Characterization and Analysis of Mechanical Vibrations in Photovoltaic Modules Transported by Road in Spain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of Logistic Processes Applied
2.1.1. Logistic Process 1, LP1
2.1.2. Logistic Process 2, LP2
2.2. Evaluation of the Severity by Means of the Overall Acceleration gRMS Parameter
2.3. Natural Oscillation Frequencies of PV Modules and Resonance Phenomena
3. Results and Discussion
3.1. Acceleration Values and Statistical Analysis
3.2. Evaluation of Severity Based on gRMS
3.3. Analysis of Natural Frequencies of PV Modules
3.4. Proposal to Reduce the Vibration Levels in PV Module Transportation
- (a)
- Enhanced packages with high vibration attenuation capacity for low frequencies (below 100 Hz). The new packages should be able to significantly attenuate the main frequency ranges originated by trucks along the road transportation: 3–6 Hz, 15–20 Hz and 40–55 Hz.
- (b)
- PV module structure and/or materials modification. In order to shift the natural oscillation frequencies of the PV modules outside the excitatory frequency ranges of the truck, the stiffness of PV modules could be modified. A higher stiffness would increase the natural oscillation frequencies of the PV modules. As an example, our 4 mm thick M4 module glass should be modified to have a first natural oscillation frequency above 20 Hz (and below 40 Hz). Probably, more than increasing the glass thickness, the modification of the properties of the back sheet (polyolefin, polyphenylene, etc.) would be easier: by increasing its thickness or by increasing its tensile strength (maximum values for these parameters are currently around 700 μm and 350 MPa, respectively [45]). The relationship between thickness and the ratio of lateral lengths of the module glass could also be analyzed.
- (c)
- New inner protective elements to block the glass of the PV modules during their transportation. The lock of the glass could be partial or complete (that is, the glass would be unable to vibrate). This solution could be implemented by putting a thick layer of soft material (expanded polystyrene, polyethylene foam, etc.) covering the rear side of PV modules completely when packed (Figure 7a). On the other side, partial block, as well as method b), would shift the natural oscillation frequencies of the PV modules to higher frequencies. A convenient solution for partial lock up could be to put a soft crosstree fit to the rear side of the PV module (Figure 7b). In this way, the PV module will have four independent areas subjected to vibrations with halved dimensions respective of the PV module. The natural oscillation frequency of every area will be the double than that for the PV module. It is not mandatory for the crosstree to be symmetric. Care should be taken to avoid the shift of the natural oscillation frequency from a resonance range to the upper one.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- SolarPower Europe. Global Market Outlook for Solar Power 2022–2026; SolarPower Europe: Brussels, Belgium, 2022. [Google Scholar]
- IRENA. Future of Solar Photovoltaic: Deployment, Investment, Technology, Grid Integration and Socio-Economic Aspects (A Global Energy Transformation: Paper); International Renewable Energy Agency: Abu Dhabi, United Arab Emirates, 2019. [Google Scholar]
- Red Eléctrica de España. Avance del Informe del Sistema Eléctrico Español. 2021. Available online: https://www.ree.es/es/sala-de-prensa/actualidad/nota-de-prensa/2022/03/potencia-instalada-solar-fotovoltaica-en-espana-aumenta-casi-un-30-por-ciento-en-2021 (accessed on 31 October 2023).
- Disposición 5106 del BOE núm 77 de 2021. Resolución de 25 de Marzo de 2021, Conjunta de la Dirección General de Política Energética y Minas y de la Oficina Española de Cambio Climático, por la que se Publica el Acuerdo del Consejo de Ministros de 16 de Marzo de 2021, por el que se Adopta la Versión Final del Plan Nacional Integrado de Energía y Clima 2021–2030. Available online: https://www.boe.es/boe/dias/2021/03/31/pdfs/BOE-A-2021-5106.pdf (accessed on 27 November 2023).
- A Review of the Spanish NECP Was Recently Subjected to Consultation, with a New Target for PV Capacity in 2030 of 76.387 GW. Available online: https://energia.gob.es/es-es/Participacion/Paginas/DetalleParticipacionPublica.aspx?k=607 (accessed on 27 November 2023).
- Trends in Photovoltaic Applications 2021. Report IEA-PVPS T1-41:2021. Available online: https://iea-pvps.org/trends_reports/trends-in-pv-applications-2021/ (accessed on 27 November 2023).
- Review of Failures of Photovoltaic Modules. Report IEA-PVPS T13-01:2014. Available online: https://iea-pvps.org/wp-content/uploads/2020/01/IEA-PVPS_T13-01_2014_Review_of_Failures_of_Photovoltaic_Modules_Final.pdf (accessed on 27 November 2023).
- Munoz, M.A.; Alonso-García, M.C.; Vela, N.; Chenlo, F. Early degradation of silicon pv modules and guaranty conditions. Sol. Energy 2011, 85, 2264–2274. [Google Scholar] [CrossRef]
- Parikh, H.R.; Buratti, Y.; Spataru, S.; Villebro, F.; Reis Benatto, G.A.D.; Poulsen, P.B.; Wendlandt, S.; Kerekes, T.; Sera, D.; Hameiri, Z. Solar Cell Cracks and Finger Failure Detection Using Statistical Parameters of Electroluminescence Images and Machine Learning. Appl. Sci. 2020, 10, 8834. [Google Scholar] [CrossRef]
- Goudelis, G.; Lazaridis, P.I.; Dhimish, M. A Review of Models for Photovoltaic Crack and Hotspot Prediction. Energies 2022, 15, 4303. [Google Scholar] [CrossRef]
- Amina, E.; Pierre-Olivier, L.; Mourad, B.; Durastanti, J.; Idir, B. Cracks in silicon photovoltaic modules: A review. J. Optoelectron. Adv. Mater. 2019, 21, 74–92. [Google Scholar]
- Kontges, M.; Kunze, I.; Kajari-Schroder, S.; Breitenmoser, X.; Bjørneklett, B. The risk of power loss in crystalline silicon based photovoltaic modules due to micro-cracks. Sol. Energy Mater. Sol. Cells 2011, 95, 1131–1137. [Google Scholar] [CrossRef]
- Dhimish, M.; Holmes, V.; Mehrdadi, B.; Dales, M. The impact of cracks on photovoltaic power performance. J. Sci. Adv. Mater. Devices 2017, 2, 199–209. [Google Scholar] [CrossRef]
- Bdour, M.; Dalala, Z.; Al-Addous, M.; Radaideh, A.; Al-Sadi, A. A Comprehensive Evaluation on Types of Microcracks and Possible Effects on Power Degradation in Photovoltaic Solar Panels. Sustainability 2020, 12, 6416. [Google Scholar] [CrossRef]
- Dhimish, M.; Hu, Y. Rapid testing on the effect of cracks on solar cells output power performance and thermal operation. Sci. Rep. 2022, 12, 12168. [Google Scholar] [CrossRef]
- Gallardo-Saavedra, S.; Hernández-Callejo, L.; Alonso-García, M.C.; Santos, J.D.; Morales-Aragonés, J.I.; Alonso-Gómez, V.; Moretón-Fernández, A.; González-Rebollo, M.A.; Martínez-Sacristán, O. Nondestructive characterization of solar PV cells defects by means of electroluminescence, infrared thermography, I–V curves and visual tests: Experimental study and comparison. Energy 2020, 205, 117930. [Google Scholar] [CrossRef]
- Köntges, M.; Oreski, G.; Jahn, U.; Herz, M.; Hacke, P.; Weiss, K.-A. Assessment of Photovoltaic Module Failures in the Field; IEA PVPS Task 13, Subtask 3, Report IEA-PVPS T13-09:2017. Available online: https://iea-pvps.org/wp-content/uploads/2017/09/170515_IEA-PVPS-report_T13-09-2017_Internetversion_2.pdf (accessed on 27 November 2023).
- Jahn, U.; Herz, M.; Köntges, M.; Parlevliet, D.; Paggi, M.; Tsanakas, I.; Stein, J.S.; Berger, K.A.; Ranta, S.; French, R.H.; et al. Review on Infrared and Electroluminescence Imaging for PV Field Applications. IEA PVPS Task 13, Subtask 3.3 Report IEA-PVPS T13-10:2018, March 2018. Available online: https://iea-pvps.org/key-topics/review-on-ir-and-el-imaging-for-pv-field-applications/ (accessed on 27 November 2023).
- Kölblin, P.; Bartler, A.; Füller, M. Image Preprocessing for Outdoor Luminescence Inspection of Large Photovoltaic Parks. Energies 2021, 14, 2508. [Google Scholar] [CrossRef]
- Herrmann, W.; Jahn, U. Qualification of Photovoltaic (PV) Power Plants Using Mobile Test Equipment; Report IEA-PVPS T13-24:2021; April 2021. Available online: https://iea-pvps.org/wp-content/uploads/2021/04/IEA-PVPS-T13-24_2021_Qualification-of-PV-Power-Plants_report.pdf (accessed on 27 November 2023).
- Reil, F.; Althaus, J.; Vaaßen, W.; Herrmann, W.; Strohkendl, K. The effect of transportation impacts and dynamic load tests on the mechanical and electrical behavior of crystalline PV modules. In Proceedings of the 25th European Photovoltaic Solar Energy Conference and Exhibition, Valencia, Spain, 6–10 September 2010; pp. 3989–3992. [Google Scholar]
- Olschok, C.; Schmid, M.; Haas, R.; Becker, G. Innapropiate exposure to PV modules: Description and effects of handling defaults. In Proceedings of the 28th European Photovoltaic Solar Energy Conference and Exhibition, Paris, France, 30 September–4 October 2013; pp. 3138–3141. [Google Scholar]
- Dhimish, M.; Ahmad, A.; Tyrrell, A.M. Inequalities in photovoltaics modules reliability: From packaging to PV installation site. Renew. Energy 2022, 192, 805–814. [Google Scholar] [CrossRef]
- Gul, R.M.; Kamran, M.A.; Zafar, F.U.; Noman, M. The impact of static wind load on the mechanical integrity of different commercially available mono-crystalline photovoltaic modules. Eng. Rep. 2020, 2, e12276. [Google Scholar] [CrossRef]
- Alghamdi, A.; Bahaj, A.S.; Blunden, L.S.; Wu, Y. Dust Removal from Solar PV Modules by Automated Cleaning Systems. Energies 2019, 12, 2923. [Google Scholar] [CrossRef]
- Kulińska, E.; Dendera-Gruszka, M. New Perspectives for Logistics Processes in the Energy Sector. Energies 2022, 15, 5708. [Google Scholar] [CrossRef]
- Chen, C.-W.; Lin, I.; Liao, J.-Y.; Li, U.-T.; Wu, H.-S.; Wu, T.-C.; Lee, K.-T. Power degradation of crystalline silicon PV module in transporting environment. In Proceedings of the 26th European Photovoltaic Solar Energy Conference and Exhibition, Hamburg, Germany, 5–9 September 2011; pp. 3550–3552. [Google Scholar]
- Desai, U.; Vasudevan, D.P.; Kottantharayil, A.; Singh, A. Prediction of vibration induced damage in photovoltaic modules during transportation: Finite element model and field study. Eng. Res. Express 2021, 3, 045045. [Google Scholar] [CrossRef]
- Garcia-Romeu-Martínez, M.A.; Singh, S.P.; Cloquell-Ballester, V.A. Measurement an Analysis of vibration levels for truck transport in Spain as a function of payload, suspension and speed. Packag. Technol. Sci. 2008, 21, 439–451. [Google Scholar] [CrossRef]
- Lalanne, C. Mechanical Vibration and Shock Analysis; ISTE Ltd.: London, UK, 2009; ISBN 978-1-84821-121-6. [Google Scholar]
- Joneson, E. D4169 Revision—Random Vibration Update. ASTM Committee D10 on Packaging. Available online: https://www.astm.org/COMMIT/presentation-files/JonesonPresentationD4169Revision.pdf (accessed on 22 June 2016).
- IEC 62759-1: 2015; Photovoltaic (PV) Modules—Transportation Testing—Part 1: Transportation and Shipping of Module Package Units. International Electrotechnical Commission: Geneva, Switzerland, 2015.
- IEC 61215-1:2016; Terrestrial Photovoltaic (PV) Modules—Design Qualification and Type Approval—Part 1: Test Requirements. International Electrotechnical Commission: Geneva, Switzerland, 2016.
- IEC 61646:2008; Thin-Film Terrestrial Photovoltaic (PV) Modules—Design Qualification and Type Approval. International Electrotechnical Commission: Geneva, Switzerland, 2008.
- ISTA 3E 2009; Unitized Loads of Same Product. International Safe Transit Association: East Lansing, MI, USA, 2009. Available online: https://ista.org/ (accessed on 27 November 2023).
- ASTM D4169-08; Standard Practice for Performance Testing of Shipping Containers and Systems. ASTM International: West Conshohocken, PA, USA, 2010. [CrossRef]
- ASTM D4169-16; Standard Practice for Performance Testing of Shipping Containers and Systems. ASTM International: West Conshohocken, PA, USA, 2022. [CrossRef]
- Singh, S.P. Measurement and Analysis of Truck and Rail Shipping Environment in India. Packag. Technol. Sci. 2007, 20, 381–392. [Google Scholar] [CrossRef]
- Alonso, M.; Finn, E.J. Fundamental University Physics, Mechanics, Ed.; Addison-Wesley: Reading, MA, USA, 1967; Volume I, ISBN 0-201-00227-2. [Google Scholar]
- Otari, S.; Odof, S. Statistical characterization of acceleration levels of random vibrations during transport. Packag. Technol. Sci. 2011, 24, 177–188. [Google Scholar] [CrossRef]
- Rouillard, V. Statistical models for nonstationary and non-Gaussian road vehicle vibrations. Eng. Lett. 2009, 17, 4. [Google Scholar]
- Köntges, M.; Siebert, M.; Morlier, A.; Illing, R.; Bessing, N.; Wegert, F. Impact of Transportation on Silicon Wafer-Based PV Modules. Prog. Photovolt. 2016, 24, 1085–1095. [Google Scholar] [CrossRef]
- Assmus, M.; Jack, S.; Weiss, K.; Koehl, M. Measurement and simulation of vibrations of PV-modules induced by dynamic mechanical loads. Prog. Photovolt. 2011, 19, 688–694. [Google Scholar] [CrossRef]
- Li, W.; Le, H. Three-Dimensional Vibration Simulation and Statistical Distribution of Cracks on PV-Module Shipping Units in Transportation Environment. In Proceedings of the 29th European Photovoltaic Solar Energy Conference and Exhibition, Amsterdam, The Netherlands, 22–26 September 2014. [Google Scholar]
- ENF Directory of Solar Companies and Products. ENF Ltd. Available online: http://www.enfsolar.com (accessed on 27 November 2023).
Logistic Process | Box | Cell Type | Module Size (mm) | Glass Thickness (mm) | Back Sheet | Encapsulant | Nr. of Modules | Total Modules | Box Weight (kg) | Module with Accelerometer |
---|---|---|---|---|---|---|---|---|---|---|
LP1 | 1 | Mono-Si | 1650 × 1000 | 4.0 | PPE | PO | 3 | 11 | 270 | M3 |
Multi-Si | 8 | |||||||||
2 | Multi-Si | 1650 × 1000 | 4.0 | PPE | EVA | 11 | 25 | 580 | M4 | |
Mono-Si | 3 | |||||||||
Multi-Si | 3.2 | PPE | 3 | |||||||
4.0 | PP | 8 | ||||||||
LP2 | 0 | Multi-Si | 1660 × 990 | 3.2 | N.P. | N.P. | 4 | 4 | 139 | M2 |
Logistic Process | PV Module | Vertical Axis (g) | Longitudinal Axis (g) | Lateral Axis (g) |
---|---|---|---|---|
LP1 | M3 | +2.12 | −4.18 | +2.37 |
M4 | +3.48 | +2.39 | −3.29 | |
LP2 | M2 | −15.9 | +6.62 | −16.5 |
Process | Vibration Severity gRMS (g) | Duration Time (h) | Transportation Hardness gRMS × t (gh) | Comparison to IEC 627591-1 (%) | |
---|---|---|---|---|---|
IEC62759-1 | 0.49 | 3 | 1.47 | 100 | |
LP1 | M3 | 0.11 | 5 | 0.55 | 37 |
M4 | 0.14 | 5 | 0.70 | 48 | |
LP2 | M2 | 0.83 | 16 | 13.3 | 903 |
Process | M3 | M4 | A1 | A2 |
---|---|---|---|---|
Size (mm) | 1650 × 1000 | 1650 × 1000 | 1620 × 810 | 1620 × 810 |
Thickness (mm) | 3.2 | 4 | 3.2 | 4 |
f1 (Hz) | 25.7 | 17.5 | 15 | 25 |
f2 (Hz) | 55.3 | 38.1 | 34 | 59 |
f2/f1 | 2.15 | 2.18 | 2.4 | 2.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cuenca, J.; Alonso-Garcia, M.C.; Balenzategui, J.L. Characterization and Analysis of Mechanical Vibrations in Photovoltaic Modules Transported by Road in Spain. Energies 2024, 17, 145. https://doi.org/10.3390/en17010145
Cuenca J, Alonso-Garcia MC, Balenzategui JL. Characterization and Analysis of Mechanical Vibrations in Photovoltaic Modules Transported by Road in Spain. Energies. 2024; 17(1):145. https://doi.org/10.3390/en17010145
Chicago/Turabian StyleCuenca, Jose, M. Carmen Alonso-Garcia, and Jose Lorenzo Balenzategui. 2024. "Characterization and Analysis of Mechanical Vibrations in Photovoltaic Modules Transported by Road in Spain" Energies 17, no. 1: 145. https://doi.org/10.3390/en17010145
APA StyleCuenca, J., Alonso-Garcia, M. C., & Balenzategui, J. L. (2024). Characterization and Analysis of Mechanical Vibrations in Photovoltaic Modules Transported by Road in Spain. Energies, 17(1), 145. https://doi.org/10.3390/en17010145