Active Fault-Locating Scheme for Hybrid Distribution Line Based on Mutation of Aerial-Mode Injected Pulse
Abstract
:1. Introduction
2. Propagation Characteristics of Pulse Signals in Hybrid Distribution Lines
2.1. Dispersion Characteristics of Pulse Signals
2.2. Analysis of Transient Processes of Injected Pulses at the SLG Fault Point
3. Propagation Characteristics of Pulse Signals in Hybrid Distribution Lines
3.1. Three-Phase Coupling Injection of Voltage Pulses
3.2. Selection of Injected Pulse Waveforms
3.3. Fault-Location Algorithm Based on the Aerial-Mode Pulse Arrival Time Difference Sequence
- When 0 < Δt < Δt1, the fault is located in the MX1 overhead line section.
- When Δt1 < Δt < Δt2, the fault occurs in the X1X2 cable section.
- When Δt2 < Δt < Δt3, the fault occurs in the X2N overhead line section.
3.4. A Wavefront Calibration Method Based on VMD-IE-NTEO
4. Simulation Analysis
4.1. Tests for Faulty Feeder Selection
4.2. Tests for VMD-IE-TEO Method
4.3. Tests for SLG Faults of Different Location and Rf
4.4. Performance Comparison with Other Proposed Method
5. Experiment Verification for Voltage Pulse Injection Fault Location
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix B
- Definition of input signal: Let x[n] represent a discrete-time domain signal, where n is the discrete index of time, and x[n] denotes the amplitude of the signal at time n.
- Padding of signal: If the length of the input signal is not a power of 2 (where k is an integer), then it needs to be padded to the next power of 2 length, typically with zero padding. Let the length of the padded signal be N.
- FFT computation: Utilize the FFT algorithm to compute the frequency domain representation of the padded signal. The FFT algorithm transforms the signal from the time domain to the frequency domain, yielding a complex array X[k], where k is the discrete index of frequency, and X[k] is the complex magnitude and phase of the signal at frequency k. The FFT formula is given by:
- 4.
- Calculation of amplitude spectrum: The amplitude spectrum represents the magnitude of frequencies. We can compute the amplitude spectrum, |X[k]|, by taking the modulus of the complex numbers.
- 5.
- Calculation of phase spectrum: The phase spectrum represents the phase of frequencies. We can compute the phase spectrum, ∠X[k], by taking the arctangent of the ratio of the imaginary part to the real part.
References
- Dai, W.; Gao, Y.; Goh, H.H.; Jian, J.; Zeng, Z.; Liu, Y. A Non-Iterative Coordinated Scheduling Method for a AC-DC Hybrid Distribution Network Based on a Projection of the Feasible Region of Tie Line Transmission Power. Energies 2024, 17, 1462. [Google Scholar] [CrossRef]
- Javid, Z.; Kocar, I.; Holderbaum, W.; Karaagac, U. Future Distribution Networks: A Review. Energies 2024, 17, 1822. [Google Scholar] [CrossRef]
- Verrax, P.; Alglave, N.; Bertinato, A.; Kieffer, M.; Raison, B. Low-complexity graph-based traveling wave models for HVDC grids with hybrid transmission lines: Application to fault identification. Electr. Power Syst. Res. 2022, 205, 107710. [Google Scholar] [CrossRef]
- Hamidi, R.J.; Livani, H. Traveling-wave-based fault-location algorithm for hybrid multiterminal circuits. IEEE Trans. Power Deliv. 2016, 32, 135–144. [Google Scholar] [CrossRef]
- Aziz, M.M.A.; khalil Ibrahim, D.; Gilany, M. Fault location scheme for combined overhead line with underground power cable. Electr. Power Syst. Res. 2006, 76, 928–935. [Google Scholar]
- Lin, T.C.; Lin, P.Y.; Liu, C.W. An algorithm for locating faults in three-terminal multisection nonhomogeneous transmission lines using synchrophasor measurements. IEEE Trans. Smart Grid 2013, 5, 38–50. [Google Scholar] [CrossRef]
- Lee, Y.J.; Lin, T.C.; Liu, C.W. Multi-terminal nonhomogeneous transmission line fault location utilizing synchronized data. IEEE Trans. Power Deliv. 2019, 34, 1030–1038. [Google Scholar] [CrossRef]
- Naidu, O.D.; Pradhan, A.K. Precise traveling wave-based transmission line fault location method using single-ended data. IEEE Trans. Ind. Inform. 2020, 17, 5197–5207. [Google Scholar] [CrossRef]
- Kalita, K.; Anand, S.; Parida, S.K. A Non-Iterative Fault Location Algorithm for Transposed/Untransposed Transmission Line Immune to Unsynchronized Measurements. IEEE Trans. Ind. Appl. 2022, 59, 422–433. [Google Scholar] [CrossRef]
- Nsaif, Y.M.; Lipu, M.S.H.; Ayob, A.; Yusof, Y.; Hussain, A. Fault Detection and Protection Schemes for Distributed Generation Integrated to Distribution Network: Challenges and Suggestions. IEEE Access 2021, 9, 142693–142717. [Google Scholar] [CrossRef]
- Peng, N.; Li, Y.; Liang, R.; Jiang, C.; Xu, H.; Jin, W.; Wang, Y.; Guan, Y.; Yang, R. Fault Section Identification of Hybrid Transmission Lines by the Transients in Modal Domain Free from the Refractions and Reflections at Cross-Bonded Nodes. IEEE Trans. Power Deliv. 2023, 38, 2864–2878. [Google Scholar] [CrossRef]
- Nayak, K.; Pradhan, A.K.; Terzija, V. Faulted Section Identification in Mixed Conductor Circuits Using Traveling Wave Magnitudes. IEEE Trans. Power Deliv. 2022, 38, 1990–1999. [Google Scholar] [CrossRef]
- Deng, F.; Zeng, X.J.; Tang, X.; Li, Z.; Zu, Y.; Mei, L. Travelling-wave-based fault location algorithm for hybrid transmission lines using three-dimensional absolute grey incidence degree. Int. J. Electr. Power Energy Syst. 2020, 114, 105306. [Google Scholar] [CrossRef]
- Gashteroodkhani, O.A.; Majidi, M.; Etezadi-Amoli, M. A hybrid SVM-TT transform-based method for fault location in hybrid transmission lines with underground cables. Electr. Power Syst. Res. 2019, 170, 205–214. [Google Scholar] [CrossRef]
- Shu, H.; Gong, Z.; Tian, X. Fault-section identification for hybrid distribution lines based on principal component analysis. CSEE J. Power Energy Syst. 2020, 7, 591–603. [Google Scholar]
- Goudarzi, M.; Vahidi, B.; Naghizadeh, R.A. Improved fault location algorithm for radial distribution systems with discrete and continuous wavelet analysis. Int. J. Electr. Power Energy Syst. 2015, 67, 423–430. [Google Scholar] [CrossRef]
- Khavari, S.; Dashti, R.; Shaker, H.R. High impedance fault detection and location in combined overhead line and underground cable distribution networks equipped with data loggers. Energies 2020, 13, 2331. [Google Scholar] [CrossRef]
- Elkalashy, N.I.; Sabiha, N.A.; Lehtonen, M. Earth fault distance estimation using active traveling waves in energized-compensated MV networks. IEEE Trans. Power Deliv. 2014, 30, 836–843. [Google Scholar] [CrossRef]
- Qi, Z.; Zhuang, S.; He, X. Traveling wave fault location technology for hybrid lines in distribution network based on disturbance signal injection at busbar. Autom. Electr. Power Syst. 2019, 43, 124–130. [Google Scholar]
- Yang, Q.; Cui, H.; Jie, Q. Fault location method of pulse injection in distribution transformer’s low voltage side. Proc. CSEE 2022, 42, 2025–2036. [Google Scholar]
- Yusuff, A.A.; Jimoh, A.A.; Munda, J.L. Fault location in transmission lines based on stationary wavelet transform, determinant function feature and support vector regression. Electr. Power Syst. Res. 2014, 110, 73–83. [Google Scholar] [CrossRef]
- Wang, D.; Hou, M. Travelling wave fault location algorithm for LCC-MMC-MTDC hybrid transmission system based on Hilbert-Huang transform. Int. J. Electr. Power Energy Syst. 2020, 121, 106125. [Google Scholar] [CrossRef]
- Yu, D.; Zhou, N.; Liao, J.; Wang, Q.; Lyu, Y. Modified VMD Algorithm based Fault Location Method for Overhead-Cable Hybrid Transmission Line in MTDC System. IEEE Trans. Instrum. Meas. 2024, 73, 3517711. [Google Scholar] [CrossRef]
- Xie, L.; Luo, L.; Li, Y. A traveling wave-based fault location method employing VMD-TEO for distribution network. IEEE Trans. Power Deliv. 2019, 35, 1987–1998. [Google Scholar] [CrossRef]
- Gilany, M.; khalil Ibrahim, D. Traveling-wave-based fault-location scheme for multiend-aged underground cable system. IEEE Trans. Power Deliv. 2006, 22, 82–89. [Google Scholar] [CrossRef]
- Duan, K.; Fan, Y.F.; Wang, Y.J. A traveling wave ranging method for a DC line based on wave velocity compensation and fault distance approaching its real value gradually. Power Syst. Prot. Control 2021, 49, 70–78. [Google Scholar]
- do Prado, A.J.; Pissolato Filho, J.; Kurokawa, S. Modal transformation analyses for double three-phase transmission lines. IEEE Trans. Power Deliv. 2007, 22, 1926–1936. [Google Scholar] [CrossRef]
- Xie, L.; Zhou, K.; He, M. Partial discharge location for power cable based on the time reversal technique. Proc. CSEE 2018, 38, 3402–3409. [Google Scholar]
- Guru, B.S.; Hiziroglu, H.R. Electromagnetic Field Theory Fundamentals: Electromagnetic Field Theory; Cambridge University Press: Cambridge, UK, 2005; pp. 199–203, 296–301. [Google Scholar]
- Tang, Y.; Liu, Z.; Pan, M. Detection of magnetic anomaly signal based on information entropy of differential signal. IEEE Geosci. Remote Sens. Lett. 2018, 15, 512–516. [Google Scholar] [CrossRef]
Line Type | Phase Sequence | R (Ω/km) | C (μF/km) | L (mH/km) |
---|---|---|---|---|
Overhead line | Positive | 0.1700 | 0.0097 | 1.1934 |
Zero | 0.2300 | 0.0080 | 2.4309 | |
Cable Line | Positive | 0.2700 | 0.3390 | 2.4717 |
Zero | 2.7000 | 0.2800 | 3.8226 |
Fault Position | Feeder Line | Lactual/km | Δt/µs | Lcal/km | ΔL/m | |
---|---|---|---|---|---|---|
Overhead MX21 | 2 | 1.500 | 11.0 | 1.512 | 12 | |
3.000 | 21.9 | 2.986 | 14 | |||
Cable Line X21X22 | 2 | 7.000 | 59.8 | 7.029 | 29 | |
8.500 | 77.2 | 8.531 | 31 | |||
Overhead Line X22N | 2 | 11.000 | 102.3 | 11.058 | 58 | |
14.000 | 123.4 | 13.944 | 56 | |||
Hybrid node | X11 | 1 | 6.000 | 43.8 | 6.019 | 19 |
X21 | 2 | 5.000 | 36.5 | 5.020 | 20 | |
X22 | 2 | 10.000 | 94.6 | 10.029 | 29 | |
End of the line | 1 | 8.500 | 72.9 | 8.549 | 49 | |
2 | 15.000 | 133.2 | 15.089 | 89 |
Line Type | Rf/kΩ | Lactual/km | Δt/µs | Lcal/km | ΔL/m |
---|---|---|---|---|---|
Overhead Line MX1 | 0.5 | 1.500 | 11.0 | 1.512 | 12 |
1 | 1.500 | 11.0 | 1.512 | 12 | |
0.5 | 3.000 | 22.0 | 3.016 | 16 | |
1 | 3.000 | 22.0 | 3.016 | 16 | |
Cable Line X2X1 | 0.5 | 7.000 | 59.7 | 7.030 | 30 |
1 | 7.000 | 59.7 | 7.030 | 30 | |
0.5 | 8.000 | 77.1 | 8.541 | 41 | |
1 | 8.500 | 77.1 | 8.541 | 41 | |
Overhead Line X2N | 0.5 | 11.000 | 102.4 | 11.069 | 69 |
1 | 11.000 | 102.5 | 11.085 | 85 | |
0.5 | 14.000 | 124.5 | 14.065 | 65 | |
1 | 14.000 | 124.7 | 14.091 | 91 |
Fault Section | Fault Parameters | Υf | Identification Result | Identified Section | |||
---|---|---|---|---|---|---|---|
Rf/kΩ | FIA | Fault Location of Each Section/% | |||||
Overhead Line MX11 | 0.1 | 90° | 5 | 0.0120 | Υ < Υ11 | MX11 | |
0.1 | 60° | 25 | 0.0129 | Υ < Υ11 | MX11 | ||
0.02 | 20° | 60 | 0.0136 | Υ < Υ11 | MX11 | ||
0.02 | 0° | 95 | 0.0150 | Υ < Υ11 | MX11 | ||
Cable Line X11N | 0.1 | 0° | 5 | 0.0153 | Υ < Υ11 | MX11 | |
0.1 | 20° | 25 | 0.0168 | Υ11 < Υ | X11N | ||
0.02 | 60° | 60 | 0.0186 | Υ11 < Υ | X11N | ||
0.02 | 90° | 95 | 0.0197 | Υ11 < Υ | X11N | ||
Overhead Line MX21 | 0.1 | 90° | 5 | −0.51 | Υ < Υ21 | MX21 | |
0.1 | 60° | 25 | −0.46 | Υ < Υ21 | MX21 | ||
0.02 | 20° | 60 | −0.041 | Υ < Υ21 | MX21 | ||
0.02 | 0° | 95 | −0.042 | Υ < Υ21 | MX21 | ||
Cable Line X21X22 | 0.1 | 0° | 5 | −0.045 | Υ < Υ21 | MX21 | |
0.1 | 20° | 25 | −0.042 | Υ < Υ21 | MX21 | ||
0.02 | 60° | 60 | 0.9564 | Υ21 < Υ < Υ22 | X21X22 | ||
0.02 | 90° | 95 | 1.0148 | Υ21 < Υ < Υ22 | X21X22 | ||
Overhead Line X22N | 0.1 | 90° | 5 | 1.0152 | Υ21 < Υ < Υ22 | X21X22 | |
0.1 | 60° | 25 | 1.0650 | Υ > Υ22 | X22N | ||
0.02 | 20° | 60 | 1.0658 | Υ > Υ22 | X22N | ||
0.02 | 0° | 95 | 1.0532 | Υ21 < Υ < Υ22 | X21X22 | ||
Hybrid junction | X11 | - | - | - | Υ11 = 0.0154 | - | - |
X21 | - | - | - | Υ21 = −0.04 | - | - | |
X22 | - | - | - | Υ22 = 1.0548 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, Z.; Zeng, X.; Liu, F.; Yu, K.; Bi, L.; Wang, Y. Active Fault-Locating Scheme for Hybrid Distribution Line Based on Mutation of Aerial-Mode Injected Pulse. Energies 2024, 17, 2248. https://doi.org/10.3390/en17102248
Jiang Z, Zeng X, Liu F, Yu K, Bi L, Wang Y. Active Fault-Locating Scheme for Hybrid Distribution Line Based on Mutation of Aerial-Mode Injected Pulse. Energies. 2024; 17(10):2248. https://doi.org/10.3390/en17102248
Chicago/Turabian StyleJiang, Zhuang, Xiangjun Zeng, Feng Liu, Kun Yu, Lanxi Bi, and Youpeng Wang. 2024. "Active Fault-Locating Scheme for Hybrid Distribution Line Based on Mutation of Aerial-Mode Injected Pulse" Energies 17, no. 10: 2248. https://doi.org/10.3390/en17102248
APA StyleJiang, Z., Zeng, X., Liu, F., Yu, K., Bi, L., & Wang, Y. (2024). Active Fault-Locating Scheme for Hybrid Distribution Line Based on Mutation of Aerial-Mode Injected Pulse. Energies, 17(10), 2248. https://doi.org/10.3390/en17102248