Revolutionizing Solar Power Forecasts by Correcting the Outputs of the WRF-SOLAR Model
Abstract
:1. Introduction
- The Pearson correlation analysis was used to select representative meteorological sites in five cities. These cities are located in northern, central, and southern Taiwan.
- An analysis of the discrepancy between the WRF-Solar irradiances and the observed solar irradiances was carried out at the selected meteorological sites in each city.
- The development of a post-processing algorithm using the DA method was proposed. It considers WRF-Solar irradiance forecasts as inputs to generate day-ahead bias-corrected WRF-Solar irradiance forecasts at five cities. This study implemented the validation and comparison for the outputs of the WRF-Solar model using the DA method, the original WRF-Solar forecast model, or the transformer model. In addition, this study utilized diverse performance evaluation metrics, including mean error (ME) and root-mean-square error (RMSE).
- The WRF-Solar model, after undergoing post-processing with the DA method, was combined with the total solar power generation at each city to predict solar power generation. It aims to generate day-ahead total power generation forecasts. Subsequently, these forecasting results were validated and compared against the results using the original WRF-Solar forecast model and the transformer model with several performance evaluation metrics, including RMSE, normalized RMSE (nRMSE), mean absolute error (MAE), mean absolute percentage error (MAPE), and R-squared (R2).
2. Methods
2.1. Numerical Weather Prediction Modeling Systems–WRF-Solar
2.2. DA Bias Correction
- Step 1. Calculate the model prediction error () by the difference between the WRF-Solar irradiances () and the corresponding observed solar irradiances () at the same time horizon.
- Step 2. Compute the systematic bias () utilizing a weight coefficient () including the cumulative systematic bias () and prediction error ().
- Step 3. Obtain the bias-corrected WRF-Solar irradiances (), which are derived based on the difference between the WRF-Solar irradiances and the systematic bias.
2.3. Transformer Model
3. Results
3.1. Pearson Correlation Analysis
3.2. Bias Correction for WRF-Solar Irradiances
3.3. Solar Power Generation Forecasting
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
NWP | Numerical weather prediction |
WRF-Solar | Weather research and forecasting solar |
WRF | Weather research and forecasting |
CWB | Central Weather Bureau |
DA | Decaying average |
GHI | Global horizontal irradiance |
PV | Photovoltaic |
MOS | Model output statistics |
ML | Machine learning |
DL | Deep learning |
ME | Mean error |
RMSE | Root-mean-square error |
nRMSE | Normalized root-mean-square error |
MAE | Mean absolute error |
MAPE | Mean absolute percentage error |
R2 | R-squared |
UTC | Coordinated Universal Time |
MHA | Multi-head attention |
Probability density function |
References
- Ahmed, R.; Sreeram, V.; Mishra, Y.; Arif, M. A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization. Renew. Sustain. Energy Rev. 2020, 124, 109792. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Liu, Z.; Berner, J.; Wang, W.; Powers, J.; Duda, M.; Barker, D. A Description of the Advanced Research WRF Version 4; National Center for Atmospheric Research (NCAR): Boulder, CO, USA, 2019; Volume 145. [Google Scholar]
- Powers, J.G.; Klemp, J.B.; Skamarock, W.C.; Davis, C.A.; Dudhia, J.; Gill, D.O.; Coen, J.L.; Gochis, D.J.; Ahmadov, R.; Peckham, S.E. The weather research and forecasting model: Overview, system efforts, and future directions. Bull. Am. Meteorol. Soc. 2017, 98, 1717–1737. [Google Scholar] [CrossRef]
- Jimenez, P.A.; Hacker, J.P.; Dudhia, J.; Haupt, S.E.; Ruiz-Arias, J.A.; Gueymard, C.A.; Thompson, G.; Eidhammer, T.; Deng, A. WRF-Solar: Description and clear-sky assessment of an augmented NWP model for solar power prediction. Bull. Am. Meteorol. Soc. 2016, 97, 1249–1264. [Google Scholar] [CrossRef]
- Jiménez, P.A.; Alessandrini, S.; Haupt, S.E.; Deng, A.; Kosovic, B.; Lee, J.A.; Delle Monache, L. The role of unresolved clouds on short-range global horizontal irradiance predictability. Mon. Weather Rev. 2016, 144, 3099–3107. [Google Scholar] [CrossRef]
- Haupt, S.E.; Kosovic, B.; Jensen, T.; Lee, J.; Jimenez, P.; Lazo, J.; Cowie, J.; McCandless, T.; Pearson, J.; Weiner, G. The SunCast Solar-Power Forecasting System: The Results of the Public-Private-Academic Partnership to Advance Solar Power Forecasting; National Center for Atmospheric Research (NCAR): Boulder, CO, USA, 2016. [Google Scholar]
- Liu, Y.; Qian, Y.; Feng, S.; Berg, L.K.; Juliano, T.W.; Jiménez, P.A.; Liu, Y. Sensitivity of solar irradiance to model parameters in cloud and aerosol treatments of WRF-solar. Sol. Energy 2022, 233, 446–460. [Google Scholar] [CrossRef]
- Gueymard, C.A. Temporal variability in direct and global irradiance at various time scales as affected by aerosols. Sol. Energy 2012, 86, 3544–3553. [Google Scholar] [CrossRef]
- Randles, C.A.; Kinne, S.; Myhre, G.; Schulz, M.; Stier, P.; Fischer, J.; Doppler, L.; Highwood, E.; Ryder, C.; Harris, B. Intercomparison of shortwave radiative transfer schemes in global aerosol modeling: Results from the AeroCom Radiative Transfer Experiment. Atmos. Chem. Phys. 2013, 13, 2347–2379. [Google Scholar] [CrossRef]
- Ruiz-Arias, J.A.; Dudhia, J.; Santos-Alamillos, F.J.; Pozo-Vázquez, D. Surface clear-sky shortwave radiative closure intercomparisons in the Weather Research and Forecasting model. J. Geophys. Res. Atmos. 2013, 118, 9901–9913. [Google Scholar] [CrossRef]
- Yang, D.; van der Meer, D. Post-processing in solar forecasting: Ten overarching thinking tools. Renew. Sustain. Energy Rev. 2021, 140, 110735. [Google Scholar] [CrossRef]
- Glahn, H.R.; Lowry, D.A. The use of model output statistics (MOS) in objective weather forecasting. J. Appl. Meteorol. Climatol. 1972, 11, 1203–1211. [Google Scholar] [CrossRef]
- Verzijlbergh, R.A.; Heijnen, P.W.; de Roode, S.R.; Los, A.; Jonker, H.J. Improved model output statistics of numerical weather prediction based irradiance forecasts for solar power applications. Sol. Energy 2015, 118, 634–645. [Google Scholar] [CrossRef]
- Lopes, F.M.; Conceição, R.; Silva, H.G.; Salgado, R.; Collares-Pereira, M. Improved ECMWF forecasts of direct normal irradiance: A tool for better operational strategies in concentrating solar power plants. Renew. Energy 2021, 163, 755–771. [Google Scholar] [CrossRef]
- Verbois, H.; Huva, R.; Rusydi, A.; Walsh, W. Solar irradiance forecasting in the tropics using numerical weather prediction and statistical learning. Sol. Energy 2018, 162, 265–277. [Google Scholar] [CrossRef]
- Li, T.; Hui, P.; Tang, J.; Fang, J. Future projections of wind and solar energy resources over China from regional climate models based on bias correction. Environ. Res. Commun. 2023, 5, 061004. [Google Scholar] [CrossRef]
- Dieng, D.; Cannon, A.J.; Laux, P.; Hald, C.; Adeyeri, O.; Rahimi, J.; Srivastava, A.K.; Mbaye, M.L.; Kunstmann, H. Multivariate bias-correction of high-resolution regional climate change simulations for West Africa: Performance and climate change implications. J. Geophys. Res. Atmos. 2022, 127, e2021JD034836. [Google Scholar] [CrossRef]
- Pereira, S.; Canhoto, P.; Salgado, R.; Costa, M.J. Development of an ANN based corrective algorithm of the operational ECMWF global horizontal irradiation forecasts. Sol. Energy 2019, 185, 387–405. [Google Scholar] [CrossRef]
- Boriratrit, S.; Fuangfoo, P.; Srithapon, C.; Chatthaworn, R. Adaptive meta-learning extreme learning machine with golden eagle optimization and logistic map for forecasting the incomplete data of solar irradiance. Energy AI 2023, 13, 100243. [Google Scholar] [CrossRef]
- Gari da Silva Fonseca Jr, J.; Uno, F.; Ohtake, H.; Oozeki, T.; Ogimoto, K. Enhancements in day-ahead forecasts of solar irradiation with machine learning: A novel analysis with the Japanese mesoscale model. J. Appl. Meteorol. Climatol. 2020, 59, 1011–1028. [Google Scholar] [CrossRef]
- Bahdanau, D.; Cho, K.; Bengio, Y. Neural machine translation by jointly learning to align and translate. arXiv 2014, arXiv:1409.0473. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. Adv. Neural Inf. Process. Syst. 2017, 30, 5998–6008. [Google Scholar]
- Sharda, S.; Singh, M.; Sharma, K. RSAM: Robust self-attention based multi-horizon model for solar irradiance forecasting. IEEE Trans. Sustain. Energy 2020, 12, 1394–1405. [Google Scholar] [CrossRef]
- Wen, H.; Du, Y.; Lim, E.G.; Wen, H.; Yan, K.; Li, X.; Jiang, L. A solar forecasting framework based on federated learning and distributed computing. Build. Environ. 2022, 225, 109556. [Google Scholar] [CrossRef]
- Jiang, C.; Zhu, Q. Evaluating the most significant input parameters for forecasting global solar radiation of different sequences based on Informer. Appl. Energy 2023, 348, 121544. [Google Scholar] [CrossRef]
- Pelland, S.; Galanis, G.; Kallos, G. Solar and photovoltaic forecasting through post-processing of the Global Environmental Multiscale numerical weather prediction model. Prog. Photovolt. Res. Appl. 2013, 21, 284–296. [Google Scholar] [CrossRef]
- Liu, Y. Solar GHI Ensemble Prediction Based on a Meteorological Model and Method Kalman Filter. Adv. Meteorol. 2022, 2022, 1523198. [Google Scholar] [CrossRef]
- Yang, D. On post-processing day-ahead NWP forecasts using Kalman filtering. Sol. Energy 2019, 182, 179–181. [Google Scholar] [CrossRef]
- Chen, Y.; Hong, J. Bias Correction of Surface Temperature Prediction by Using the Decaying Average Algorithm. Atmos. Sci. (Meteorol. Soc. ROC) 2017, 45, 25–42. [Google Scholar]
- Boyd, P.; Phillips, W. Predicting Surface Temperatures of Roads: Utilizing a Decaying Average in Forecasting. J. Purdue Undergrad. Res. 2016, 6, 3. [Google Scholar] [CrossRef]
- Belorid, M.; Kim, K.R.; Cho, C. Bias Correction of short-range ensemble forecasts of daily maximum temperature using decaying average. Asia-Pac. J. Atmos. Sci. 2020, 56, 503–514. [Google Scholar] [CrossRef]
- Kaewmesri, P. Improving Rainfall Performance by Decaying Average Bias Correction via Lyapunov Theory. GEOMATE J. 2020, 19, 49–56. [Google Scholar] [CrossRef]
- Tsai, C.-C.; Hong, J.-S.; Chang, P.-L.; Chen, Y.-R.; Su, Y.-J.; Li, C.-H. Application of bias correction to improve WRF ensemble wind speed forecast. Atmosphere 2021, 12, 1688. [Google Scholar] [CrossRef]
- Cui, B.; Toth, Z.; Zhu, Y.; Hou, D. Bias correction for global ensemble forecast. Weather Forecast. 2012, 27, 396–410. [Google Scholar] [CrossRef]
- Singh, H.; Dube, A.; Kumar, S.; Ashrit, R. Bias correction of maximum temperature forecasts over India during March–May 2017. J. Earth Syst. Sci. 2020, 129, 1–10. [Google Scholar] [CrossRef]
- Guan, H.; Cui, B.; Zhu, Y. Improvement of statistical postprocessing using GEFS reforecast information. Weather Forecast. 2015, 30, 841–854. [Google Scholar] [CrossRef]
- Hamill, T.M. Comparing and combining deterministic surface temperature postprocessing methods over the United States. Mon. Weather Rev. 2021, 149, 3289–3298. [Google Scholar] [CrossRef]
- Gong, L.; Peng, Z.; Wei, Z.; Zhang, B.; Dong, J.; Chen, H.; Cai, J.; Zhang, Q.; Zhang, F. Medium-to long-term forecast of reference crop evapotranspiration based on the correction of the principal control factor. Irrig. Drain. 2022, 71, 912–925. [Google Scholar] [CrossRef]
- Zhao, L.; Lu, S.; Qi, D. Improvement of Maximum Air Temperature Forecasts Using a Stacking Ensemble Technique. Atmosphere 2023, 14, 600. [Google Scholar] [CrossRef]
- Kain, J.S. The Kain–Fritsch convective parameterization: An update. J. Appl. Meteorol. 2004, 43, 170–181. [Google Scholar] [CrossRef]
- Tao, W.-K.; Simpson, J.; Baker, D.; Braun, S.; Chou, M.-D.; Ferrier, B.; Johnson, D.; Khain, A.; Lang, S.; Lynn, B. Microphysics, radiation and surface processes in the Goddard Cumulus Ensemble (GCE) model. Meteorol. Atmos. Phys. 2003, 82, 97–137. [Google Scholar] [CrossRef]
- Hong, S.-Y.; Noh, Y.; Dudhia, J. A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Weather Rev. 2006, 134, 2318–2341. [Google Scholar] [CrossRef]
- Iacono, M.J.; Delamere, J.S.; Mlawer, E.J.; Shephard, M.W.; Clough, S.A.; Collins, W.D. Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res. Atmos. 2008, 113, D13103. [Google Scholar] [CrossRef]
- Mukul Tewari, N.; Tewari, M.; Chen, F.; Wang, W.; Dudhia, J.; LeMone, M.; Mitchell, K.; Ek, M.; Gayno, G.; Wegiel, J. Implementation and Verification of the Unified NOAH land Surface Model in the WRF Model (Formerly Paper Number 17.5). In Proceedings of the 20th Conference on Weather Analysis and Forecasting/16th Conference on Numerical Weather Prediction, Seattle, WA, USA, 14 January 2004. [Google Scholar]
- Qu, K.; Si, G.; Shan, Z.; Kong, X.; Yang, X. Short-term forecasting for multiple wind farms based on transformer model. Energy Rep. 2022, 8, 483–490. [Google Scholar] [CrossRef]
City | Months | Before Bias Correction RMSE (W/m2) | After Bias Correction | |||
---|---|---|---|---|---|---|
DA Method | Transformer Model | |||||
RMSE (W/m2) | Reduced (%) | RMSE (W/m2) | Reduced (%) | |||
Pingtung | May | 182.09 | 172.06 | 5.51 | 162.16 | 10.94 |
August | 243.77 | 237.41 | 2.61 | 227.65 | 6.61 | |
December | 143.97 | 130.83 | 9.13 | 112.40 | 21.93 | |
Kaohsiung | May | 227.48 | 213.58 | 6.11 | 212.91 | 6.41 |
August | 227.45 | 217.70 | 4.29 | 195.51 | 14.04 | |
December | 143.28 | 122.14 | 14.75 | 96.91 | 32.36 | |
Tainan | May | 210.56 | 201.78 | 4.17 | 190.21 | 9.67 |
August | 204.14 | 202.98 | 0.57 | 202.29 | 0.91 | |
December | 127.47 | 117.71 | 7.66 | 94.86 | 25.58 | |
Taichung | May | 222.96 | 181.48 | 18.60 | 168.39 | 24.48 |
August | 212.20 | 195.48 | 7.88 | 179.06 | 15.62 | |
December | 137.91 | 107.94 | 21.73 | 102.68 | 25.55 | |
Taoyuan | May | 257.42 | 205.40 | 20.21 | 174.32 | 32.28 |
August | 247.47 | 223.16 | 9.82 | 191.24 | 22.72 | |
December | 158.39 | 162.37 | −2.51 | 128.32 | 18.98 |
City | Months | Methods | RMSE (W) | nRMSE (%) | MAE (W) | MAPE (%) | R2 (%) |
---|---|---|---|---|---|---|---|
Pingtung | May | Before bias correction | 2118.87 | 13.29 | 1287.14 | 8.07 | 79.44 |
DA method | 1957.19 | 12.28 | 1207.37 | 7.57 | 82.45 | ||
Transformer model | 1849.35 | 11.60 | 1185.52 | 7.44 | 84.33 | ||
August | Before bias correction | 2227.58 | 14.65 | 1692.58 | 11.13 | 72.17 | |
DA method | 2154.01 | 14.17 | 1623.41 | 11.02 | 73.98 | ||
Transformer model | 2118.61 | 13.93 | 1611.56 | 10.68 | 74.82 | ||
December | Before bias correction | 1698.62 | 13.90 | 1223.60 | 10.02 | 75.28 | |
DA method | 1604.67 | 13.14 | 1178.58 | 9.65 | 77.94 | ||
Transformer model | 1555.35 | 12.73 | 1091.10 | 8.93 | 79.27 | ||
Kaohsiung | May | Before bias correction | 4226.87 | 14.23 | 2946.49 | 9.92 | 78.37 |
DA method | 4100.81 | 13.81 | 2725.49 | 9.18 | 79.64 | ||
Transformer model | 3830.50 | 12.90 | 2652.42 | 8.93 | 82.23 | ||
August | Before bias correction | 4469.14 | 15.28 | 3347.43 | 11.45 | 72.23 | |
DA method | 4438.45 | 15.18 | 2991.87 | 10.23 | 72.61 | ||
Transformer model | 4036.69 | 13.80 | 2721.62 | 9.31 | 77.34 | ||
December | Before bias correction | 2677.56 | 11.32 | 1735.40 | 7.34 | 84.86 | |
DA method | 2261.43 | 9.56 | 1480.10 | 6.26 | 89.20 | ||
Transformer model | 2082.34 | 8.80 | 1454.93 | 6.15 | 90.85 | ||
Tainan | May | Before bias correction | 4193.26 | 12.42 | 2715.35 | 8.04 | 81.06 |
DA method | 4042.27 | 11.97 | 2625.39 | 7.77 | 82.40 | ||
Transformer model | 3338.59 | 9.89 | 2477.87 | 7.34 | 88.00 | ||
August | Before bias correction | 4640.92 | 15.08 | 3131.87 | 10.18 | 73.59 | |
DA method | 4414.95 | 14.34 | 3064.75 | 9.96 | 76.10 | ||
Transformer model | 3859.47 | 12.54 | 2805.88 | 9.12 | 81.74 | ||
December | Before bias correction | 2966.53 | 11.28 | 2212.21 | 8.41 | 84.21 | |
DA method | 2962.36 | 11.26 | 2084.70 | 7.92 | 84.25 | ||
Transformer model | 2470.29 | 9.39 | 1665.25 | 6.33 | 89.05 | ||
Taichung | May | Before bias correction | 5571.37 | 15.22 | 3566.67 | 9.74 | 71.32 |
DA method | 5328.13 | 14.55 | 3628.38 | 9.91 | 73.77 | ||
Transformer model | 4353.12 | 11.89 | 3001.43 | 8.20 | 82.49 | ||
August | Before bias correction | 5857.03 | 16.21 | 4538.94 | 12.57 | 63.46 | |
DA method | 5782.84 | 16.01 | 4537.32 | 12.56 | 64.38 | ||
Transformer model | 5563.80 | 15.40 | 4233.96 | 11.72 | 67.03 | ||
December | Before bias correction | 3984.67 | 12.66 | 2772.05 | 8.81 | 81.20 | |
DA method | 3652.22 | 11.60 | 2643.75 | 8.40 | 84.21 | ||
Transformer model | 3577.11 | 11.36 | 2633.85 | 8.37 | 84.84 |
City | Months | Methods | RMSE (W) | nRMSE (%) | MAE (W) | MAPE (%) | R2 (%) |
---|---|---|---|---|---|---|---|
Taoyuan | May | Before bias correction | 7528.52 | 15.40 | 4662.42 | 9.54 | 70.84 |
DA method | 6924.99 | 14.17 | 4643.39 | 9.50 | 75.33 | ||
Transformer model | 5463.58 | 11.18 | 3697.08 | 7.56 | 84.64 | ||
August | Before bias correction | 4941.93 | 10.33 | 3531.97 | 7.38 | 86.22 | |
DA method | 4849.74 | 10.14 | 3423.61 | 7.16 | 86.73 | ||
Transformer model | 4243.30 | 8.87 | 3346.17 | 7.00 | 89.84 | ||
December | Before bias correction | 4478.30 | 11.72 | 3078.46 | 8.06 | 68.44 | |
DA method | 5320.82 | 13.93 | 3833.73 | 10.04 | 55.45 | ||
Transformer model | 4365.33 | 11.43 | 2934.81 | 7.68 | 70.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, C.-L.; Wu, Y.-K.; Tsai, C.-C.; Hong, J.-S.; Li, Y.-Y. Revolutionizing Solar Power Forecasts by Correcting the Outputs of the WRF-SOLAR Model. Energies 2024, 17, 88. https://doi.org/10.3390/en17010088
Huang C-L, Wu Y-K, Tsai C-C, Hong J-S, Li Y-Y. Revolutionizing Solar Power Forecasts by Correcting the Outputs of the WRF-SOLAR Model. Energies. 2024; 17(1):88. https://doi.org/10.3390/en17010088
Chicago/Turabian StyleHuang, Cheng-Liang, Yuan-Kang Wu, Chin-Cheng Tsai, Jing-Shan Hong, and Yuan-Yao Li. 2024. "Revolutionizing Solar Power Forecasts by Correcting the Outputs of the WRF-SOLAR Model" Energies 17, no. 1: 88. https://doi.org/10.3390/en17010088
APA StyleHuang, C. -L., Wu, Y. -K., Tsai, C. -C., Hong, J. -S., & Li, Y. -Y. (2024). Revolutionizing Solar Power Forecasts by Correcting the Outputs of the WRF-SOLAR Model. Energies, 17(1), 88. https://doi.org/10.3390/en17010088