Lignocellulosic Residues from Fruit Trees: Availability, Characterization, and Energetic Potential Valorization
Abstract
:1. Introduction
1.1. Background Context
1.2. The Lignocellulosic Residues from Fruit Industries
2. Materials and Methods
- 0.9 and 0.88, respectively, are the anhydro corrections that are needed to calculate the concentration of the polymeric sugars from the concentration of the corresponding monomeric sugars.
- HPLC-Gluconcentration is the concentration of glucose determined via HPLC.
- HPLC-XMGconcentration is the concentration of XMG determined via HPLC.
3. Results
Estimation of the Potential Energy Production from Orchard Lignocellulosic Residues
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- European Commission. European Commission (EC) CDA (31-12-2021): “Amending Delegated Regulation (EU) 2021/2139 as Regards Economic Activities in Certain Energy Sectors and Delegated Regulation (EU) 2021/2178 as Regards Specific Public Disclosures for those Economic Activities (Text with EEA Relevance)”; European Commission: Brussels, Belgium, 2021. [Google Scholar]
- Jouhara, H.; Khordehgah, N.; Almahmoud, S.; Delpech, B.; Chauhan, A.; Tassou, S.A. Waste heat recovery technologies and applications. Therm. Sci. Eng. Prog. 2018, 6, 268–289. [Google Scholar] [CrossRef]
- Field, C.B.; Campbell, J.E.; Lobell, D.B. Biomass energy: The scale of the potential resource. Trends Ecol. Evol. 2008, 23, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Kluts, I.N.; Brinkman, M.L.; de Jong, S.A.; Junginger, H.M. Biomass resources: Agriculture. In Biorefineries; Springer: Cham, Switzerland, 2017; pp. 13–26. [Google Scholar]
- Fideghelli, C. La frutticultura italiana alla vigilia del terzo decennio degli anni 2000. Tempi Della Terra 2021, 9, 22–29. [Google Scholar]
- Pari, L.; Alfano, V.; Garcia-Galindo, D.; Suardi, A.; Santangelo, E. Pruning biomass potential in Italy related to crop characteristics, agricultural practices and agro-climatic conditions. Energies 2018, 11, 1365. [Google Scholar] [CrossRef]
- Available online: https://agriculture.ec.europa.eu/farming/crop-productions-and-plant-based-products/fruit-and-vegetables_en (accessed on 24 April 2024).
- Presidenza del Consiglio dei Ministri. LEGGE 13 Luglio 1966, n. 615 Provvedimenti Contro L’inquinamento Atmosferico. G.U. n.201 del 13-08-1966; Presidenza del Consiglio dei Ministri: Rome, Italy, 1966. [Google Scholar]
- Militano, F. Incendi, Emergenza e Tutela Dell’ambiente; Ali Ribelli Edizioni: Gaeta, Italy, 2022. [Google Scholar]
- Amicabile, S. Manuale di Agricoltura; HOEPLI: Milano, Italy, 2016. [Google Scholar]
- Vannacci, G. Patologia Vegetale; Edises: Napoli, Italy, 2021. [Google Scholar]
- ENAMA. Biomasse ed Energia—Caratteristiche Tecniche delle Biomasse e dei Biocombustibili; ENAMA: Foggia, Italy, 2011. [Google Scholar]
- Ferronato, N.; Torretta, V.; Ragazzi, M.; Rada, E.C. Waste mismanagement in developing countries: A case study of environmental contamination. UPB Sci. Bull. 2017, 79, 185–196. [Google Scholar]
- Bruzzi, L.; Verità, S. Biocombustibili ed Energia Pulita; Clueb: Bologna, Italy, 2013. [Google Scholar]
- Yue, D.; You, F.; Snyder, S.W. Biomass-to-bioenergy and biofuel supply chain optimization: Overview, key issues and challenges. Comput. Chem. Eng. 2014, 66, 36–56. [Google Scholar] [CrossRef]
- Grant, F.; Rossi, L. The Italian observatory on food surplus, recovery, and waste: The development process and future achievements. Front. Nutr. 2022, 8, 787982. [Google Scholar] [CrossRef] [PubMed]
- ISTAT. Annuario Statistico Italiano; ISTAT: Rome, Italy, 2021. [Google Scholar]
- Ghiglieno, I.; Simonetto, A.; Facciano, L.; Tonni, M.; Donna, P.; Valenti, L.; Gilioli, G. Comparing the Carbon Footprint of Conventional and Organic Vineyards in Northern Italy. Sustainability 2023, 15, 5252. [Google Scholar] [CrossRef]
- Barbanera, M.; Bartocci, P.; Cavalaglio, G. Documento propedeutico alla redazione del Piano Nazionale Biocarburanti e Biomasse-II Edizione-Aggiornamento 2011. In C1. Monografia o Trattato Scientifico; UnitusOpen: Viterbo, Italy, 2011. [Google Scholar]
- Di Blasi, C.; Tanzi, V.; Lanzetta, M. A study on the production of agricultural residues in Italy. Biomass Bioenergy 1997, 12, 321–331. [Google Scholar] [CrossRef]
- Akter, M.M.; Surovy, I.Z.; Sultana, N.; Faruk, M.O.; Gilroyed, B.H.; Tijing, L.; Didar-ul-Alam, M.; Shon, H.K.; Nam, S.Y.; Kabir, M.M. Techno-economics and environmental sustainability of agricultural biomass-based energy potential. Appl. Energy 2024, 359, 122662. [Google Scholar] [CrossRef]
- Tang, Z.; Fan, B.; Tang, W.; He, Y.C.; Ma, C. Comprehensive understanding of co-producing fermentable sugar, furfural, and xylo-oligosaccharides through the pretreatment with CTAB-based deep eutectic solvent containing Brønsted and Lewis acid. Chem. Eng. J. 2024, 488, 150637. [Google Scholar] [CrossRef]
- Zivkovic, M.; Urosevic, M.; Oljaca, S.; Oljaca, M.; Gligorevic, K.; Zlatanovic, I.; Koprivica, R. Aspects of using potential energy products of biomass after pruning fruit and grape plantations in the Republic of Serbia. Poljopr. Sumar. 2013, 59, 167. [Google Scholar]
- ASTM Standard D5373; Standard Test Methods for Determination of Carbon, Hydrogen and Nitrogen in Analysis Samples of Coal and Carbon in Analysis Samples of Coal and Coke. ASTM International: West Conshohocken, PA, USA, 2021.
- ISO 18125:2017; Solid Biofuels–Determination of Calorific Value. International Organization for Standardization ISO: Geneva, Switzerland, 2017.
- Giannoni, T.; Gelosia, M.; Bertini, A.; Fabbrizi, G.; Nicolini, A.; Coccia, V.; Iodice, P.; Cavalaglio, G. Fractionation of Cynara cardunculus L. by Acidified Organosolv Treatment for the Extraction of Highly Digestible Cellulose and Technical Lignin. Sustainability 2021, 13, 8714. [Google Scholar] [CrossRef]
- Stolarski, M.J.; Dudziec, P.; Krzyżaniak, M.; Olba-Zięty, E. Solid Biomass Energy Potential as a Development Opportunity for Rural Communities. Energies 2021, 14, 3398. [Google Scholar] [CrossRef]
- Monarca, D.; Cecchini, M.; Guerrieri, M.; Colantoni, A. Conventional and alternative use of biomasses derived by hazelnut cultivation and processing. VII Int. Congr. Hazelnut 2008, 845, 627–634. [Google Scholar] [CrossRef]
- Bilandzija, N. Energy potential of fruit tree pruned biomass in Croatia. Span. J. Agric. Res. 2012, 10, 292–298. [Google Scholar]
- Di Giacinto, S. Modello di Campionamento per le Biomasse Residuali: Il Caso del Nocciolo Nella Provincia di Viterbo. Stima dei Quantitativi di Potature, Caratterizzazione Chimica, Fisica ed Energetica Della Biomassa e Prospettive di Utilizzo; Università degli studi della Tuscia: Viterbo, Italy, 2014. [Google Scholar]
- Zambon, I.; Colosimo, F.; Monarca, D.; Cecchini, M.; Gallucci, F.; Proto, A.R.; Lord, R.; Colantoni, A. An Innovative Agro-Forestry Supply Chain for Residual Biomass: Physicochemical Characterisation of Biochar from Olive and Hazelnut Pellets. Energies 2016, 9, 526. [Google Scholar] [CrossRef]
- Available online: https://www.terna.it/it/sistema-elettrico/statistiche/pubblicazioni-statistiche (accessed on 24 April 2024).
- Cichy, W.; Witczak, M.; Walkowiak, M. Fuel properties of woody biomass from pruning operations in fruit orchards. BioResources 2017, 12, 6458–6470. [Google Scholar] [CrossRef]
- Velázquez-Martí, B.; López-Cortés, I.; Salazar-Hernández, D.; Callejón-Ferre, Á.J. Modeling the calorific value of biomass from fruit trees using elemental analysis data. In Biomass Volume Estimation and Valorization for Energy; BoD—Books on Demand: Norderstedt, Germany, 2017; pp. 271–292. [Google Scholar] [CrossRef]
- Kazimierski, P.; Hercel, P.; Suchocki, T.; Smoliński, J.; Pladzyk, A.; Kardaś, D.; Łuczak, J.; Januszewicz, K. Pyrolysis of Pruning Residues from Various Types of Orchards and Pretreatment for Energetic Use of Biochar. Materials 2021, 14, 2969. [Google Scholar] [CrossRef]
- Anca-Couce, A. Reaction mechanisms and multi-scale modelling of lignocellulosic biomass pyrolysis. Prog. Energy Combust. Sci. 2016, 53, 41–79. [Google Scholar] [CrossRef]
- Şenol, H. Biogas potential of hazelnut shells and hazelnut wastes in Giresun City. Biotechnol. Rep. 2019, 24, e00361. [Google Scholar] [CrossRef] [PubMed]
- Mamaní, A.; Maturano, Y.; Mestre, V.; Montoro, L.; Gassa, L.; Deiana, C.; Sardella, F. Valorization of olive tree pruning. Application for energy storage and biofuel production. Ind. Crops Prod. 2021, 173, 114082. [Google Scholar] [CrossRef]
- Yuan, Y.; Jiang, B.; Chen, H.; Wu, W.; Wu, S.; Jin, Y.; Xiao, H. Recent advances in understanding the effects of lignin structural characteristics on enzymatic hydrolysis. Biotechnol. Biofuels 2021, 14, 205. [Google Scholar] [CrossRef] [PubMed]
- Fabbrizi, G.; Giannoni, T.; Lorenzi, L.; Nicolini, A.; Iodice, P.; Coccia, V.; Cavalaglio, G.; Gelosia, M. High Solid and Low Cellulase Enzymatic Hydrolysis of Cardoon Stems Pretreated by Acidified γ-Valerolactone/Water Solution. Energies 2022, 15, 2600. [Google Scholar] [CrossRef]
- Available online: https://www.arera.it/it/docs/08/003-08een.htm (accessed on 24 April 2024).
- Available online: https://dgsaie.mise.gov.it/consumi-petroliferi (accessed on 24 April 2024).
- Procentese, A.; Raganati, F.; Olivieri, G.; Russo, M.E.; De La Feld, M.; Marzocchella, A. Agro food wastes and innovative pretreatments to meet biofuel demand in Europe. Chem. Eng. Technol. 2019, 42, 954–961. [Google Scholar] [CrossRef]
- Holmatov, B.; Schyns, J.F.; Krol, M.S.; Gerbens-Leenes, P.W.; Hoekstra, A.Y. Can crop residues provide fuel for future transport? Limited global residue bioethanol potentials and large associated land, water and carbon footprints. Renew. Sustain. Energy Rev. 2021, 149, 111417. [Google Scholar] [CrossRef]
Prunings | A (Mt/y) | B (Mt/y) | C (Mt/y) | D (Mt/y) | E (Mt/y) | F (Mt/y) | G (Mt/y) | H (Mt/y) | Average (Mt/y) |
---|---|---|---|---|---|---|---|---|---|
Grape | 2.90 | 1.50 | 1.28 | 1.11 | 1.19 | 1.47 | 1.58 | 0.88 | 1.29 ± 0.23 |
Olive | 2.40 | 1.20 | 1.14 | 1.07 | 1.15 | 1.34 | 1.43 | 0.80 | 1.16 ± 0.19 |
Apple | 0.20 | 0.10 | 0.09 | 0.13 | 0.12 | 0.29 | 0.28 | 0.09 | 0.16 ± 0.08 |
Pear | 0.10 | 0.05 | 0.05 | 0.05 | 0.03 | 0.18 | 0.17 | 0.05 | 0.08 ± 0.05 |
Peach | 0.20 | 0.10 | 0.16 | 0.19 | 0.14 | 0.46 | 0.42 | 0.15 | 0.23 ± 0.13 |
Lemon | 0.30 | 0.20 | 0.19 | 0.67 * | 0.67* | 0.77 * | 0.80 * | 0.48 | 0.29 ± 0.13 (0.73 ± 0.06) * |
Almond | 0.20 | 0.10 | 0.15 | 0.12 | 0.12 | 0.22 | 0.12 | 0.09 | 0.13 ± 0.04 |
Hazelnut | 0.20 | 0.10 | 0.07 | 0.14 | 0.09 | 0.22 | 0.17 | 0.08 | 0.12 ± 0.05 |
Total | - | - | - | - | - | - | - | - | 3.46 ± 0.37 |
Table Legend | |||||||||
Column name | Content and references | ||||||||
A | Fresh prunings estimated mass by Di Blasi [20] | ||||||||
B | Dry prunings estimated mass by Di Blasi [20] | ||||||||
C | Dry prunings estimated mass by ITABIA [19] | ||||||||
D | Dry prunings estimated mass by CRPA [19] | ||||||||
E | Dry prunings estimated mass by ANPA ONR [18] | ||||||||
F | Dry pruning mass, including the contribution of the residual biomass at the end of the production cycle. Estimate by CRPA [19] | ||||||||
G | Dry pruning mass, including the contribution of the residual biomass at the end of the production cycle. Estimate by ANPA ONR [18] | ||||||||
H | Dry residues estimated mass by ITABIA [22] |
Proximate Analysis (wt.% d.b.) | Ultimate Analysis (wt.% d.b.) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Species | Moisture (%) | Volatile Matter (%) | Fixed Carbon (%) | Ash (%) | Nitrogen Content (%) | Carbon Content (%) | Hydrogen Content (%) | HHV (MJ/kg) | LHV (MJ/kg) |
Pear | 11.63 ± 0.01 | 76.26 ± 0.04 | 20.24 ± 0.02 | 3.50 ± 0.02 | 0.4 ± 0.2 | 42.9 ± 0.8 | 6.10 ± 0.14 | 18.03 ± 0.05 | 16.8 ± 0.7 |
Persimmon | 9.87 ± 0.03 | 74.8 ± 0.3 | 20.8 ± 0.2 | 4.4 ± 0.1 | 0.39 ± 0.03 | 42.9 ± 0.6 | 6.10 ± 0.05 | 18.63 ± 0.09 | 17.4 ± 0.7 |
Plum | 15.40 ± 0.01 | 77.3 ± 0.2 | 19.9 ± 0.2 | 2.82 ± 0.03 | 0.03 ± 0.01 | 41.1 ± 0.7 | 6.3 ± 0.2 | 17.32 ± 0.09 | 16.1 ± 0.5 |
Peach | 9.30 ± 0.03 | 76.9 ± 0.1 | 18.33 ± 0.08 | 4.71 ± 0.07 | 0.23 ± 0.04 | 42.6 ± 0.6 | 6.05 ± 0.09 | 17.55 ± 0.01 | 16.3 ± 0.6 |
Hazelnut | 10.39 ± 0.05 | 77.4 ± 0.1 | 20.03 ± 0.07 | 2.59 ± 0.07 | 0.16 ± 0.03 | 43.8 ± 0.8 | 6.1 ± 0.1 | 17.56 ± 0.01 | 16.3 ± 0.6 |
Olive | 10.75 ± 0.07 | 77.9 ± 0.4 | 19.1 ± 0.4 | 2.99 ± 0.05 | 0.19 ± 0.02 | 42.5 ± 1.1 | 6.3 ± 0.4 | 17.1 ± 0.4 | 15.9 ± 0.2 |
Grape | 17.83 ± 0.07 | 76.9 ± 0.1 | 19.5 ± 0.1 | 3.65 ± 0.01 | 0.05 ± 0.01 | 40.67 ± 0.05 | 5.34 ± 0.07 | 18.23 ± 0.02 | 17.1 ± 0.5 |
Apple | 10.23 ± 0.09 | 77.50 ± 0.08 | 18.97 ± 0.07 | 3.53 ± 0.02 | 0.22 ± 0.01 | 43.9 ± 0.3 | 5.85 ± 0.02 | 17.5 ± 0.2 | 16.3 ± 0.4 |
Inert Atmosphere | Oxydant Atmosphere | |||||
---|---|---|---|---|---|---|
Samples | DTG Peak Temperature (°C) | DTG Max (%/Min) | Solid Residue Char + Ash (%) | DTG Peak Temperature (°C) | DTG Max (%/Min) | Solid Residue Ash (%) |
Pear | 290.1 | 5.82 | 6.06 | 297.2 | 5.54 | 2.42 |
Persimmon | 283.0 | 5.54 | 8.44 | 290.7 | 5.82 | 2.77 |
Plum | 276.5 | 5.83 | 1.78 | 254.2 | 8.11 | 1.88 |
Peach | 286.5 | 5.57 | 5.75 | 264.9 | 6.22 | 2.96 |
Hazelnut | 297.2 | 5.99 | 6.18 | 274.4 | 6.28 | 2.11 |
Olive | 264.5 | 5.85 | 3.17 | 242.1 | 7.86 | 1.93 |
Grape | 243.0 | 7.00 | 2.36 | 278.7 | 7.26 | 2.23 |
Apple | 279.6 | 5.76 | 4.74 | 258.3 | 6.40 | 2.30 |
Species Content (mg/kg) | ||||||||
---|---|---|---|---|---|---|---|---|
Elements | Apple | Grape | Olive | Hazelnut | Peach | Plum | Persimmon | Pear |
Cadmium (Cd) | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
Chromium (Cr) | 0.5 ± 0.1 | 1.7 ± 0.3 | 0.6 ± 0.2 | 1.1 ± 0.1 | 0.7 ± 0.1 | 1.8 ± 0.2 | 0.4 ± 0.1 | 0.9 ± 0.1 |
Copper (Cu) | 5.0 ± 0.5 | 197.2 ± 0.6 | 21.2 ± 0.1 | 79.9 ± 0.8 | 5.7 ± 0.2 | 20.0 ± 0.4 | 3.0 ± 0.2 | 4.0 ± 0.9 |
Nickel (Ni) | 1.1 ± 0.2 | 36.4 ± 0.6 | 2.6 ± 0.1 | 21.2 ± 0.2 | 0.9 ± 0.1 | 1.0 ± 0.3 | 0.9 ± 0.2 | 3.9 ± 0.4 |
Lead (Pb) | 1.4 ± 0.2 | 0.7 ± 0.1 | 1.8 ± 0.2 | 1.2 ± 0.3 | 0.8 ± 0.3 | 1.2 ± 0.4 | 0.6 ± 0.1 | 0.9 ± 0.2 |
Zinc (Zn) | 46.0 ± 0.4 | 0.7 ± 0.2 | 13.1 ± 0.3 | 25.4 ± 0.6 | 32.4 ± 0.4 | 51.0 ± 0.7 | 18.1 ± 0.6 | 30.3 ± 0.5 |
Species | Hemicellulose (%) | Cellulose (%) | Lignin (%) |
---|---|---|---|
Pear | 16.45 ± 0.12 | 34.60 ± 0.22 | 19.90 ± 1.21 |
Persimmon | 14.98 ± 0.14 | 35.55 ± 0.52 | 28.24 ± 0.79 |
Plum | 16.25 ± 0.15 | 36.73 ± 0.48 | 24.26 ± 1.25 |
Peach | 12.70 ± 0.07 | 38.38 ± 0.63 | 23.31 ± 2.21 |
Hazelnut | 16.78 ± 0.09 | 39.88 ± 0.17 | 22.98 ± 1.12 |
Olive | 15.52 ± 0.16 | 40.00 ± 0.59 | 23.12 ± 0.98 |
Grape | 12.93 ± 0.24 | 40.33 ± 0.25 | 22.93 ± 1.14 |
Apple | 13.70 ± 0.14 | 40.90 ± 0.47 | 25.31 ± 1.06 |
Species | Dry Residue Mass (Mt/y) | LHV (Mj/kg) | Cellulose Content (%) | Equivalent Electrical Energy (GWh) | Bioethanol (Mt/y) |
---|---|---|---|---|---|
Grape | 1.29 ± 0.23 | 17.13 ± 0.54 | 40.33 ± 0.25 | 2823.60 ± 503.4 | 0.20 ± 0.03 |
Olive | 1.16 ± 0.19 | 15.88 ± 0.20 | 40.00 ± 0.59 | 2353.77 ± 385.5 | 0.18 ± 0.03 |
Apple | 0.16 ± 0.08 | 16.26 ± 0.37 | 40.90 ± 0.47 | 332.43 ± 166.2 | 0.030 ± 0.015 |
Pear | 0.08 ± 0.05 | 16.77 ± 0.69 | 34.60 ± 0.22 | 171.43 ± 107.1 | 0.010 ± 0.006 |
Peach | 0.23 ± 0.13 | 17.38 ± 0.72 | 38.38 ± 0.63 | 510.78 ± 288.7 | 0.030 ± 0.017 |
Hazelnut | 0.12 ± 0.05 | 16.28 ± 0.63 | 39.88 ± 0.17 | 249.63 ± 104.0 | 0.020 ± 0.008 |
Total | 3.04 ± 0.34 | 6441.62 ± 731.7 | 0.48 ± 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cavalaglio, G.; Fabbrizi, G.; Cardelli, F.; Lorenzi, L.; Angrisano, M.; Nicolini, A. Lignocellulosic Residues from Fruit Trees: Availability, Characterization, and Energetic Potential Valorization. Energies 2024, 17, 2611. https://doi.org/10.3390/en17112611
Cavalaglio G, Fabbrizi G, Cardelli F, Lorenzi L, Angrisano M, Nicolini A. Lignocellulosic Residues from Fruit Trees: Availability, Characterization, and Energetic Potential Valorization. Energies. 2024; 17(11):2611. https://doi.org/10.3390/en17112611
Chicago/Turabian StyleCavalaglio, Gianluca, Giacomo Fabbrizi, Filippo Cardelli, Leonardo Lorenzi, Mariarosaria Angrisano, and Andrea Nicolini. 2024. "Lignocellulosic Residues from Fruit Trees: Availability, Characterization, and Energetic Potential Valorization" Energies 17, no. 11: 2611. https://doi.org/10.3390/en17112611
APA StyleCavalaglio, G., Fabbrizi, G., Cardelli, F., Lorenzi, L., Angrisano, M., & Nicolini, A. (2024). Lignocellulosic Residues from Fruit Trees: Availability, Characterization, and Energetic Potential Valorization. Energies, 17(11), 2611. https://doi.org/10.3390/en17112611