Analysis of Different Scenarios to Include PV Rooftop Systems with Battery Energy Storage Systems in Olive Mills
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Industries
Monitoring and Characterization of the Electricity Consumption of the Industries Analyzed
2.2. Photovoltaic Generator and Storage Systems—Modeling and Analysis Parameters
2.2.1. Photovoltaic Generator
2.2.2. Storage System
2.3. Applied Methodology for the Analysis of the Potential of Photovoltaic Systems with Batteries
3. Results and Discussion
3.1. Direct Self-Consumption and Self-Sufficiency
3.2. Self-Consumption and Self-Sufficiency Indices with Batteries
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- IEA. World Energy Outlook 2022; World Energy Outlook; OECD: Paris, France, 2022; ISBN 9789264425446. [Google Scholar]
- Dong, K.; Hochman, G.; Timilsina, G.R. Do Drivers of CO2 Emission Growth Alter Overtime and by the Stage of Economic Development? Energy Policy 2020, 140, 111420. [Google Scholar] [CrossRef]
- Yang, B.; Usman, M.; Jahanger, A. Do Industrialization, Economic Growth and Globalization Processes Influence the Ecological Footprint and Healthcare Expenditures? Fresh Insights Based on the STIRPAT Model for Countries with the Highest Healthcare Expenditures. Sustain. Prod. Consum. 2021, 28, 893–910. [Google Scholar] [CrossRef]
- Neves, S.A.; Marques, A.C.; Patrício, M. Determinants of CO2 Emissions in European Union Countries: Does Environmental Regulation Reduce Environmental Pollution? Econ. Anal. Policy 2020, 68, 114–125. [Google Scholar] [CrossRef]
- Adam, A.D.; Apaydin, G. Grid Connected Solar Photovoltaic System as a Tool for Green House Gas Emission Reduction in Turkey. Renew. Sustain. Energy Rev. 2016, 53, 1086–1091. [Google Scholar] [CrossRef]
- Su, C.W.; Pang, L.D.; Tao, R.; Shao, X.; Umar, M. Renewable Energy and Technological Innovation: Which One Is the Winner in Promoting Net-Zero Emissions? Technol. Forecast. Soc. Chang. 2022, 182, 121798. [Google Scholar] [CrossRef]
- Jahangir, M.H.; Montazeri, M.; Mousavi, S.A.; Kargarzadeh, A. Reducing Carbon Emissions of Industrial Large Livestock Farms Using Hybrid Renewable Energy Systems. Renew. Energy 2022, 189, 52–65. [Google Scholar] [CrossRef]
- Council European Parliament. E.U. Directive (EU) 2018/2001 on the Promotion of the Use of Energy from Renewable Sources (Recast); European Parliament: Strasbourg, France, 2018. [Google Scholar]
- Zaharia, A.; Diaconeasa, M.C.; Brad, L.; Lădaru, G.-R.; Ioanăș, C. Factors Influencing Energy Consumption in the Context of Sustainable Development. Sustainability 2019, 11, 4147. [Google Scholar] [CrossRef]
- Ministerio de Industria y Energía. La Energía En España; Centro de Publicaciones: Madrid, Spain, 2021. [Google Scholar]
- Alcántara, V.; Padilla, E. Key Sectors in Greenhouse Gas Emissions in Spain: An Alternative Input—Output Analysis. J. Ind. Ecol. 2020, 24, 577–588. [Google Scholar] [CrossRef]
- Bajan, B.; Mrówczyńska-Kamińska, A.; Poczta, W. Economic Energy Efficiency of Food Production Systems. Energies 2020, 13, 5826. [Google Scholar] [CrossRef]
- Saviuc, I.; Peremans, H.; Van Passel, S.; Milis, K. Economic Performance of Using Batteries in European Residential Microgrids under the Net-Metering Scheme. Energies 2019, 12, 165. [Google Scholar] [CrossRef]
- Red Eléctrica de España Informes de Generación. Available online: https://www.ree.es/es/datos/generacion (accessed on 11 February 2023).
- Saha, S.; Saini, G.; Mishra, S.; Chauhan, A.; Upadhyay, S. A Comprehensive Review of Techno-Socio-Enviro-Economic Parameters, Storage Technologies, Sizing Methods and Control Management for Integrated Renewable Energy System. Sustain. Energy Technol. Assess. 2022, 54, 102849. [Google Scholar] [CrossRef]
- Gandiglio, M.; Marocco, P.; Bianco, I.; Lovera, D.; Blengini, G.A.; Santarelli, M. Life Cycle Assessment of a Renewable Energy System with Hydrogen-Battery Storage for a Remote off-Grid Community. Int. J. Hydrogen Energy 2022, 47, 32822–32834. [Google Scholar] [CrossRef]
- Sahebi, H.; Khodoomi, M.; Seif, M.; Pishvaee, M.S.; Hanne, T. The Benefits of Peer-to-Peer Renewable Energy Trading and Battery Storage Backup for Local Grid. J. Energy Storage 2023, 63, 106970. [Google Scholar] [CrossRef]
- Liu, J.; Wu, H.; Huang, H.; Yang, H. Renewable Energy Design and Optimization for a Net-Zero Energy Building Integrating Electric Vehicles and Battery Storage Considering Grid Flexibility. Energy Convers. Manag. 2023, 298, 117768. [Google Scholar] [CrossRef]
- Sifnaios, I.; Sneum, D.M.; Jensen, A.R.; Fan, J.; Bramstoft, R. The Impact of Large-Scale Thermal Energy Storage in the Energy System. Appl. Energy 2023, 349, 121663. [Google Scholar] [CrossRef]
- Costa, V.B.F.; e Silva, T.L.M.R.; Morais, L.B.S.; Bonatto, B.D.; Zambroni, A.C.; Guedes, P.A.; Ribeiro, P.F. Economic Analysis of Industrial Energy Storage Systems in Brazil: A Stochastic Optimization Approach. Sustain. Energy Grids Netw. 2023, 33, 100968. [Google Scholar] [CrossRef]
- Ben Youssef, W.; Maatallah, T.; Menezo, C.; Ben Nasrallah, S. Assessment Viability of a Concentrating Photovoltaic/Thermal-Energy Cogeneration System (CPV/T) with Storage for a Textile Industry Application. Sol. Energy 2018, 159, 841–851. [Google Scholar] [CrossRef]
- Lebedeva, N.; Tarvydas, D.; Tsiropoulos, I.; European Commission. Li-Ion Batteries for Mobility and Stationary Storage Applications: Scenarios for Costs and Market Growth; Joint Research Centre: Brussels, Belgium, 2018; ISBN 9789279972546. [Google Scholar]
- Trahey, L.; Brushett, F.R.; Balsara, N.P.; Ceder, G.; Cheng, L.; Chiang, Y.M.; Hahn, N.T.; Ingram, B.J.; Minteer, S.D.; Moore, J.S.; et al. Energy Storage Emerging: A Perspective from the Joint Center for Energy Storage Research. Proc. Natl. Acad. Sci. USA 2020, 117, 12550–12557. [Google Scholar] [CrossRef]
- IEA Global EV Outlook 2023: Catching up with Climate Ambitions; IEA: Paris, France, 2023.
- Chang, R.; Cao, Y.; Lu, Y.; Shabunko, V. Should BIPV Technologies Be Empowered by Innovation Policy Mix to Facilitate Energy Transitions?—Revealing Stakeholders’ Different Perspectives Using Q Methodology. Energy Policy 2019, 129, 307–318. [Google Scholar] [CrossRef]
- Lucchi, E. Integration between Photovoltaic Systems and Cultural Heritage: A Socio-Technical Comparison of International Policies, Design Criteria, Applications, and Innovation Developments. Energy Policy 2022, 171, 113303. [Google Scholar] [CrossRef]
- Pagliaro, M.; Ciriminna, R.; Palmisano, G. BIPV: Merging the Photovoltaic with the Construction Industry. Prog. Photovolt. Res. Appl. 2010, 18, 61–72. [Google Scholar] [CrossRef]
- Lucchi, E.; Adami, J.; Peluchetti, A.; Camilo Mahecha Zambrano, J. Photovoltaic Potential Estimation of Natural and Architectural Sensitive Land Areas to Balance Heritage Protection and Energy Production. Energy Build. 2023, 290, 113107. [Google Scholar] [CrossRef]
- Lucchi, E.; Adami, J.; Stawinoga, A.E. Social Acceptance of Photovoltaic Systems in Heritage Buildings and Landscapes: Exploring Barriers, Benefits, Drivers, and Challenges for Technical Stakeholders in Northern Italy. Sustain. Energy Technol. Assess. 2023, 60, 103544. [Google Scholar] [CrossRef]
- Uldrijan, D.; Kováčiková, M.; Jakimiuk, A.; Vaverková, M.D.; Winkler, J. Ecological Effects of Preferential Vegetation Composition Developed on Sites with Photovoltaic Power Plants. Ecol. Eng. 2021, 168, 106274. [Google Scholar] [CrossRef]
- Vaverková, M.D.; Winkler, J.; Uldrijan, D.; Ogrodnik, P.; Vespalcová, T.; Aleksiejuk-Gawron, J.; Adamcová, D.; Koda, E. Fire Hazard Associated with Different Types of Photovoltaic Power Plants: Effect of Vegetation Management. Renew. Sustain. Energy Rev. 2022, 162, 112491. [Google Scholar] [CrossRef]
- Guo, Y.; Xiang, Y. Cost–Benefit Analysis of Photovoltaic-Storage Investment in Integrated Energy Systems. Energy Rep. 2022, 8, 66–71. [Google Scholar] [CrossRef]
- Tsai, C.-T.; Ocampo, E.M.; Beza, T.M.; Kuo, C.-C. Techno-Economic and Sizing Analysis of Battery Energy Storage System for behind-the-Meter Application. IEEE Access 2020, 8, 203734–203746. [Google Scholar] [CrossRef]
- Kumar, P.; Malik, N.; Garg, A. Comparative Analysis of Solar-Battery Storage Sizing in Net Metering and Zero Export Systems. Energy Sustain. Dev. 2022, 69, 41–50. [Google Scholar] [CrossRef]
- Xu, G.; Shang, C.; Fan, S.; Zhang, X.; Cheng, H. Sizing Battery Energy Storage Systems for Industrial Customers with Photovoltaic Power. Energy Procedia 2019, 158, 4953–4958. [Google Scholar] [CrossRef]
- Chel, A.; Kaushik, G. Renewable Energy for Sustainable Agriculture. Agron. Sustain. Dev. 2011, 31, 91–118. [Google Scholar] [CrossRef]
- Mekhilef, S.; Faramarzi, S.Z.; Saidur, R.; Salam, Z. The Application of Solar Technologies for Sustainable Development of Agricultural Sector. Renew. Sustain. Energy Rev. 2013, 18, 583–594. [Google Scholar] [CrossRef]
- Ali, N.; Wahid, A.; Shaw, R.; Mason, K. Reinforcement Learning for Battery Management in Dairy Farming. arXiv 2023, arXiv:2308.09023. [Google Scholar]
- Garcia, A.V.M.; Sánchez-Romero, F.J.; López-Jiménez, P.A.; Pérez-Sánchez, M. A New Optimization Approach for the Use of Hybrid Renewable Systems in the Search of the Zero Net Energy Consumption in Water Irrigation Systems. Renew. Energy 2022, 195, 853–871. [Google Scholar] [CrossRef]
- Squatrito, R.; Sgroi, F.; Tudisca, S.; di Trapani, A.M.; Testa, R. Post Feed-in Scheme Photovoltaic System Feasibility Evaluation in Italy: Sicilian Case Studies. Energies 2014, 7, 7147–7165. [Google Scholar] [CrossRef]
- Sgroi, F.; Tudisca, S.; di Trapani, A.M.; Testa, R.; Squatrito, R. Efficacy and Efficiency of Italian Energy Policy: The Case of PV Systems in Greenhouse Farms. Energies 2014, 7, 3985–4001. [Google Scholar] [CrossRef]
- Carroquino, J.; Roda, V.; Mustata, R.; Yago, J.; Valiño, L.; Lozano, A.; Barreras, F. Combined Production of Electricity and Hydrogen from Solar Energy and Its Use in the Wine Sector. Renew. Energy 2018, 122, 251–263. [Google Scholar] [CrossRef]
- Federación Andaluza de Empresas Cooperativas Agrarias. Manual de Ahorro y Eficiencia Energética Del Sector; Federación Andaluza de Empresas Cooperativas Agrarias: Madrid, Spain, 2020. [Google Scholar]
- Jiménez-Castillo, G.; Muñoz-Rodríguez, F.J.; Martinez-Calahorro, A.J.; Tina, G.M.; Rus-Casas, C. Impacts of Array Orientation and Tilt Angles for Photovoltaic Self-Sufficiency and Self-Consumption Indices in Olive Mills in Spain. Electronics 2020, 9, 348. [Google Scholar] [CrossRef]
- Muñoz-Rodríguez, F.J.; Jiménez-Castillo, G.; Hernández, J.d.l.C.; Peña, J.D.A. A New Tool to Analysing Photovoltaic Self-Consumption Systems with Batteries. Renew. Energy 2021, 168, 1327–1343. [Google Scholar] [CrossRef]
- Martínez-Calahorro, A.J.; Jiménez-Castillo, G.; Rus-Casas, C.; Gómez-Vidal, P.; Muñoz-Rodríguez, F.J. Photovoltaic Self-Consumption in Industrial Cooling and Refrigeration. Electronics 2020, 9, 2204. [Google Scholar] [CrossRef]
- European Commission. Market Situation in the Olive Oil and Table Olives Sectors. In Committee for the Common Organisation of the Agricultural Markets-Arable Crops and Olive Oil; European Commission: Brussels, Belgium, 2022. [Google Scholar]
- Sistema de Información de los Mercados Oleícolas, (SIMO). Avance de la Situación de Mercado del Sector Oleícola Campaña 2020/21; Ministerio de Agricultura, Alimentación y Medio Ambiente, Gobierno de España: Madrid, Spain, 2021. [Google Scholar]
- Ministerio de Agricultura, Alimentación y Medio Ambiente, (MAPA). Anuario de Estadística Agroalimentaria; Ministerio de Agricultura, Alimentación y Medio Ambiente, Gobierno de España: Madrid, Spain, 2021. [Google Scholar]
- Sánchez-Martínez, J.D.; Rodríguez-Cohard, J.C.; Garrido-Almonacid, A.; Gallego-Simón, V.J. Territorial Challenges in Rural Areas: Performance and Potential of Innovative Olive Cooperatives in Andalusia (Spain). Terra Rev. Desarro. Local 2022, 29, 23725. [Google Scholar] [CrossRef]
- López, V.C.; Avi, J.R.; Jiménez, M.J.O.; Reinoso, J.R. A Modelling of the Number of Almazaras by Municipality in Andalusia. Stud. Appl. Econ. 2022, 40, 3. [Google Scholar]
- Ncube, A.; Fiorentino, G.; Panfilo, C.; De Falco, M.; Ulgiati, S. Circular Economy Paths in the Olive Oil Industry: A Life Cycle Assessment Look into Environmental Performance and Benefits. Int. J. Life Cycle Assess. 2022. [Google Scholar] [CrossRef]
- Ministerio para la Transición Ecológica. Real Decreto 244/2019, de 5 de Abril, Por El Que Se Regulan Las Condiciones Administrativas, Técnicas y Económicas Del Autoconsumo de Energía Eléctrica; Ministerio para la Transición Ecológica: Madrid, Spain, 2019. [Google Scholar]
- Jiménez-Torres, M.; Rus-Casas, C.; Lemus-Zúiga, L.; Hontoria, L. The Importance of Accurate Solar Data for Designing Solar Photovoltaic Systems—Case Studies in Spain. Sustainability 2017, 9, 247. [Google Scholar] [CrossRef]
- Jiménez-Castillo, G.; Rus-Casas, C.; Tina, G.M.; Muñoz-Rodriguez, F.J. Effects of Smart Meter Time Resolution When Analyzing Photovoltaic Self-Consumption System on a Daily and Annual Basis. Renew. Energy 2021, 164, 889–896. [Google Scholar] [CrossRef]
- Sun, S.I.; Smith, B.D.; Wills, R.G.A.; Crossland, A.F. Effects of Time Resolution on Finances and Self-Consumption When Modeling Domestic PV-Battery Systems. In Proceedings of the Energy Reports; Elsevier: Amsterdam, The Netherlands, 1 May 2020; Volume 6, pp. 157–165. [Google Scholar]
- UNE-EN 61724-1:2017; Photovoltaic System Performance Monitoring-Part 1: Monitoring. IEC: Madrid, Spain, 2018; ISBN 978-2-8322-3988-9.
- Huld, T.; Müller, R.; Gambardella, A. A New Solar Radiation Database for Estimating PV Performance in Europe and Africa. Sol. Energy 2012, 86, 1803–1815. [Google Scholar] [CrossRef]
- Wei, T.; Junfeng, L.I. Analysis on the Status Quo of Rural Energy Consumption and “Carbon Neutrality” Capability. Energy China 2021, 43, 60–65. [Google Scholar]
- Rus-Casas, C.; Aguilar, J.D.; Rodrigo, P.; Almonacid, F.; Pérez-Higueras, P.J. Classification of Methods for Annual Energy Harvesting Calculations of Photovoltaic Generators. Energy Convers. Manag. 2014, 78, 527–536. [Google Scholar] [CrossRef]
- Schweiger, M.; Herrmann, W.; Gerber, A.; Rau, U. Understanding the Energy Yield of Photovoltaic Modules in Different Climates by Linear Performance Loss Analysis. IET Renew. Power Gener. 2017, 11, 558–565. [Google Scholar] [CrossRef]
- Muñoz, J.V.; Nofuentes, G.; Fuentes, M.; de la Casa, J.; Aguilera, J. DC Energy Yield Prediction in Large Monocrystalline and Polycrystalline PV Plants: Time-Domain Integration of Osterwald’s Model. Energy 2016, 114, 951–960. [Google Scholar] [CrossRef]
- Rodrigo, P.; Rus, C.; Almonacid, F.; Pérez-Higueras, P.J.; Almonacid, G. A New Method for Estimating Angular, Spectral and Low Irradiance Losses in Photovoltaic Systems Using an Artificial Neural Network Model in Combination with the Osterwald Model. Sol. Energy Mater. Sol. Cells 2012, 96, 186–194. [Google Scholar] [CrossRef]
- Fuentes, M.; Nofuentes, G.; Aguilera, J.; Talavera, D.L.; Castro, M. Application and Validation of Algebraic Methods to Predict the Behaviour of Crystalline Silicon PV Modules in Mediterranean Climates. Sol. Energy 2007, 81, 1396–1408. [Google Scholar] [CrossRef]
- Torres-Ramírez, M.; Nofuentes, G.; Silva, J.P.; Silvestre, S.; Muñoz, J.V. Study on Analytical Modelling Approaches to the Performance of Thin Film PV Modules in Sunny Inland Climates. Energy 2014, 73, 731–740. [Google Scholar] [CrossRef]
- Reich, N.H.; Mueller, B.; Armbruster, A.; van Sark, W.G.J.H.M.; Kiefer, K.; Reise, C. Performance Ratio Revisited: Is PR > 90% Realistic? Prog. Photovolt. Res. Appl. 2012, 20, 717–726. [Google Scholar] [CrossRef]
- Muñoz-Rodríguez, F.J.; Jiménez-Castillo, G.; Rus-Casas, C. Photovoltaic Rooftops in Smart Energy Systems. In Handbook of Smart Energy Systems; Mahdi, F., Zio, E., Pardalos, P.M., Eds.; Springer: Cham, Switzerland, 2021; pp. 1–28. ISBN 978-3-030-72322-4. [Google Scholar]
- Talavera, D.L.; Muñoz-Rodriguez, F.J.; Jimenez-Castillo, G.; Rus-Casas, C. A New Approach to Sizing the Photovoltaic Generator in Self-Consumption Systems Based on Cost–Competitiveness, Maximizing Direct Self-Consumption. Renew. Energy 2019, 130, 1021–1035. [Google Scholar] [CrossRef]
- Luthander, R.; Widén, J.; Nilsson, D.; Palm, J. Photovoltaic Self-Consumption in Buildings: A Review. Appl. Energy 2015, 142, 80–94. [Google Scholar] [CrossRef]
- Weniger, J.; Tjaden, T.; Quaschning, V. Sizing of Residential PV Battery Systems. Energy Procedia 2014, 46, 78–87. [Google Scholar] [CrossRef]
- Mulder, G.; de Ridder, F.; Six, D. Electricity Storage for Grid-Connected Household Dwellings with PV Panels. Sol. Energy 2010, 84, 1284–1293. [Google Scholar] [CrossRef]
- Nyholm, E.; Goop, J.; Odenberger, M.; Johnsson, F. Solar Photovoltaic-Battery Systems in Swedish Households–Self-Consumption and Self-Sufficiency. Appl. Energy 2016, 183, 148–159. [Google Scholar] [CrossRef]
- Rana, M.M.; Uddin, M.; Sarkar, M.R.; Shafiullah, G.M.; Mo, H.; Atef, M. A Review on Hybrid Photovoltaic-Battery Energy Storage System: Current Status, Challenges, and Future Directions. J. Energy Storage 2022, 51, 104597. [Google Scholar] [CrossRef]
- Emad, D.; El-Hameed, M.A.; El-Fergany, A.A. Optimal Techno-Economic Design of Hybrid PV/Wind System Comprising Battery Energy Storage: Case Study for a Remote Area. Energy Convers. Manag. 2021, 249, 114847. [Google Scholar] [CrossRef]
- Gul, E.; Baldinelli, G.; Bartocci, P.; Bianchi, F.; Domenighini, P.; Cotana, F.; Wang, J. A Techno-Economic Analysis of a Solar PV and DC Battery Storage System for a Community Energy Sharing. Energy 2022, 244, 123191. [Google Scholar] [CrossRef]
- Alonso, A.M.; Costa, D.; Messagie, M.; Coosemans, T. Techno-Economic Assessment on Hybrid Energy Storage Systems Comprising Hydrogen and Batteries: A Case Study in Belgium. Int. J. Hydrogen Energy 2023, in press. [Google Scholar] [CrossRef]
- Escamilla, A.; Sánchez, D.; García-Rodríguez, L. Techno-Economic Study of Power-to-Power Renewable Energy Storage Based on the Smart Integration of Battery, Hydrogen, and Micro Gas Turbine Technologies. Energy Convers. Manag. X 2023, 18, 100368. [Google Scholar] [CrossRef]
- López Prol, J.; Steininger, K.W. Photovoltaic Self-Consumption Is Now Profitable in Spain: Effects of the New Regulation on Prosumers’ Internal Rate of Return. Energy Policy 2020, 146, 111793. [Google Scholar] [CrossRef]
- Zhang, Y.; Campana, P.E.; Lundblad, A.; Yan, J. Comparative Study of Hydrogen Storage and Battery Storage in Grid Connected Photovoltaic System: Storage Sizing and Rule-Based Operation. Appl. Energy 2017, 201, 397–411. [Google Scholar] [CrossRef]
- Ijeoma, M.W.; Chen, H.; Carbajales-Dale, M.; Yakubu, R.O. Techno-Economic Assessment of the Viability of Commercial Solar PV System in Port Harcourt, Rivers State, Nigeria. Energies 2023, 16, 6803. [Google Scholar] [CrossRef]
- Quijano, A.; Lorenzo, C.; Narvarte, L. Economic Assessment of a PV-HP System for Drying Alfalfa in The North of Spain. Energies 2023, 16, 3347. [Google Scholar] [CrossRef]
- Yang, B.; Guo, Y.; Xiao, X.; Tian, P. Bi-Level Capacity Planning of Wind-PV-Battery Hybrid Generation System Considering Return on Investment. Energies 2020, 13, 3046. [Google Scholar] [CrossRef]
- Ciocia, A.; Amato, A.; Di Leo, P.; Fichera, S.; Malgaroli, G.; Spertino, F.; Tzanova, S. Self-Consumption and Self-Sufficiency in Photovoltaic Systems: Effect of Grid Limitation and Storage Installation. Energies 2021, 14, 1591. [Google Scholar] [CrossRef]
- Gallego-Castillo, C.; Heleno, M.; Victoria, M. Self-Consumption for Energy Communities in Spain: A Regional Analysis under the New Legal Framework. Energy Policy 2021, 150, 112144. [Google Scholar] [CrossRef]
- Terlouw, T.; AlSkaif, T.; Bauer, C.; van Sark, W. Multi-Objective Optimization of Energy Arbitrage in Community Energy Storage Systems Using Different Battery Technologies. Appl. Energy 2019, 239, 356–372. [Google Scholar] [CrossRef]
- Renewable Energy Agency. Renewable Power Generation Costs in 2022; Renewable Energy Agency: Abu Dhabi, United Arab Emirates, 2023; ISBN 978-92-9260-544-5. [Google Scholar]
- Perdigones, A.; García, J.L.; García, I.; Baptista, F.; Mazarrón, F.R. Economic Feasibility of PV Mounting Structures on Industrial Roofs. Buildings 2023, 13, 2834. [Google Scholar] [CrossRef]
- Ordóñez, Á.; Sánchez, E.; Rozas, L.; García, R.; Parra-Domínguez, J. Net-Metering and Net-Billing in Photovoltaic Self-Consumption: The Cases of Ecuador and Spain. Sustain. Energy Technol. Assess. 2022, 53, 102434. [Google Scholar] [CrossRef]
- de Doile, G.N.D.; Rotella Junior, P.; Rocha, L.C.S.; Janda, K.; Peruchi, R.; Aquila, G.; Balestrassi, P.P. Impacts of Economic Regulation on Photovoltaic Distributed Generation with Battery Energy Storage Systems. J. Energy Storage 2023, 72, 108382. [Google Scholar] [CrossRef]
Industry | Annual Energy Consumption (kWh) | Classification |
---|---|---|
Olive mill 1 | 313 | Small |
Olive mill 2 | 699 | Medium |
Olive mill 3 | 1407 | Large |
Period | (kWh/Period) | MCR (%) | ||||
---|---|---|---|---|---|---|
Small | Medium | Large | Small | Medium | Large | |
June | 2140.6 | 2296.0 | 68,283.0 | 0.7 | 0.3 | 4.9 |
July | 2361.3 | 2794.7 | 64,509.0 | 0.8 | 0.4 | 4.6 |
August | 2002.4 | 1904.9 | 67,635.0 | 0.6 | 0.3 | 4.8 |
September | 1981.4 | 3535.9 | 52,970.0 | 0.6 | 0.5 | 3.8 |
October | 4709.4 | 8083.3 | 67,194.0 | 1.5 | 1.2 | 4.8 |
November | 28,388.8 | 66,756.0 | 125,344.0 | 9.1 | 9.6 | 8.9 |
December | 129,409.0 | 277,884.0 | 198,244.0 | 41.3 | 39.8 | 14.1 |
January | 127,661.0 | 299,849.0 | 233,352.0 | 40.7 | 42.9 | 16.6 |
February | 8206.5 | 27,073.7 | 208,175.0 | 2.6 | 3.9 | 14.8 |
March | 2149.2 | 5377.5 | 139,263.0 | 0.7 | 0.8 | 9.9 |
April | 2246.3 | 1668.8 | 107,102.0 | 0.7 | 0.2 | 7.6 |
May | 2101.4 | 1501.0 | 75,133.0 | 0.7 | 0.2 | 5.3 |
Total | 313,357.1 | 698,724.8 | 1,407,204.0 | 100 | 100 | 100 |
Annual | Harvest Period | Off-Harvest Period | |||||
---|---|---|---|---|---|---|---|
(%) | (%) | (kW) | (%) | (kW) | (%) | (kW) | |
Small | 90 | 4 | 4 | 10 | 53 | 15 | 3 |
80 | 6 | 7 | 36 | 176 | 21 | 5 | |
Medium | 90 | 1 | 2 | 10 | 120 | 5 | 3 |
80 | 2 | 5 | 34 | 460 | 10 | 6 | |
Large | 90 | 24 | 107 | 32 | 247 | 32 | 85 |
80 | 43 | 218 | 66 | 560 | 52 | 154 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez-Jiménez, J.L.; Muñoz-Rodríguez, F.J.; Jiménez-Castillo, G.; Martinez-Calahorro, A.J.; Rus-Casas, C. Analysis of Different Scenarios to Include PV Rooftop Systems with Battery Energy Storage Systems in Olive Mills. Energies 2024, 17, 144. https://doi.org/10.3390/en17010144
Sánchez-Jiménez JL, Muñoz-Rodríguez FJ, Jiménez-Castillo G, Martinez-Calahorro AJ, Rus-Casas C. Analysis of Different Scenarios to Include PV Rooftop Systems with Battery Energy Storage Systems in Olive Mills. Energies. 2024; 17(1):144. https://doi.org/10.3390/en17010144
Chicago/Turabian StyleSánchez-Jiménez, Jose Luis, Francisco José Muñoz-Rodríguez, Gabino Jiménez-Castillo, Antonio Javier Martinez-Calahorro, and Catalina Rus-Casas. 2024. "Analysis of Different Scenarios to Include PV Rooftop Systems with Battery Energy Storage Systems in Olive Mills" Energies 17, no. 1: 144. https://doi.org/10.3390/en17010144
APA StyleSánchez-Jiménez, J. L., Muñoz-Rodríguez, F. J., Jiménez-Castillo, G., Martinez-Calahorro, A. J., & Rus-Casas, C. (2024). Analysis of Different Scenarios to Include PV Rooftop Systems with Battery Energy Storage Systems in Olive Mills. Energies, 17(1), 144. https://doi.org/10.3390/en17010144