Combined Utilization of Cylinder and Different Shaped Alumina Nanoparticles in the Base Fluid for the Effective Cooling System Design of Lithium-Ion Battery Packs
Abstract
:1. Introduction
2. Model Definition
2.1. Thermal Model
2.2. Nanofluid Model
2.3. Numerical Method
Boundary Conditions
2.4. Mesh Independence
2.5. Code Validation
3. Results and Discussion
4. Conclusions
- It is observed that inserting cylinders into the channels has an influence on thermal performance, especially at higher values of Re. At Re = 600, the maximum temperature is reduced by 2 °C by using the cylinder in the channels of the CS.
- As the value of Re increases, the temperature of the BP decreases. Moreover, the incorporation of boehmite alumina nanoparticles into the base fluid enhances and accelerates the heat absorption of the cooling medium. It is observed that the case where the cooling medium is utilized as boehmite alumina (AlOOH) nanofluid performs better than the case where the coolant is water.
- When the effects of nanofluid shape on battery thermal performance are explored, cylindrical-shaped particles have better thermal efficiency as compared to solid particles in the shape of bricks and blades.
- When various shapes of solid particles in the nanofluid are compared at Re = 200 and a solid volume fraction of 2%, the cylinder-shaped particle outperforms the blade- and brick-shaped nanoparticles over the highest temperature by 4.93% and 7.32%, respectively.
- By using the cylinder-shaped nanoparticles and increasing the nanoparticle loading amount in the base fluid, more uniform temperature distributions are achieved.
- When the number of solid nanoparticles in the base fluid increases, the temperature difference in the BP decreases. The largest improvement is achieved at a solid volume fraction of 2%, where a maximum-temperature enhancement of 7.2% is achieved compared to the pure water case.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
cp | specific heat capacity |
F | Faraday’s constant |
h | heat transfer coefficient |
current | |
k | thermal conductivity |
L | length |
p | pressure |
Qg | heat generation |
S | entropy |
T | temperature |
t | time |
q | heat flux |
velocity vector | |
V | voltage |
x,y,z | x,y,z-coordinate |
Greek letters | |
ρ | density |
μ | dynamic viscosity |
φ | solid volume fraction |
Subscripts | |
a | ambient |
bf | base fluid |
nf | nanofluid |
max | maximum |
min | minimum |
Abbreviations | |
BP | battery pack |
CS | cooling system |
HP | heat produced |
LIB | lithium-ion battery |
References
- Kiani, M.; Ansari, M.; Arshadi, A.A.; Houshfar, E.; Ashjaee, M. Hybrid thermal management of lithium-ion batteries using nanofluid, metal foam, and phase change material: An integrated numerical–experimental approach. J. Therm. Anal. Calorim. 2020, 141, 1703–1715. [Google Scholar] [CrossRef]
- Fathabadi, H. High thermal performance lithium-ion battery pack including hybrid active–passive thermal management system for using in hybrid/electric vehicles. Energy 2014, 70, 529–538. [Google Scholar] [CrossRef]
- Ismail, N.H.F.; Toha, S.F.; Azubir, N.A.M.; Ishak, N.H.M.; Hassan, I.D.M.K.; Ibrahim, B.S.K. Simplified heat generation model for lithium ion battery used in electric vehicle. IOP Conf. Ser. Mater. Sci. Eng. 2013, 53, 012014. [Google Scholar] [CrossRef]
- Ma, S.; Jiang, M.; Tao, P.; Song, C.; Wu, J.; Wang, J.; Deng, T.; Shang, W. Temperature effect and thermal impact in lithium-ion batteries: A review. Prog. Nat. Sci. 2018, 28, 653–666. [Google Scholar] [CrossRef]
- Wu, W.; Yang, X.; Zhang, G.; Chen, K.; Wang, S. Experimental investigation on the thermal performance of heat pipe-assisted phase change material based battery thermal management system. Energy Convers. Manag. 2017, 138, 486–492. [Google Scholar] [CrossRef]
- Ren, Y.; Yu, Z.; Song, G. Thermal management of a Li-ion battery pack employing water evaporation. J. Power Sources 2017, 360, 166–171. [Google Scholar] [CrossRef]
- Kaabinejadian, A.; Ahmadi, H.A.; Moghimi, M. Investigation of porous media effects on lithium-ion battery thermal management. J. Therm. Anal. Calorim. 2020, 141, 1619–1633. [Google Scholar] [CrossRef]
- Saha, S.K.; Ranjan, H.; Emani, M.S.; Bharti, A.K. Performance Evaluation Criteria in Heat Transfer Enhancement; Springer International Publishing: Cham, Switzerland, 2020. [Google Scholar]
- Moradikazerouni, A. Heat transfer characteristics of thermal energy storage system using single and multi-phase cooled heat sinks: A review. J. Energy Storage 2022, 49, 104097. [Google Scholar] [CrossRef]
- Khalid, S.U.; Ali, H.M.; Nasir, M.A.; Pasha, R.A.; Said, Z.; Sundar, L.S.; Hussein, A.K. Experimental investigation of thermal performance characteristics of sintered copper wicked and grooved heat pipes: A comparative study. J. Central South Univ. 2021, 28, 3507–3520. [Google Scholar] [CrossRef]
- Selimefendigil, F.; Öztop, H.F. Thermal management for conjugate heat transfer of curved solid conductive panel coupled with different cooling systems using non-Newtonian power law nanofluid applicable to photovoltaic panel systems. Int. J. Therm. Sci. 2022, 173, 107390. [Google Scholar] [CrossRef]
- Moradikazerouni, A. Experimental and numerical investigation of traveling wave tube radial heat sink connector thermal stress and deformation with a focus on energy cost management. Int. Commun. Heat Mass Transf. 2022, 131, 105770. [Google Scholar] [CrossRef]
- Hadi, F.; Ali, H.M. Experimental thermal and hydraulic study of super hydrophobic wavy mini channel heat sink using aqueous nanofluids. Chem. Eng. Commun. 2021, 210, 999–1021. [Google Scholar] [CrossRef]
- Selimefendigil, F.; Öztop, H.F. Thermal management and performance improvement by using coupled effects of magnetic field and phase change material for hybrid nanoliquid convection through a 3D vented cylindrical cavity. Int. J. Heat Mass Transf. 2022, 183, 122233. [Google Scholar] [CrossRef]
- Habib, H.M.; Ali, H.M.; Usman, M. Investigation of Condensate Retention on Horizontal Pin-Fin Tubes Using Water-Propanol Mixture. Sustainability 2022, 14, 835. [Google Scholar] [CrossRef]
- Jafarimoghaddam, A.; Aberoumand, H.; Aberoumand, S.; Arani, A.A.A.; Habibollahzade, A. MHD wedge flow of nanofluids with an analytic solution to an especial case by Lambert W-function and Homotopy Perturbation Method. Eng. Sci. Technol. Int. J. 2017, 20, 1515–1530. [Google Scholar] [CrossRef]
- Selimefendigil, F.; Öztop, H.F. Impacts of using an elastic fin on the phase change process under magnetic field during hybrid nanoliquid convection through a PCM-packed bed system. Int. J. Mech. Sci. 2022, 216, 106958. [Google Scholar] [CrossRef]
- Hadi, F.; Ali, H.M.; Siddique, F. Hydrothermal performance evaluation of super hydrophobic square pin fin mini channel heat sink. Therm. Sci. 2022, 26, 3627–3640. [Google Scholar] [CrossRef]
- Deng, T.; Zhang, G.; Ran, Y. Study on thermal management of rectangular Li-ion battery with serpentine-channel cold plate. Int. J. Heat Mass Transf. 2018, 125, 143–152. [Google Scholar] [CrossRef]
- Behi, H.; Karimi, D.; Behi, M.; Jaguemont, J.; Ghanbarpour, M.; Behnia, M.; Berecibar, M.; Van Mierlo, J. Thermal management analysis using heat pipe in the high current discharging of lithium-ion battery in electric vehicles. J. Energy Storage 2020, 32, 101893. [Google Scholar] [CrossRef]
- Xie, J.; Xie, Y.; Yuan, C. Numerical study of heat transfer enhancement using vortex generator for thermal management of lithium ion battery. Int. J. Heat Mass Transf. 2019, 129, 1184–1193. [Google Scholar] [CrossRef]
- Wang, J.; Lu, S.; Wang, Y.; Li, C.; Wang, K. Effect analysis on thermal behavior enhancement of lithium–ion battery pack with different cooling structures. J. Energy Storage 2020, 32, 101800. [Google Scholar] [CrossRef]
- Chen, D.; Jiang, J.; Kim, G.-H.; Yang, C.; Pesaran, A. Comparison of different cooling methods for lithium ion battery cells. Appl. Therm. Eng. 2016, 94, 846–854. [Google Scholar] [CrossRef]
- Lan, C.; Xu, J.; Qiao, Y.; Ma, Y. Thermal management for high power lithium-ion battery by minichannel aluminum tubes. Appl. Therm. Eng. 2016, 101, 284–292. [Google Scholar] [CrossRef]
- Zhao, J.; Rao, Z.; Li, Y. Thermal performance of mini-channel liquid cooled cylinder based battery thermal management for cylindrical lithium-ion power battery. Energy Convers. Manag. 2015, 103, 157–165. [Google Scholar] [CrossRef]
- Bianco, V.; Manca, O.; Nardini, S.; Vafai, K. (Eds.) Heat Transfer Enhancement with Nanofluids; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Kiani, M.; Omiddezyani, S.; Houshfar, E.; Miremadi, S.R.; Ashjaee, M.; Nejad, A.M. Lithium-ion battery thermal management system with Al2O3/AgO/CuO nanofluids and phase change material. Appl. Therm. Eng. 2020, 180, 115840. [Google Scholar] [CrossRef]
- Sefidan, A.M.; Sojoudi, A.; Saha, S.C. Nanofluid-based cooling of cylindrical lithium-ion battery packs employing forced air flow. Int. J. Therm. Sci. 2017, 117, 44–58. [Google Scholar] [CrossRef]
- Chen, M.; Li, J. Nanofluid-based pulsating heat pipe for thermal management of lithium-ion batteries for electric vehicles. J. Energy Storage 2020, 32, 101715. [Google Scholar] [CrossRef]
- Monika, K.; Chakraborty, C.; Roy, S.; Dinda, S.; Singh, S.A.; Datta, S.P. Parametric investigation to optimize the thermal management of pouch type lithium-ion batteries with mini-channel cold plates. Int. J. Heat Mass Transf. 2021, 164, 120568. [Google Scholar] [CrossRef]
- Mahian, O.; Kianifar, A.; Heris, S.Z.; Wongwises, S. First and second laws analysis of a minichannel-based solar collector using boehmite alumina nanofluids: Effects of nanoparticle shape and tube materials. Int. J. Heat Mass Transf. 2014, 78, 1166–1176. [Google Scholar] [CrossRef]
- Alsarraf, J.; Moradikazerouni, A.; Shahsavar, A.; Afrand, M.; Salehipour, H.; Tran, M.D. Hydrothermal analysis of turbulent boehmite alumina nanofluid flow with different nanoparticle shapes in a minichannel heat exchanger using two-phase mixture model. Phys. A Stat. Mech. Its Appl. 2019, 520, 275–288. [Google Scholar] [CrossRef]
- Bahiraei, M.; Monavari, A. Thermohydraulic characteristics of a micro plate heat exchanger operated with nanofluid considering different nanoparticle shapes. Appl. Therm. Eng. 2020, 179, 115621. [Google Scholar] [CrossRef]
- Timofeeva, E.V.; Routbort, J.L.; Singh, D. Particle shape effects on thermophysical properties of alumina nanofluids. J. Appl. Phys. 2009, 106, 014304. [Google Scholar] [CrossRef]
- Siruvuri, S.V.; Budarapu, P. Studies on thermal management of Lithium-ion battery pack using water as the cooling fluid. J. Energy Storage 2020, 29, 101377. [Google Scholar] [CrossRef]
- Roslan, R.; Saleh, H.; Hashim, I. Effect of rotating cylinder on heat transfer in a square enclosure filled with nanofluids. Int. J. Heat Mass Transf. 2012, 55, 7247–7256. [Google Scholar] [CrossRef]
- Nguyen, T.K.; Saidizad, A.; Jafaryar, M.; Sheikholeslami, M.; Gerdroodbary, M.B.; Moradi, R.; Shafee, A.; Li, Z. Influence of various shapes of CuO nanomaterial on nanofluid forced convection within a sinusoidal channel with obstacles. Chem. Eng. Res. Des. 2019, 146, 478–485. [Google Scholar] [CrossRef]
- Vanaki, S.; Mohammed, H.; Abdollahi, A.; Wahid, M. Effect of nanoparticle shapes on the heat transfer enhancement in a wavy channel with different phase shifts. J. Mol. Liq. 2014, 196, 32–42. [Google Scholar] [CrossRef]
- Song, H.; Kang, F. Recent Progress on Thermal Conduction of Graphene. Acta Phys. Chim. Sin. 2022, 38, 2101013. [Google Scholar] [CrossRef]
- Han, S.Y.; Yue, B.H.; Yan, L.M. Research progress in the development of high-temperature proton exchange membranes based on phosphonic acid group. Acta Phys. Chim. Sin. 2014, 30, 8–21. [Google Scholar]
- Younes, H.; Mao, M.; Murshed, S.S.; Lou, D.; Hong, H.; Peterson, G. Nanofluids: Key parameters to enhance thermal conductivity and its applications. Appl. Therm. Eng. 2022, 207, 118202. [Google Scholar] [CrossRef]
- Younes, H.; Christensen, G.; Li, D.; Hong, H.; Ghaferi, A.A. Thermal conductivity of nanofluids. J. Nanofluids 2015, 4, 107–132. [Google Scholar] [CrossRef]
Thermophysical Properties | ρ (kg·m−3) | Cp (J·kg−1·K−1) | k (W·m−1·K−1) | μ (Pa.s) |
---|---|---|---|---|
Boehmite Alumina (AlOOH) | 3050 | 618.3 | 30 | N/A |
Water | 996 | 4178 | 0.615 | 7.98 × 10−4 |
Nanoparticles | Aspect Ratio | |||
---|---|---|---|---|
Cylinder | 1:8 | 3.95 | 4.82 | −0.87 |
Brick | 1:1:1 | 3.37 | 3.72 | −0.35 |
Blade | 1:6:1/12 | 2.74 | 8.26 | −5.52 |
Constants | Cylinder | Brick | Blade |
---|---|---|---|
A1 | 13.5 | 1.9 | 14.6 |
A2 | 904.4 | 471.4 | 123.3 |
Reynolds Number | Water | Nanofluid |
---|---|---|
Max Temperature (°C) | Max Temperature (°C) | |
100 | 58.983 | 55.106 |
200 | 46.105 | 43.748 |
400 | 38.707 | 37.472 |
600 | 36.148 | 35.292 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Selimefendigil, F.; Dilbaz, F.; Öztop, H.F. Combined Utilization of Cylinder and Different Shaped Alumina Nanoparticles in the Base Fluid for the Effective Cooling System Design of Lithium-Ion Battery Packs. Energies 2023, 16, 3966. https://doi.org/10.3390/en16093966
Selimefendigil F, Dilbaz F, Öztop HF. Combined Utilization of Cylinder and Different Shaped Alumina Nanoparticles in the Base Fluid for the Effective Cooling System Design of Lithium-Ion Battery Packs. Energies. 2023; 16(9):3966. https://doi.org/10.3390/en16093966
Chicago/Turabian StyleSelimefendigil, Fatih, Furkan Dilbaz, and Hakan F. Öztop. 2023. "Combined Utilization of Cylinder and Different Shaped Alumina Nanoparticles in the Base Fluid for the Effective Cooling System Design of Lithium-Ion Battery Packs" Energies 16, no. 9: 3966. https://doi.org/10.3390/en16093966
APA StyleSelimefendigil, F., Dilbaz, F., & Öztop, H. F. (2023). Combined Utilization of Cylinder and Different Shaped Alumina Nanoparticles in the Base Fluid for the Effective Cooling System Design of Lithium-Ion Battery Packs. Energies, 16(9), 3966. https://doi.org/10.3390/en16093966