using ultraviolet laser radiation and Fourier transform mass spectrometry. J. Am. Chem. Soc. 1984, 106, 7288–7289. [Google Scholar] [CrossRef]
- Little, D.P.; Speir, J.P.; Senko, M.W.; O’Connor, P.B.; McLafferty, F.W. Infrared multiphoton dissociation of large multiply charged ions for biomolecule sequencing. Anal. Chem. 1994, 66, 2809–2815. [Google Scholar] [CrossRef]
- Dunbar, R.C. BIRD (blackbody infrared radiative dissociation): Evolution, principles, and applications. Mass Spectrom. Rev. 2004, 23, 127–158. [Google Scholar] [CrossRef]
- Price, W.D.; Schnier, P.D.; Williams, E.R. Tandem mass spectrometry of large biomolecule ions by blackbody infrared radiative dissociation. Anal. Chem. 1996, 68, 859–866. [Google Scholar] [CrossRef]
- Qi, Y.; Volmer, D.A. Electron-based fragmentation methods in mass spectrometry: An overview. Mass Spectrom. Rev. 2017, 36, 4–15. [Google Scholar] [CrossRef] [PubMed]
- Zubarev, R.A. Electron-capture dissociation tandem mass spectrometry. Curr. Opin. Biotechnol. 2004, 15, 12–16. [Google Scholar] [CrossRef] [PubMed]
- Pomerantz, A.E.; Hammond, M.R.; Morrow, A.L.; Mullins, O.C.; Zare, R.N. Two-step laser mass spectrometry of asphaltenes. J. Am. Chem. Soc. 2008, 130, 7216–7217. [Google Scholar] [CrossRef] [PubMed]
- Sabbah, H.; Morrow, A.L.; Pomerantz, A.E.; Zare, R.N. Evidence for island structures as the dominant architecture of asphaltenes. Energy Fuels 2011, 25, 1597–1604. [Google Scholar] [CrossRef]
- Sabbah, H.; Morrow, A.L.; Pomerantz, A.E.; Mullins, O.C.; Tan, X.; Gray, M.R.; Azyat, K.; Tykwinski, R.R.; Zare, R.N. Comparing laser desorption/laser ionization mass spectra of asphaltenes and model compounds. Energy Fuels 2010, 24, 3589–3594. [Google Scholar] [CrossRef]
- Borton, D.; Pinkston, D.S.; Hurt, M.R.; Tan, X.; Azyat, K.; Scherer, A.; Tykwinski, R.; Gray, M.; Qian, K.; Kenttämaa, H.I. Molecular structures of asphaltenes based on the dissociation reactions of their ions in mass spectrometry. Energy Fuels 2010, 24, 5548–5559. [Google Scholar] [CrossRef]
- Qian, K.; Robbins, W.K.; Hughey, C.A.; Cooper, H.J.; Rodgers, R.P.; Marshall, A.G. Resolution and Identification of Elemental Compositions for More than 3000 Crude Acids in Heavy Petroleum by Negative-Ion Microelectrospray High-Field Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Energy Fuels 2001, 15, 1505–1511. [Google Scholar] [CrossRef]
- Qian, K.; Rodgers, R.P.; Hendrickson, C.L.; Emmett, M.R.; Marshall, A.G. Reading chemical fine print: Resolution and identification of 3000 nitrogen-containing aromatic compounds from a single electrospray ionization Fourier transform ion cyclotron resonance mass spectrum of heavy petroleum crude oil. Energy Fuels 2001, 15, 492–498. [Google Scholar] [CrossRef]
- Kim, S.; Stanford, L.A.; Rodgers, R.P.; Marshall, A.G.; Walters, C.C.; Qian, K.; Wenger, L.M.; Mankiewicz, P. Microbial alteration of the acidic and neutral polar NSO compounds revealed by Fourier transform ion cyclotron resonance mass spectrometry. Org. Geochem. 2005, 36, 1117–1134. [Google Scholar] [CrossRef]
- Cho, Y.; Witt, M.; Kim, Y.H.; Kim, S. Characterization of crude oils at the molecular level by use of laser desorption ionization Fourier-transform ion cyclotron resonance mass spectrometry. Anal. Chem. 2012, 84, 8587–8594. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.; Ahmed, A.; Kim, S. Application of Atmospheric Pressure Photo Ionization Hydrogen/Deuterium Exchange High-Resolution Mass Spectrometry for the Molecular Level Speciation of Nitrogen Compounds in Heavy Crude Oils. Anal. Chem. 2013, 85, 9758–9763. [Google Scholar] [CrossRef]
- Marshall, A.G.; Rodgers, R.P. Petroleomics: Chemistry of the underworld. Proc. Natl. Acad. Sci. USA 2008, 105, 18090–18095. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marshall, A.G.; Rodgers, R.P. Petroleomics: The next grand challenge for chemical analysis. Acc. Chem. Res. 2004, 37, 53–59. [Google Scholar] [CrossRef]
- Wei, W.; Yingrong, L.; Zelong, L.; Huandi, H.; Songbai, T. Linkage of aromatic ring structures in saturates, aromatics, resins and asphaltenes fractions of vacuum residues determined by collision-induced dissociation technology. China Pet. Process. Petrochem. Technol. 2016, 18, 59–65. [Google Scholar]
- Mapolelo, M.M.; Rodgers, R.P.; Blakney, G.T.; Yen, A.T.; Asomaning, S.; Marshall, A.G. Characterization of naphthenic acids in crude oils and naphthenates by electrospray ionization FT-ICR mass spectrometry. Int. J. Mass Spectrom. 2011, 300, 149–157. [Google Scholar] [CrossRef]
- Rudzinski, W.E.; Oehlers, L.; Zhang, Y.; Najera, B. Tandem mass spectrometric characterization of commercial naphthenic acids and a Maya crude oil. Energy Fuels 2002, 16, 1178–1185. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, Y.; Zhao, S.; Xu, C.; Chung, K.H.; Shi, Q. Characterization of heavy petroleum fraction by positive-ion electrospray ionization FT-ICR mass spectrometry and collision induced dissociation: Bond dissociation behavior and aromatic ring architecture of basic nitrogen compounds. Sci. China Chem. 2013, 56, 874–882. [Google Scholar] [CrossRef]
- Qian, K.; Edwards, K.E.; Mennito, A.S.; Freund, H.; Saeger, R.B.; Hickey, K.J.; Francisco, M.A.; Yung, C.; Chawla, B.; Wu, C. Determination of structural building blocks in heavy petroleum systems by collision-induced dissociation fourier transform ion cyclotron resonance mass spectrometry. Anal. Chem. 2012, 84, 4544–4551. [Google Scholar] [CrossRef]
- Strausz, O.P.; Safarik, I.; Lown, E.; Morales-Izquierdo, A. A critique of asphaltene fluorescence decay and depolarization-based claims about molecular weight and molecular architecture. Energy Fuels 2008, 22, 1156–1166. [Google Scholar] [CrossRef]
- Gray, M.R. Consistency of Asphaltene Chemical Structures with Pyrolysis and Coking Behavior. Energy Fuels 2003, 17, 1566–1569. [Google Scholar] [CrossRef]
- Chacón-Patiño, M.L.; Rowland, S.M.; Rodgers, R.P. Advances in Asphaltene Petroleomics. Part 1: Asphaltenes Are Composed of Abundant Island and Archipelago Structural Motifs. Energy Fuels 2017, 31, 13509–13518. [Google Scholar] [CrossRef]
- Nyadong, L.; Lai, J.; Thompsen, C.; LaFrancois, C.J.; Cai, X.-H.; Song, C.; Wang, J.; Wang, W. High-Field Orbitrap Mass Spectrometry and Tandem Mass Spectrometry for Molecular Characterization of Asphaltenes. Energy Fuel 2018, 32, 294–305. [Google Scholar] [CrossRef]
- Chacón-Patiño, M.L.; Rowland, S.M.; Rodgers, R.P. Advances in Asphaltene Petroleomics 2. A Selective Separation Method that Reveals Fractions Enriched in Island and Archipelago Structural Motifs by Mass Spectrometry. Energy Fuels 2018, 32, 314–328. [Google Scholar] [CrossRef]
- Rüger, C.P.; Neumann, A.; Sklorz, M.; Schwemer, T.; Zimmermann, R. Thermal Analysis Coupled to Ultrahigh Resolution Mass Spectrometry with Collision Induced Dissociation for Complex Petroleum Samples: Heavy Oil Composition and Asphaltene Precipitation Effects. Energy Fuels 2017, 31, 13144–13158. [Google Scholar] [CrossRef]
- Wittrig, A.M.; Fredriksen, T.R.; Qian, K.; Clingenpeel, A.C.; Harper, M.R. Single Dalton Collision-Induced Dissociation for Petroleum Structure Characterization. Energy Fuels 2017, 31, 13338–13344. [Google Scholar] [CrossRef]
- Liu, L.; Song, C.; Tian, S.; Zhang, Q.; Cai, X.; Liu, Y.; Liu, Z.; Wang, W. Structural characterization of sulfur-containing aromatic compounds in heavy oils by FT-ICR mass spectrometry with a narrow isolation window. Fuel 2019, 240, 40–48. [Google Scholar] [CrossRef]
- Wang, W.; Dong, M.; Song, C.; Cai, X.; Liu, Y.; Liu, Z.; Tian, S. Structural information of asphaltenes derived from petroleum vacuum residue and its hydrotreated product obtained by FT-ICR mass spectrometry with narrow ion isolation windows. Fuel 2018, 227, 111–117. [Google Scholar] [CrossRef]
- Cai, X.; Shi, R.; Wang, W.; Hou, H.; Peng, D.; Wang, N.; Deng, Z.; Liu, Z.; Zhang, Q. Molecular Structures of Refractory Sulfur Compounds in Heavy Oil Hydrodesulfurization Characterized by Collision-Induced Dissociation Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Energy Fuels 2022, 36, 1326–1337. [Google Scholar] [CrossRef]
- Liu, L.; Qundan, Z.; Huandi, H.; Songbai, T.; Wei, W. Structural Characterization of Petroleum Molecules by CID FT-ICR MS with Narrow Isolation Window. China Pet. Process. Petrochem. Technol. 2018, 20, 32–41. [Google Scholar]
- Zhao, J.; Dai, L.; Wang, W.; Liu, T.; Ren, L.; Zhang, L.; Han, W.; Li, D. Unraveling the molecular-level structures and distribution of refractory sulfur compounds during residue hydrotreating process. Fuel Process. Technol. 2021, 224, 107025. [Google Scholar] [CrossRef]
- Deng, Z.; Dai, L.; Han, W.; Cai, X.; Nie, X.; Fang, Q.; Nie, H. Towards a deep understanding of the evolution and molecular structures of refractory sulfur compounds during deep residue hydrotreating process. Fuel Process. Technol. 2022, 231, 107235. [Google Scholar] [CrossRef]
- Dong, X.; Zhang, Y.; Milton, J.; Yerabolu, R.; Easterling, L.; Kenttämaa, H.I. Investigation of the relative abundances of single-core and multicore compounds in asphaltenes by using high-resolution in-source collision-activated dissociation and medium-energy collision-activated dissociation mass spectrometry with statistical considerations. Fuel 2019, 246, 126–132. [Google Scholar]
- Qian, K.; Edwards, K.E.; Mennito, A.S.; Freund, H. Determination of Cores or Building Blocks and Reconstruction of Parent Molecules in Heavy Petroleums and Other Hydrocarbon Resources; U.S. Patent and Trademark Office: Washington, DC, USA, 2015.
- Laskin, J.; Byrd, M.; Futrell, J. Internal energy distributions resulting from sustained off-resonance excitation in FTMS. I. Fragmentation of the bromobenzene radical cation. Int. J. Mass Spectrom. 2000, 195, 285–302. [Google Scholar] [CrossRef]
- Shi, Q.; Xu, C.; Zhao, S.; Chung, K.H.; Zhang, Y.; Gao, W. Characterization of basic nitrogen species in coker gas oils by positive-ion electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Energy Fuels 2009, 24, 563–569. [Google Scholar] [CrossRef]
- Hughey, C.A.; Hendrickson, C.L.; Rodgers, R.P.; Marshall, A.G.; Qian, K. Kendrick mass defect spectrum: A compact visual analysis for ultrahigh-resolution broadband mass spectra. Anal. Chem. 2001, 73, 4676–4681. [Google Scholar] [CrossRef]
- Hughey, C.A.; Rodgers, R.P.; Marshall, A.G.; Qian, K.; Robbins, W.K. Identification of acidic NSO compounds in crude oils of different geochemical origins by negative ion electrospray Fourier transform ion cyclotron resonance mass spectrometry. Org. Geochem. 2002, 33, 743–759. [Google Scholar] [CrossRef]
- Shi, Q.; Hou, D.; Chung, K.H.; Xu, C.; Zhao, S.; Zhang, Y. Characterization of heteroatom compounds in a crude oil and its saturates, aromatics, resins, and asphaltenes (SARA) and non-basic nitrogen fractions analyzed by negative-ion electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Energy Fuels 2010, 24, 2545–2553. [Google Scholar]
- Shi, Q.; Zhao, S.; Xu, Z.; Chung, K.H.; Zhang, Y.; Xu, C. Distribution of acids and neutral nitrogen compounds in a Chinese crude oil and its fractions: Characterized by negative-ion electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Energy Fuels 2010, 24, 4005–4011. [Google Scholar] [CrossRef]
- Podgorski, D.C.; Corilo, Y.E.; Nyadong, L.; Lobodin, V.V.; Bythell, B.J.; Robbins, W.K.; McKenna, A.M.; Marshall, A.G.; Rodgers, R.P. Heavy petroleum composition. 5. Compositional and structural continuum of petroleum revealed. Energy Fuels 2013, 27, 1268–1276. [Google Scholar] [CrossRef]
- Ruddy, B.M.; Huettel, M.; Kostka, J.E.; Lobodin, V.V.; Bythell, B.J.; McKenna, A.M.; Aeppli, C.; Reddy, C.M.; Nelson, R.K.; Marshall, A.G. Targeted petroleomics: Analytical investigation of Macondo well oil oxidation products from Pensacola Beach. Energy Fuels 2014, 28, 4043–4050. [Google Scholar] [CrossRef]
- Ebrahimi, S.; Moghaddas, J.; Aghjeh, M.R. Study on thermal cracking behavior of petroleum residue. Fuel 2008, 87, 1623–1627. [Google Scholar] [CrossRef]
- Hsu, C.S.; Lobodin, V.V.; Rodgers, R.P.; McKenna, A.M.; Marshall, A.G. Compositional boundaries for fossil hydrocarbons. Energy Fuels 2011, 25, 2174–2178. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, H.; Fang, X.; Jiang, X.; Wang, L.; Zhang, Y.; Zhang, L. Cracking Behavior of Heavy Petroleum Polar Species in Collision-Induced Dissociation and Thermal Visbreaking. Energies 2023, 16, 3448. https://doi.org/10.3390/en16083448
Yu H, Fang X, Jiang X, Wang L, Zhang Y, Zhang L. Cracking Behavior of Heavy Petroleum Polar Species in Collision-Induced Dissociation and Thermal Visbreaking. Energies. 2023; 16(8):3448. https://doi.org/10.3390/en16083448
Chicago/Turabian StyleYu, Haiyang, Xieling Fang, Xu Jiang, Li Wang, Ying Zhang, and Linzhou Zhang. 2023. "Cracking Behavior of Heavy Petroleum Polar Species in Collision-Induced Dissociation and Thermal Visbreaking" Energies 16, no. 8: 3448. https://doi.org/10.3390/en16083448
APA StyleYu, H., Fang, X., Jiang, X., Wang, L., Zhang, Y., & Zhang, L. (2023). Cracking Behavior of Heavy Petroleum Polar Species in Collision-Induced Dissociation and Thermal Visbreaking. Energies, 16(8), 3448. https://doi.org/10.3390/en16083448