Regressive and Spatio-Temporal Accessibility of Variability in Solar Energy on a Short Scale Measurement in the Southern and Mid Region of Mozambique
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection and Processing
2.2. Study Area
2.3. Experimental Procedure
3. Results
3.1. Occurrence Content and Categorization of Varieties of Days
Quantitative Analysis of Different Categories of Days
3.2. Correlation of the Clear Sky Index Coefficient between Station Sensor Pairs
3.3. The Temporal Assessment of the Clear Sky Index and Its Increments
3.4. Correlation of Two-Point Increments Using Different Methods
3.5. Accessibility from a Regressive and Correlative Point of View of Solar Energy
3.6. Variability in the Standardized Deviation of the Clear Sky Index and Its Increment
3.7. Regression of the Clear Sky Index and Its Increments
4. Discussion
5. Conclusions
6. Patents
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Duffie, J.A.; Beckman, W.A. Solar Engineering of Thermal Processes; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Mucomole, F.V.; Silva, C.A.S.; Magaia, L.L. Temporal Variability of Solar Energy Availability in the Conditions of the Southern Region of Mozambique. Am. J. Energy Nat. Resour. 2023, 2, 27–50. [Google Scholar] [CrossRef]
- Kreuwel, F.P.M.; Knap, W.H.; Visser, L.R.; Van Sark, W.G.J.H.M.; Vilà-Guerau De Arellano, J.; Van Heerwaarden, C.C. Analysis of high frequency photovoltaic solar energy fluctuations. Sol. Energy 2020, 206, 381–389. [Google Scholar] [CrossRef]
- Williamson, S.; Businger, S.; Matthews, D. Development of a solar irradiance dataset for Oahu, Hawai’i. Renew. Energy 2018, 128, 432–443. [Google Scholar] [CrossRef]
- Wenham, S.R.; Green, M.A.; Watt, M.E.; Corkish, R.; Sproul, A. (Eds.) Applied Photovoltaics, 3rd ed.; Routledge: London, UK, 2011; ISBN 978-1-84977-698-1. [Google Scholar]
- IEA; IRENA; UNSD; World Bank; WHO. Tracking SDG 7: The Energy Progress Report. World Bank, Washington DC. © World Bank. 2023. Available online: https://cdn.who.int/media/docs/default-source/air-pollution-documents/air-quality-and-health/sdg7-report2023-full-report_web.pdf?sfvrsn=669e8626_3&download=true (accessed on 16 December 2023).
- Energypedia, Energy Access Situation in Mozambique. 2023. Available online: https://energypedia.info/wiki/Situa%C3%A7%C3%A3o_de_Acesso_%C3%A0_Energia_em_Mo%C3%A7ambique (accessed on 15 December 2023).
- Fernández, M.E.; Gentili, J.O.; Casado, A.L.; Campo, A.M. Global horizontal irradiation: Spatio-temporal variability on a regional scale in the south of the Pampeana region (Argentina). AUC Geogr. 2021, 56, 220–233. [Google Scholar] [CrossRef]
- Karapantsios, T.D.; Hatzimoisiadis, K.A.; Balouktsis, A.I. Estimation of total atmospheric pollution using global radiation data: Introduction of a novel clear day selection methodology. Renew. Energy 1999, 17, 169–181. [Google Scholar] [CrossRef]
- Lohmann, G.M. Solar Irradiance Variability on Small Spatial and Temporal Scales. Ph.D. Thesis, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany, 2017. [Google Scholar]
- Aziz, T.; Ketjoy, N. PV Penetration Limits in Low Voltage Networks and Voltage Variations. IEEE Access 2017, 5, 16784–16792. [Google Scholar] [CrossRef]
- Hoff, T.E.; Perez, R. PV Power Output Variability: Calculation of Correlation Coefficients Using Satellite Insolation Data. 2010. Available online: https://www.semanticscholar.org/paper/PV-Power-Output-Variability%3A-Correlation/c32816c677f3021ae2cdd41ddd745414f6c87071 (accessed on 13 January 2023).
- Hoff, T.E.; Perez, R. Quantifying PV power Output Variability. Sol. Energy 2010, 84, 1782–1793. [Google Scholar] [CrossRef]
- Law, E.W.; Prasad, A.A.; Kay, M.; Taylor, R.A. Direct normal irradiance forecasting and its application to concentrated solar thermal output forecasting—A review. Sol. Energy 2014, 108, 287–307. [Google Scholar] [CrossRef]
- Lohmann, G.M.; Monahan, A.H. Effects of temporal averaging on short-term irradiance variability under mixed sky conditions. Atmos. Meas. Tech. 2018, 11, 3131–3144. [Google Scholar] [CrossRef]
- Iqbal, M. An Introduction to Solar Radiation; Academic Press: Toronto, ON, Canada; New York, NY, USA, 1983; ISBN 978-0-12-373750-2. [Google Scholar]
- Ibanez, M.; Beckman, W.A.; Klein, S.A. Frequency Distributions for Hourly and Daily Clearness Indices. J. Sol. Energy Eng. 2002, 124, 28–33. [Google Scholar] [CrossRef]
- Luoma, J.; Kleissl, J.; Murray, K. Optimal inverter sizing considering cloud enhancement. Sol. Energy 2011, 86, 421–429. [Google Scholar] [CrossRef]
- Trindade, A.; Cordeiro, L.C. Synthesis of Solar Photovoltaic Systems: Optimal Sizing Comparison. In Software Verification; Christakis, M., Polikarpova, N., Duggirala, P.S., Schrammel, P., Eds.; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2020; Volume 12549, pp. 87–105. ISBN 978-3-030-63617-3. [Google Scholar]
- Takilalte, A.; Harrouni, S.; Yaiche, M.R.; Mora-López, L. New approach to estimate 5-min global solar irradiation data on tilted planes from horizontal measurement. Renew. Energy 2020, 145, 2477–2488. [Google Scholar] [CrossRef]
- Sengupta, E.M.; Habte, A.; Gueymard, C.; Wilbert, S.; Renne, D.; Stoffel, T. Best Practices Handbook for the Collection and Use of Solar Resource Data for Solar Energy Applications: Second Edition. Renew. Energy 2017, 2, 257–265. [Google Scholar]
- Yordanov, I.; Velikova, V.; Tsonev, T. Plant Responses to Drought, Acclimation, and Stress Tolerance. Photosynthetica 2012, 38, 171–186. [Google Scholar] [CrossRef]
- Jerez, S.; Tobin, I.; Turco, M.; Jiménez-Guerrero, P.; Vautard, R.; Montávez, J.P. Future changes, or lack thereof, in the temporal variability of the combined wind-plus-solar power production in Europe. Renew. Energy 2019, 139, 251–260. [Google Scholar] [CrossRef]
- Jerez, S.; Trigo, R.M.; Sarsa, A.; Lorente-Plazas, R.; Pozo-Vázquez, D.; Montávez, J.P. Spatio-temporal Complementarity between Solar and Wind Power in the Iberian Peninsula. Energy Procedia 2013, 40, 48–57. [Google Scholar] [CrossRef]
- Hassan, M.A.; Bailek, N.; Bouchouicha, K.; Ibrahim, A.; Jamil, B.; Kuriqi, A.; Nwokolo, S.C.; El-kenawy, E.-S.M. Evaluation of energy extraction of PV systems affected by environmental factors under real outdoor conditions. Theor. Appl. Climatol. 2022, 150, 715–729. [Google Scholar] [CrossRef]
- Koudouris, G.; Dimitriadis, P.; Iliopoulou, T.; Mamassis, N.; Koutsoyiannis, D. A stochastic model for the hourly solar radiation process for application in renewable resources management. Adv. Geosci. 2018, 45, 139–145. [Google Scholar] [CrossRef]
- NOAA. NOAA’s National Weather Service Is Building a Weather-Ready Nation by Providing Better Information for Better Decisions to Save Lives and Livelihoods. Available online: https://www.noaa.gov/weather (accessed on 10 December 2023).
- NASA. Power data access viewer: Prediction Of Worldwide Energy Resource. Available online: https://power.larc.nasa.gov/data-access-viewer/ (accessed on 10 December 2023).
- Behr, H.; Jung, C.; Trentmann, J.; Schindler, D. Using satellite data for assessing spatiotemporal variability and complementarity of solar resources—A case study from Germany. Meteorol. Z. 2021, 30, 515–532. [Google Scholar] [CrossRef]
- Kühnert, J.; Lorenz, E.; Heinemann, D. Satellite-Based Irradiance and Power Forecasting for the German Energy Market. In Solar Energy Forecasting and Resource Assessment; Elsevier: Amsterdam, The Netherlands, 2013; pp. 267–297. ISBN 978-0-12-397177-7. [Google Scholar]
- Amillo, A.G.; Ntsangwane, L.; Huld, T.; Trentmann, J. Comparison of satellite-retrieved high-resolution solar radiation datasets for South Africa. J. Energy S. Afr. 2018, 29, 63–76. [Google Scholar] [CrossRef]
- Kumar, D.S.; Maharjan, S.; Albert; Srinivasan, D. Ramp-rate limiting strategies to alleviate the impact of PV power ramping on voltage fluctuations using energy storage systems. Sol. Energy 2022, 234, 377–386. [Google Scholar] [CrossRef]
- Lorenzo, A.T. Short-Term Irradiance Forecasting Using an Irradiance Monitoring Network, Satellite Imagery, and Data Assimilation; The University of Arizona: Tucson, AZ, USA, 2017. [Google Scholar]
- Moerkerken, A.; Duijndam, S.; Blasch, J.; van Beukering, P.; van Well, E. Which farmers adopt solar energy? A regression analysis to explain adoption decisions over time. Renew. Energy Focus 2023, 45, 169–178. [Google Scholar] [CrossRef]
- Morganti, M.; Salvati, A.; Coch, H.; Cecere, C. Urban morphology indicators for solar energy analysis. Energy Procedia 2017, 134, 807–814. [Google Scholar] [CrossRef]
- Gopinathan, K.K. A simple method for predicting global solar radiation on a horizontal surface. Sol. Wind Technol. 1988, 5, 581–583. [Google Scholar] [CrossRef]
- El-Sebaii, A.A.; Trabea, A.A. Estimation of horizontal diffuse solar radiation in Egypt. Energy Convers. Manag. 2003, 44, 2471–2482. [Google Scholar] [CrossRef]
- Abuella, M.; Chowdhury, B. Solar power probabilistic forecasting by using multiple linear regression analysis. In Proceedings of the SoutheastCon 2015, Fort Lauderdale, FL, USA, 9–12 April 2015; pp. 1–5. [Google Scholar] [CrossRef]
- Stevović, I.; Mirjanić, D.; Stevović, S. Possibilities for wider investment in solar energy implementation. Energy 2019, 180, 495–510. [Google Scholar] [CrossRef]
- Abdul-Wahab, S.A.; Bakheit, C.S.; Al-Alawi, S.M. Principal component and multiple regression analysis in modelling of ground-level ozone and factors affecting its concentrations. Environ. Model. Softw. 2005, 20, 1263–1271. [Google Scholar] [CrossRef]
- Dyson, M.E.H.; Borgeson, S.D.; Tabone, M.D.; Callaway, D.S. Using smart meter data to estimate demand response potential, with application to solar energy integration. Energy Policy 2014, 73, 607–619. [Google Scholar] [CrossRef]
- Ibrahim, S.; Daut, I.; Irwan, Y.M.; Irwanto, M.; Gomesh, N.; Farhana, Z. Linear Regression Model in Estimating Solar Radiation in Perlis. Energy Procedia 2012, 18, 1402–1412. [Google Scholar] [CrossRef]
- Arumugham, D.R.; Rajendran, P. Modelling global solar irradiance for any location on earth through regression analysis using high-resolution data. Renew. Energy 2021, 180, 1114–1123. [Google Scholar] [CrossRef]
- Midilli, A.; Kucuk, H. Mathematical modeling of thin layer drying of pistachio by using solar energy. Energy Convers. Manag. 2003, 44, 1111–1122. [Google Scholar] [CrossRef]
- Benghanem, M.; Joraid, A.A. A multiple correlation between different solar parameters in Medina, Saudi Arabia. Renew. Energy 2007, 32, 2424–2435. [Google Scholar] [CrossRef]
- Brabec, M.; Paulescu, M.; Badescu, V. Statistical properties of clear and dark duration lengths. Sol. Energy 2017, 153, 508–518. [Google Scholar] [CrossRef]
- Lohmann, G.M.; Monahan, A.H.; Heinemann, D. Local short-term variability in solar irradiance. Atmos. Chem. Phys. 2016, 16, 6365–6379. [Google Scholar] [CrossRef]
- Gueymard, C.A. Variability in Direct Irradiance around the Sahara: Are the Modeled Datasets of Bankable Quality? In Proceedings of the SolarPACES Conference, Perpignan, France, 21–24 September 2010. [Google Scholar]
- Lohmann, G. Irradiance Variability Quantification and Small-Scale Averaging in Space and Time: A Short Review. Atmosphere 2018, 9, 264. [Google Scholar] [CrossRef]
- Perez, R.; David, M.; Hoff, T.E.; Jamaly, M.; Kivalov, S.; Kleissl, J.; Lauret, P.; Perez, M. Spatial and Temporal Variability of Solar Energy. Found. Trends® Renew. Energy 2016, 1, 1–44. [Google Scholar] [CrossRef]
- INAM. Mozambique’s National Institute of Meteorology, Weather and Solar Data. Available online: https://www.inam.gov.mz/index.php/pt/produtos-e-servicos/previsao-de-tempo (accessed on 10 May 2022).
- Marcos, J.; Marroyo, L.; Lorenzo, E.; Alvira, D.; Izco, E. Power output fluctuations in large scale pv plants: One year observations with one second resolution and a derived analytic model: Power Output Fluctuations in Large Scale PV plants. Prog. Photovolt. Res. Appl. 2011, 19, 218–227. [Google Scholar] [CrossRef]
- Perez, R.; Kivalov, S.; Schlemmer, J.; Hemker, K.; Hoff, T.E. Short-term irradiance variability: Preliminary estimation of station pair correlation as a function of distance. Sol. Energy 2012, 86, 2170–2176. [Google Scholar] [CrossRef]
- Wilson, P.; Tanaka, O.K. Statistics, Basic Concepts —Wilson Pereira/Oswaldo K. Tanaka. 2018. Available online: https://www.estantevirtual.com.br/livros/wilson-pereira-oswaldo-k-tanaka/estatistica-conceitos-basicos/189548989 (accessed on 6 February 2023).
- Amjad, D.; Mirza, S.; Raza, D.; Sarwar, F.; Kausar, S. A Statistical Modeling for spatial-temporal variability analysis of solar energy with respect to the climate in the Punjab Region. Bahria Univ. Res. J. Earth Sci. 2023, 7, 10. [Google Scholar]
- FUNAE. National Energy Fund of Mozambique, Data on the solar radiation component extracted from the energy atlas. Available online: https://funae.co.mz/ (accessed on 10 May 2022).
- Barry, J.; Munzke, N.; Thomas, J. Power fluctuations in solar-storage clusters: Spatial correlation and battery response times. Energy Procedia 2017, 135, 379–390. [Google Scholar] [CrossRef]
- Lam, J.C.; Li, D.H.W. Regression Analysis of Solar Radiation and Sunshine Duration. Archit. Sci. Rev. 1996, 39, 15–23. [Google Scholar] [CrossRef]
- Armstrong, S.; Hurley, W.G. A new methodology to optimise solar energy extraction under cloudy conditions. Renew. Energy 2010, 35, 780–787. [Google Scholar] [CrossRef]
- Sarralde, J.J.; Quinn, D.J.; Wiesmann, D.; Steemers, K. Solar energy and urban morphology: Scenarios for increasing the renewable energy potential of neighbourhoods in London. Renew. Energy 2015, 73, 10–17. [Google Scholar] [CrossRef]
- Sharif, A.; Meo, M.S.; Chowdhury, M.A.F.; Sohag, K. Role of solar energy in reducing ecological footprints: An empirical analysis. J. Clean. Prod. 2021, 292, 126028. [Google Scholar] [CrossRef]
- Kayima, P.; Semakula, H.M.; Wasswa, H.; Mugagga, F.; Mukwaya, P.I. Analysis of the socio-economic benefits of on-grid hybrid solar energy system on Bugala island in Uganda. Energy Sustain. Dev. 2023, 77, 101332. [Google Scholar] [CrossRef]
- Herche, W. Solar energy strategies in the U.S. utility market. Renew. Sustain. Energy Rev. 2017, 77, 590–595. [Google Scholar] [CrossRef]
- Lave, M.; Kleissl, J.; Arias-Castro, E. High-frequency irradiance fluctuations and geographic smoothing. Sol. Energy 2012, 86, 2190–2199. [Google Scholar] [CrossRef]
- Van Haaren, R.; Morjaria, M.; Fthenakis, V. Empirical assessment of short-term variability from utility-scale solar PV plants: Assessment of variability from utility-scale solar PV plants. Prog. Photovolt. Res. Appl. 2014, 22, 548–559. [Google Scholar] [CrossRef]
- Zhu, W.; Wu, B.; Yan, N.; Ma, Z.; Wang, L.; Liu, W.; Xing, Q.; Xu, J. Estimating Sunshine Duration Using Hourly Total Cloud Amount Data from a Geostationary Meteorological Satellite. Atmosphere 2019, 11, 26. [Google Scholar] [CrossRef]
ID | Name | Number of Stations | Province | Longitude | Latitude |
---|---|---|---|---|---|
MZ06 | MZ06–Chipera | 1 | Tete | 31°40′3.4″ E | 14°58′28.1″ S |
MZ11 | MZ11–Nhamadzi | 1 | Sofala | 35°2′18.7″ E | 19°43′46.6″ S |
MZ15 | MZ15–Massangena | 1 | Gaza | 32°56′26.7″ E | 21°34′59.5″ S |
MZ17 | MZ17–Ndindiza | 1 | Gaza | 33°25′22.8″ E | 23°27′37.1″ S |
MZ20 | MZ20–Pembe | 1 | Inhambane | 35°35′35.5″ E | 22°56′44.3″ S |
MZ21 | MZ21–Barue | 2 | Manica | 33°13′0.8″ E | 17°47′32.5″ S |
MZF01 | MZF01–Maputo–1 | 1 | Maputo City | 32°9′39.8″ E | 23°55′7.8″ S |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mucomole, F.V.; Silva, C.A.S.; Magaia, L.L. Regressive and Spatio-Temporal Accessibility of Variability in Solar Energy on a Short Scale Measurement in the Southern and Mid Region of Mozambique. Energies 2024, 17, 2613. https://doi.org/10.3390/en17112613
Mucomole FV, Silva CAS, Magaia LL. Regressive and Spatio-Temporal Accessibility of Variability in Solar Energy on a Short Scale Measurement in the Southern and Mid Region of Mozambique. Energies. 2024; 17(11):2613. https://doi.org/10.3390/en17112613
Chicago/Turabian StyleMucomole, Fernando Venâncio, Carlos Augusto Santos Silva, and Lourenço Lázaro Magaia. 2024. "Regressive and Spatio-Temporal Accessibility of Variability in Solar Energy on a Short Scale Measurement in the Southern and Mid Region of Mozambique" Energies 17, no. 11: 2613. https://doi.org/10.3390/en17112613
APA StyleMucomole, F. V., Silva, C. A. S., & Magaia, L. L. (2024). Regressive and Spatio-Temporal Accessibility of Variability in Solar Energy on a Short Scale Measurement in the Southern and Mid Region of Mozambique. Energies, 17(11), 2613. https://doi.org/10.3390/en17112613