Elimination of the Ion–Molecule Association in Electrospray High-Resolution Mass Spectrometry Analyses for Petroleum Fractions
Abstract
:1. Introduction
2. Experimental Section
2.1. Sample and Reagent
2.2. Sample Preparation and Analytical Workflow
2.3. ESI Orbitrap MS Analysis
2.4. Data Processing
3. Results and Discussion
3.1. Discussion of Different Association Types
3.2. Methods of Dissociation for VGO
3.3. Discussion of the Mechanism of Association and Dissociation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rodgers, R.P.; Hendrickson, C.L.; Emmett, M.R.; Marshall, A.G.; Greaney, M.; Qian, K. Molecular characterization of petroporphyrins in crude oil by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Can. J. Chem. 2001, 79, 546–551. [Google Scholar] [CrossRef]
- Zhan, D.; Fenn, J.B. Electrospray mass spectrometry of fossil fuels11Dedicated to Professor Jim Morrison on the occasion of his 75th birthday. Int. J. Mass Spectrom. 2000, 194, 197–208. [Google Scholar] [CrossRef]
- Qian, K.; Robbins, W.K.; Hughey, C.A.; Cooper, H.J.; Rodgers, R.P.; Marshall, A.G. Resolution and Identification of Elemental Compositions for More than 3000 Crude Acids in Heavy Petroleum by Negative-Ion Microelectrospray High-Field Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Energy Fuels 2001, 15, 1505–1511. [Google Scholar] [CrossRef]
- Qian, K.; Rodgers, R.P.; Hendrickson, C.L.; Emmett, M.R.; Marshall, A.G. Reading Chemical Fine Print: Resolution and Identification of 3000 Nitrogen-Containing Aromatic Compounds from a Single Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrum of Heavy Petroleum Crude Oil. Energy Fuels 2001, 15, 492–498. [Google Scholar] [CrossRef]
- Shi, Q.; Zhang, Y.; Chung, K.H.; Zhao, S.; Xu, C. Molecular Characterization of Fossil and Alternative Fuels Using Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry: Recent Advances and Perspectives. Energy Fuels 2021, 35, 18019–18055. [Google Scholar] [CrossRef]
- Banerjee, S.; Mazumdar, S. Electrospray Ionization Mass Spectrometry: A Technique to Access the Information beyond the Molecular Weight of the Analyte. Int. J. Anal. Chem. 2012, 2012, 282574. [Google Scholar] [CrossRef]
- Jin, C.; Viidanoja, J.; Li, M.; Zhang, Y.; Ikonen, E.; Root, A.; Romanczyk, M.; Manheim, J.; Dziekonski, E.; Kenttämaa, H.I. Comparison of Atmospheric Pressure Chemical Ionization and Field Ionization Mass Spectrometry for the Analysis of Large Saturated Hydrocarbons. Anal. Chem. 2016, 88, 10592–10598. [Google Scholar] [CrossRef]
- Thomas, M.J.; Chan, H.Y.H.; Palacio Lozano, D.C.; Barrow, M.P. Solvent and Flow Rate Effects on the Observed Compositional Profiles and the Relative Intensities of Radical and Protonated Species in Atmospheric Pressure Photoionization Mass Spectrometry. Anal. Chem. 2022, 94, 4954–4960. [Google Scholar] [CrossRef]
- Cho, Y.; Ahmed, A.; Islam, A.; Kim, S. Developments in FT-ICR MS instrumentation, ionization techniques, and data interpretation methods for petroleomics. Mass Spectrom. Rev. 2015, 34, 248–263. [Google Scholar] [CrossRef]
- Lu, J.; Zhang, Y.; Shi, Q. Ionizing Aromatic Compounds in Petroleum by Electrospray with HCOONH4 as Ionization Promoter. Anal. Chem. 2016, 88, 3471–3475. [Google Scholar] [CrossRef]
- Hughey, C.A.; Hendrickson, C.L.; Rodgers, R.P.; Marshall, A.G. Elemental Composition Analysis of Processed and Unprocessed Diesel Fuel by Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Energy Fuels 2001, 15, 1186–1193. [Google Scholar] [CrossRef]
- Hughey, C.A.; Rodgers, R.P.; Marshall, A.G.; Qian, K.; Robbins, W.K. Identification of acidic NSO compounds in crude oils of different geochemical origins by negative ion electrospray Fourier transform ion cyclotron resonance mass spectrometry. Org. Geochem. 2002, 33, 743–759. [Google Scholar] [CrossRef]
- Fenn, J.B.; Mann, M.; Meng, C.K.; Wong, S.F.; Whitehouse, C.M. Electrospray Ionization for Mass Spectrometry of Large Biomolecules. Science 1989, 246, 64–71. [Google Scholar] [CrossRef]
- Fenn, J.B.; Mann, M.; Meng, C.K.; Wong, S.F.; Whitehouse, C.M. Electrospray ionization–principles and practice. Mass Spectrom. Rev. 1990, 9, 37–70. [Google Scholar] [CrossRef]
- Bruins, A.P. Mechanistic aspects of electrospray ionization. J. Chromatogr. A 1998, 794, 345–357. [Google Scholar] [CrossRef]
- Wu, Z.; Jernström, S.; Hughey, C.A.; Rodgers, R.P.; Marshall, A.G. Resolution of 10000 Compositionally Distinct Components in Polar Coal Extracts by Negative-Ion Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Energy Fuels 2003, 17, 946–953. [Google Scholar] [CrossRef]
- Hughey, C.A.; Rodgers, R.P.; Marshall, A.G.; Rodgers, R.P.; Marshall, A.G. Acidic and neutral polar NSO compounds in Smackover oils of different thermal maturity revealed by electrospray high field Fourier transform ion cyclotron resonance mass spectrometry. Org. Geochem. 2004, 35, 863–880. [Google Scholar] [CrossRef]
- Hughey, C.A.; Galasso, S.A.; Zumberge, J.E. Detailed compositional comparison of acidic NSO compounds in biodegraded reservoir and surface crude oils by negative ion electrospray Fourier transform ion cyclotron resonance mass spectrometry. Fuel 2007, 86, 758–768. [Google Scholar] [CrossRef]
- Shi, Q. Geochemical Characterization of Petroleum Acids in Acidic Crude Oils. Ph.D. Thesis, Beijing, China, 2008. [Google Scholar]
- Larter, S.R.; Bowler, B.F.J.; Li, M.; Chen, M.; Brincat, D.; Bennett, B.; Noke, K.; Donohoe, P.; Simmons, D.; Kohnen, M.; et al. Molecular indicators of secondary oil migration distances. Nature 1996, 383, 593–597. [Google Scholar] [CrossRef]
- Oldenburg, T.B.P.; Brown, M.; Bennett, B.; Larter, S.R. The impact of thermal maturity level on the composition of crude oils, assessed using ultra-high resolution mass spectrometry. Org. Geochem. 2014, 75, 151–168. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, C.; Shi, Q.; Zhao, S.; Chung, K.H.; Hou, D. Tracking Neutral Nitrogen Compounds in Subfractions of Crude Oil Obtained by Liquid Chromatography Separation Using Negative-Ion Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Energy Fuels 2010, 24, 6321–6326. [Google Scholar] [CrossRef]
- Smith, D.F.; Schaub, T.M.; Rahimi, P.; Teclemariam, A.; Rodgers, R.P.; Marshall, A.G. Self-Association of Organic Acids in Petroleum and Canadian Bitumen Characterized by Low- and High-Resolution Mass Spectrometry. Energy Fuels 2007, 21, 1309–1316. [Google Scholar] [CrossRef]
- Qian, K.; Edwards, K.E.; Dechert, G.J.; Jaffe, S.B.; Green, L.A.; Olmstead, W.N. Measurement of Total Acid Number (TAN) and TAN Boiling Point Distribution in Petroleum Products by Electrospray Ionization Mass Spectrometry. Anal. Chem. 2008, 80, 849–855. [Google Scholar] [CrossRef]
- Evdokimov, I.N.; Eliseev, N.Y.; Akhmetov, B.R. Initial stages of asphaltene aggregation in dilute crude oil solutions: Studies of viscosity and NMR relaxation. Fuel 2003, 82, 817–823. [Google Scholar] [CrossRef]
- Karaca, F.; Behrouzi, M.; Morgan, T.J.; Herod, A.A.; Kandiyoti, R. Effect of Salts on the SEC Profiles of Heavy Hydrocarbon Liquids: New Approach with Salts Dissolved in Solvents Used for Planar Chromatography. Energy Fuels 2005, 19, 187–199. [Google Scholar] [CrossRef]
- Juyal, P.; Merino-Garcia, D.; Andersen, S.I. Effect on Molecular Interactions of Chemical Alteration of Petroleum Asphaltenes. I. Energy Fuels 2005, 19, 1272–1281. [Google Scholar] [CrossRef]
- Li, S.; Wu, J.; Wang, Y.; Li, Y.; Zhang, W.; Zhang, Y.; He, K.; Cai, C.; Bian, G.; Wang, H.; et al. Semi-quantitative analysis of molecular composition for petroleum fractions using electrospray ionization high-resolution mass spectrometry. Fuel 2023, 335, 127049. [Google Scholar] [CrossRef]
- Mase, C.; Maillard, J.F.; Paupy, B.; Hubert-Roux, M.; Afonso, C.; Giusti, P. Speciation and Semiquantification of Nitrogen-Containing Species in Complex Mixtures: Application to Plastic Pyrolysis Oil. ACS Omega 2022, 7, 19428–19436. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.-K.; No, M.-H.; Koh, J.-S.; Kim, S.-W. Compositional characterization of petroleum heavy oils generated from vacuum distillation and catalytic cracking by positive-mode APPI FT-ICR mass spectrometry. Mass Spectrom. Lett. 2011, 2, 41–44. [Google Scholar] [CrossRef]
- Wang, W.; Liu, Y.; Liu, Z.; Tian, S. Detailed chemical composition of straight-run vacuum gas oil and its distillates as a function of the atmospheric equivalent boiling point. Energy Fuels 2016, 30, 968–974. [Google Scholar] [CrossRef]
- Shi, Q.; Dong, Z.; Zhang, Y.; Zhao, S.; Xu, C. Data processing of high-resolution mass spectra for crude oil and its distillations. J. Instrum. Anal 2008, 27, 246–248. [Google Scholar]
- Boduszynski, M.M. Composition of heavy petroleums. 2. Molecular characterization. Energy Fuels 1988, 2, 597–613. [Google Scholar] [CrossRef]
- Boduszynski, M.M. Composition of heavy petroleums. 1. Molecular weight, hydrogen deficiency, and heteroatom concentration as a function of atmospheric equivalent boiling point up to 1400.degree.F (760.degree.C). Energy Fuels 1987, 1, 2–11. [Google Scholar] [CrossRef]
- Altgelt, K.H.; Boduszynski, M.M. Composition of heavy petroleums. 3. An improved boiling point-molecular weight relation. Energy Fuels 1992, 6, 68–72. [Google Scholar] [CrossRef]
- Boduszynski, M.M.; Altgelt, K.H. Composition of heavy petroleums. 4. Significance of the extended atmospheric equivalent boiling point (AEBP) scale. Energy Fuels 1992, 6, 72–76. [Google Scholar] [CrossRef]
- Kudchadker, A.P.; Zwolinski, B.J. Vapor Pressure and Boiling Points of Normal Alkanes, C21 to C100. J. Chem. Eng. Data 1966, 11, 253–255. [Google Scholar] [CrossRef]
- These, A.; Reemtsma, T. Limitations of Electrospray Ionization of Fulvic and Humic Acids as Visible from Size Exclusion Chromatography with Organic Carbon and Mass Spectrometric Detection. Anal. Chem. 2003, 75, 6275–6281. [Google Scholar] [CrossRef]
- Andreatta, G.; Bostrom, N.; Mullins, O.C. High-Q Ultrasonic Determination of the Critical Nanoaggregate Concentration of Asphaltenes and the Critical Micelle Concentration of Standard Surfactants. Langmuir 2005, 21, 2728–2736. [Google Scholar] [CrossRef]
- Tanaka, R.; Sato, E.; Hunt, J.E.; Winans, R.E.; Sato, S.; Takanohashi, T. Characterization of Asphaltene Aggregates Using X-ray Diffraction and Small-Angle X-ray Scattering. Energy Fuels 2004, 18, 1118–1125. [Google Scholar] [CrossRef]
- Sharma, A.; Groenzin, H.; Tomita, A.; Mullins, O.C. Probing Order in Asphaltenes and Aromatic Ring Systems by HRTEM. Energy Fuels 2002, 16, 490–496. [Google Scholar] [CrossRef]
- Andersen, S.I.; Jensen, J.O.; Speight, J.G. X-ray Diffraction of Subfractions of Petroleum Asphaltenes. Energy Fuels 2005, 19, 2371–2377. [Google Scholar] [CrossRef]
Properties | VGO |
---|---|
Density (g/cm3) | 0.92 |
Viscosity (mm2/s) | 60.90 |
Acid number (mg KOH/g) | 2.27 |
Conradson carbon residue (%) | <0.05 |
Reagent | Concentration (mg/mL) | Sheath Gas (*) | Auxiliary Gas (*) | AGC | |
---|---|---|---|---|---|
VGO | Toluene/Methanol(1:3) | 0.2 | 5 | 2 | 5 × 105 |
A | Methanol | 0.2 | 5 | 2 | 5 × 105 |
B | Toluene/Methanol(1:3) | 0.1 | 5 | 2 | 5 × 105 |
C | Toluene/Methanol(1:3) | 0.2 | 20 | 10 | 5 × 105 |
D | Toluene/Methanol(1:3) | 0.2 | 5 | 2 | 1 × 106 |
E | Toluene/Methanol(1:3) | 0.2 | 20 | 10 | 1 × 106 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Li, S.; Wu, J.; Zhang, B.; Zhang, Y. Elimination of the Ion–Molecule Association in Electrospray High-Resolution Mass Spectrometry Analyses for Petroleum Fractions. Energies 2023, 16, 3796. https://doi.org/10.3390/en16093796
Wang Y, Li S, Wu J, Zhang B, Zhang Y. Elimination of the Ion–Molecule Association in Electrospray High-Resolution Mass Spectrometry Analyses for Petroleum Fractions. Energies. 2023; 16(9):3796. https://doi.org/10.3390/en16093796
Chicago/Turabian StyleWang, Yidi, Shuofan Li, Jianxun Wu, Bo Zhang, and Yahe Zhang. 2023. "Elimination of the Ion–Molecule Association in Electrospray High-Resolution Mass Spectrometry Analyses for Petroleum Fractions" Energies 16, no. 9: 3796. https://doi.org/10.3390/en16093796
APA StyleWang, Y., Li, S., Wu, J., Zhang, B., & Zhang, Y. (2023). Elimination of the Ion–Molecule Association in Electrospray High-Resolution Mass Spectrometry Analyses for Petroleum Fractions. Energies, 16(9), 3796. https://doi.org/10.3390/en16093796