Optimizing Biomass Supply Chains to Power Plants under Ecological and Social Restrictions: Case Study from Poland
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. Model Framework
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Moser, C.; Leipold, S. Toward “hardened” accountability? Analyzing the European Union’s hybrid transnational governance in timber and biofuel supply chains. Regul. Gov. 2021, 15, 115–132. [Google Scholar] [CrossRef]
- Directive (EU) 2018/2001 of the European Parliament and of the Council on the Promotion of the Use of Energy from Renewable Resources. 2018. Available online: https://www.europeansources.info/record/directive-eu-2018-2001-on-the-promotion-of-the-use-ofenergy-from-renewable-sources/ (accessed on 20 March 2024).
- Richter, D.D.; Jenkins, D.H.; Karakash, J.T.; Knight, J.; McCreery, L.R.; Nemestothy, K.P. Resource policy. Wood energy in America. Science 2009, 323, 1432–1433. [Google Scholar] [CrossRef] [PubMed]
- Chudy, R.; Szulecki, K.; Siry, J.; Grala, R. Biomasa drzewna jako surowiec dla energetyki. Academia 2021, 65, 62–65. [Google Scholar] [CrossRef]
- McKendry, P. Energy production from biomass (part 1): Overview of biomass. Bioresour. Technol. 2002, 83, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Bailis, R.; Drigo, R.; Ghilardi, A.; Masera, O. The carbon footprint of traditional woodfuels. Nat. Clim. Chang. 2015, 5, 266–272. [Google Scholar] [CrossRef]
- Ahmad, R.; Zhou, Y.; Hua, L.; Zhao, N.; Abbas, A.; Sultan, M.; Raman, P.; Dong, R. Study on biomass-based gasifier cookstovefor domestic application. Fresenius Environ. Bull. 2021, 30, 4365–4374. [Google Scholar]
- Ahmad, R.; Ilyas, H.N.; Li, B.; Sultan, M. Current challenges and future prospect of biomass cooking and heating stoves in Asian Countries. Front. Energy Res. 2022, 10, 880064. [Google Scholar] [CrossRef]
- Verkerk, P.J.; Anttila, P.; Eggers, J.; Lindner, M.; Asikainen, A. The realisable potential supply of woody biomass from forests in the European Union. For. Ecol. Manag. 2011, 261, 2007–2015. [Google Scholar] [CrossRef]
- Banaś, J.; Utnik-Banaś, K. Using Timber as a Renewable Resource for Energy Production in Sustainable Forest Management. Energies 2022, 15, 2264. [Google Scholar] [CrossRef]
- Durocher, C.; Thiffault, E.; Achim, A.; Auty, D.; Barrette, J. Untapped volume of surplus forest growth as feedstock for bioenergy. Biomass Bioenergy 2019, 120, 376–386. [Google Scholar] [CrossRef]
- Smeets, E.M.W.; Faaij, A.P.C. Bioenergy potentials from forestry in 2050. Clim. Chang. 2007, 81, 353–390. [Google Scholar] [CrossRef]
- Karjalainen, T.; Asikainen, A.; Ilavsky, J.; Zamboni, R.; Hotari, K.-E.; Röser, D. Estimation of Energy Wood Potential in Europe; Working papers of the Finnish Forest Research Institute; Finnish Forest Research Institute: Helsinki, Finland, 2004; Available online: https://jukuri.luke.fi/handle/10024/535922 (accessed on 20 March 2024).
- Panoutsou, C.; Eleftheriadis, J.; Nikolaou, A. Biomass supply in EU27 from 2010 to 2030. Energy Policy 2009, 37, 5675–5686. [Google Scholar] [CrossRef]
- Bentsen, N.S.; Felby, C. Biomass for energy in the European Union—A review of bioenery resource assessment. Biotechnol. Biofuels 2012, 5, 25. [Google Scholar] [CrossRef] [PubMed]
- Camia, A.; Giuntoli, J.; Jonsson, R.; Robert, N.; Cazzaniga, N.E.; Jasinevičius, G.; Grassi, G.; Barredo, J.I.; Mubareka, S. The Use of Woody Biomass for Energy Production in the EU; JRC science for policy report JRC122719; Publications Office of the European Union: Luxembourg, 2021. [Google Scholar]
- Lundmark, R.; Athanassiadis, D.; Wetterlund, E. Supply assessment of forest biomass—A bottom-up approach for Sweden. Biomass Bioenergy 2015, 75, 213–226. [Google Scholar] [CrossRef]
- Kumar, A.; Adamopoulos, S.; Jones, D.; Amiandamhen, S.O. Forest Biomass Availability and Utilization Potential in Sweden: A Review. Waste Biomass Valor. 2021, 12, 65–80. [Google Scholar] [CrossRef]
- Ralf-Uwe, S.; Tran Thuc, H.; Karsten, G.; Suili, X.; Wolfgang, W. Residential Heating Using Woody Biomass in Germany—Supply, Demand, and Spatial Implications. Land 2022, 11, 1937. [Google Scholar] [CrossRef]
- Šafařík, D.; Hlaváčková, P.; Michal, J. Potential of Forest Biomass Resources for Renewable Energy Production in the Czech Republic. Energies 2022, 15, 47. [Google Scholar] [CrossRef]
- Różański, H.; Jabłoński, K. Możliwości pozyskania biomasy leśnej na cele energetyczne w Polsce. J. Civ. Eng. Environ. Archit. 2015, 62, 351–358. [Google Scholar]
- Majchrzak, M.; Szczypa, P.; Adamowicz, K. Supply of Wood Biomass in Poland in Terms of Extraordinary Threat and Energy Transition. Energies 2022, 15, 5381. [Google Scholar] [CrossRef]
- Routa, J.; Kellomäki, S.; Kilpeläinen, A.; Peltola, H.; Strandman, H. Effects of forest management on the carbon dioxide emissions of wood energy in integrated production of timber and energy biomass. GCB Bioenergy 2011, 3, 483–497. [Google Scholar] [CrossRef]
- Winder, G.M.; Bobar, A. Responses to stimulate substitution and cascade use of wood within a wood use system: Experience from Bavaria, Germany. Appl. Geogr. 2018, 90, 350–359. [Google Scholar] [CrossRef]
- Favero, A.; Daigneault, A.; Sohngen, B. Forests: Carbon sequestration, biomass energy, or both? Sci. Adv. 2020, 6, eaay6792. [Google Scholar] [CrossRef] [PubMed]
- Favero, A.; Mendelsohn, R.; Sohngen, B. Using forests for climate mitigation: Sequester carbon or produce woody biomass? Clim. Chang. 2017, 144, 195–206. [Google Scholar] [CrossRef]
- Ameray, A.; Bergeron, Y.; Valeria, O.; Montoro Girona, M.; Cavard, X. Forest Carbon Management: A Review of Silvicultural Practices and Management Strategies Across Boreal, Temperate and Tropical Forests. Curr. For. Rep. 2021, 7, 245–266. [Google Scholar] [CrossRef]
- Baral, A.; Malins, C. Assessing the Climate Mitigation Potential of Biofuels Derived from Residues and Wastes in the European Context; International Council on Clean Transportation: Washington, DC, USA, 2014; Available online: https://theicct.org/wp-content/uploads/2021/06/ICCT_biofuels_wastes-residues_20140130.pdf (accessed on 20 March 2024).
- Giuliana, Z.; Naomi, P.; Bird, N. Is woody bioenergy carbon neutral? A comparative assessment of emissions from consumption of woody bioenergy and fossil fuel. Bioenergy 2012, 4, 761–772. [Google Scholar] [CrossRef]
- Batista, R.M.; Converti, A.; Pappalardo, J.; Benachour, M.; Sarubbo, L.A. Tools for Optimization of Biomass-to-Energy Conversion Processes. Processes 2023, 11, 854. [Google Scholar] [CrossRef]
- Keith, K.; Castillo-Villar, K.K. Stochastic Programming Model Integrating Pyrolysis Byproducts in the Design of Bioenergy Supply Chains. Energies 2023, 16, 4070. [Google Scholar] [CrossRef]
- Abusaq, Z.; Habib, M.S.; Shehzad, A.; Kanan, M.; Assaf, R. A Flexible Robust Possibilistic Programming Approach toward Wood Pellets Supply Chain Network Design. Mathematics 2022, 10, 3657. [Google Scholar] [CrossRef]
- Lozano-García, D.F.; Santibañez-Aguilar, J.E.; Lozano, F.J.; Flores-Tlacuahuac, A. GIS-based modeling of residual biomass availability for energy and production in Mexico. Renew. Sustain. Energy Rev. 2020, 120, 109610. [Google Scholar] [CrossRef]
- Sahoo, K.; Hawkins, G.L.; Yao, X.A.; Samples, K.; Mani, S. GIS-based biomass assessment and supply logistics system for a sustainable biorefinery: A case study with cotton stalks in the Southeastern US. Appl. Energy 2016, 182, 260–273. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, J.; Schuler, J.; Hartley, D.; Volk, T.; Eisenbies, M. Optimization of harvest and logistics for multiple lignocellulosic biomass feedstocks in the northeastern United States. Energy 2020, 197, 117260. [Google Scholar] [CrossRef]
- Zyadin, A.; Natarajan, K.; Latva-Käyrä, P.; Igliński, B.; Iglińska, A.; Trishkin, M.; Pelkonen, P.; Pappinen, A. Estimation of surplus biomass potential in southern and central Poland using GIS applications. Renew. Sustain. Energy Rev. 2018, 89, 204–215. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, J.; Yi, W.; Cai, H.; Li, Y.; Su, Z. Agri-biomass supply chain optimization in north China: Model development and application. Energy 2022, 239, 122374. [Google Scholar] [CrossRef]
- Nienow, S.; McNamara, K.T.; Gillespie, A.R. Assessing plantation biomass for co-firing with coal in northern Indiana: A linear programming approach. Biomass Bioenergy 2000, 18, 125–135. [Google Scholar] [CrossRef]
- Abdelhady, S.; Shalaby, M.A.; Shaban, A. Techno-Economic Analysis for the Optimal Design of a National Network of Agro-Energy Biomass Power Plants in Egypt. Energies 2021, 14, 3063. [Google Scholar] [CrossRef]
- Ferretti, I. Optimization of the Use of Biomass Residues in the Poplar Plywood Sector. Procedia Comput. Sci. 2021, 180, 714–723. [Google Scholar] [CrossRef]
- Reis, S.A.d.; Leal, J.E.; Thomé, A.M.T. A Two-Stage Stochastic Linear Programming Model for Tactical Planning in the Soybean Supply Chain. Logistics 2023, 7, 49. [Google Scholar] [CrossRef]
- Kwiatkowski, A. Forum Biomasy. Available online: https://powermeetings.eu/konferencja/forum-biomasy/wp-content/uploads/sites/19/2018/05/04-ENEA-Adam-Kwiatkowski-Forum-Biomasy-powermeetings.eu-Mielec-2018.pdf (accessed on 19 February 2024).
- Forest Data Bank. Available online: www.bdl.lasy.gov.pl/portal/en (accessed on 20 January 2024).
- State Forests. Information on Sales of Selected Groups of Wood in Forest Districts State Forests. Available online: https://drewno.zilp.lasy.gov.pl/drewno/ (accessed on 15 February 2024).
- Gradziuk, P.; Gradziuk, B.; Trocewicz, A.; Jendrzejewski, B. Potential of Straw for Energy Purposes in Poland—Forecasts Based on Trend and Causal Models. Energies 2020, 13, 5054. [Google Scholar] [CrossRef]
- Agroprofil Agricultural Portal. Available online: https://agroprofil.pl/wiadomosci (accessed on 20 March 2024).
- Petersson, H.; Holm, S.; Ståhl, G.; Alger, D.; Fridman, J.; Lehtonen, A.; Lundström, A.; Mäkipää, R. Individual tree biomass equations or biomass expansion factors for assessment of carbon stock changes in living biomass—A comparative study. For. Ecol. Manag. 2012, 270, 78–84. [Google Scholar] [CrossRef]
- Lehtonen, A.; Mäkipää, R.; Heikkinen, J.; Sievänen, R.; Liski, J. Biomass expansion factors (BEFs) for Scots pine, Norway spruce and birch according to stand age for boreal forests. For. Ecol. Manag. 2004, 188, 211–224. [Google Scholar] [CrossRef]
- Krejza, J.; Světlík, J.; Bednář, P. Allometric relationship and biomass expansion factors (BEFs) for above- and below-ground biomass prediction and stem volume estimation for ash (Fraxinus excelsior L.) and oak (Quercus robur L.). Trees 2017, 31, 1303–1316. [Google Scholar] [CrossRef]
- The Engineering ToolBox. Wood Species-Densities. Available online: https://www.engineeringtoolbox.com/wood-density-d_40.html (accessed on 10 March 2024).
- Bettinger, P.; Boston, K.; Siry, J.P.; Grebner Donald, L. Forest Management and Planning: Linear Programming; Elsevier: San Diego, CA, USA, 2009. [Google Scholar]
- Gurobi Optimizer; Gurobi Optimization, LLC: Beaverton, OR, USA, 2023. Available online: https://www.gurobi.com/solutions/gurobi-optimizer/ (accessed on 20 March 2024).
- QGIS Geographic Information System. QGIS Association. QGIS.org. 2024. Available online: https://www.qgis.org/id/site/ (accessed on 20 March 2024).
- Frombo, F.; Minciardi, R.; Robba, M.; Rosso, F.; Sacile, R. Planning woody biomass logistics for energy production: A strategic decision model. Biomass Bioenergy 2009, 33, 372–383. [Google Scholar] [CrossRef]
- Latterini, F.; Stefanoni, W.; Suardi, A.; Alfano, V.; Bergonzoli, S.; Palmieri, N.; Pari, L. A GIS Approach to Locate a Small Size Biomass Plant Powered by Olive Pruning and to Estimate Supply Chain Costs. Energies 2020, 13, 3385. [Google Scholar] [CrossRef]
- Perpiñá, C.; Alfonso, D.; Pérez-Navarro, A.; Peñalvo, E.; Vargas, C.; Cárdenas, R. Methodology based on Geographic Information Systems for biomass logistics and transport optimisation. Renew. Energy 2009, 34, 555–565. [Google Scholar] [CrossRef]
- Zhao, X.; Ma, X.; Wang, K.; Long, Y.; Zhang, D.; Xiao, Z. A Spatially Explicit Optimization Model for Agricultural Straw-Based Power Plant Site Selection: A Case Study in Hubei Province, China. Sustainability 2017, 9, 832. [Google Scholar] [CrossRef]
- Nordin, I.; Elofsson, K.; Jansson, T. Optimal localisation of agricultural biofuel-Swedish case. Eur. Rev. Agric. Econ. 2021, 49, 910–941. [Google Scholar] [CrossRef]
- Ahmadi, L.; Kannangara, M.; Bensebaa, F. Cost-effectiveness of small scale biomass supply chain and bioenergy production systems in carbon credit markets: A life cycle perspective. Sustain. Energy Technol. Assess. 2020, 37, 100627. [Google Scholar] [CrossRef]
- Furubayashi, T.; Nakata, T. Analysis of woody biomass utilization for heat, electricity, and CHP in a regional city of Japan. J. Clean. Prod. 2021, 290, 125665. [Google Scholar] [CrossRef]
- Berndes, G.; Hoogwijk, M.; van den Broek, R. The contribution of biomass in the future global energy supply: A review of 17 studies. Biomass Bioenergy 2003, 25, 1–28. [Google Scholar] [CrossRef]
- Lauri, P.; Havlík, P.; Kindermann, G.; Forsell, N.; Böttcher, H.; Obersteiner, M. Woody biomass energy potential in 2050. Energy Policy 2014, 66, 19–31. [Google Scholar] [CrossRef]
- Vera, I.; Hoefnagels, R.; van der Kooij, A.; Moretti, C.; Junginger, M. A carbon footprint assessment of multi-output biorefineries with international biomass supply: A case study for the Netherlands. Biofuels Bioprod. Bioref. 2020, 14, 198–224. [Google Scholar] [CrossRef]
- Bentsen, N.S.; Jack, M.W.; Felby, C.; Thorsen, B.J. Allocation of biomass resources for minimising energy system greenhouse gas emissions. Energy 2014, 69, 506–515. [Google Scholar] [CrossRef]
ID | Spatial Unit | Distance (a) (km) | Arable Area (ha 103) | Forested Area (ha 103) | Natura 2000 (b) (ha 103) | Social Forests (c) (ha 103) |
---|---|---|---|---|---|---|
1 | Mielec | 16 | 14.39 | 11.51 | 8.52 | 8.92 |
2 | Staszow | 18 | 66.17 | 27.79 | 3.24 | 9.95 |
3 | Tuszyma | 24 | 21.40 | 16.05 | 4.81 | 10.65 |
4 | N Deba | 30 | 39.01 | 27.31 | 22.45 | 15.76 |
5 | Chmielnik | 33 | 78.49 | 20.93 | 2.07 | 4.65 |
6 | Dabrawa T | 39 | 73.39 | 23.48 | 0.71 | 12.01 |
7 | Łagow | 41 | 33.7 | 19.38 | 5.72 | 11.33 |
8 | Kolbuszowa | 42 | 16.75 | 12.98 | 4.80 | 8.61 |
9 | Debica | 48 | 30.10 | 18.81 | 1.37 | 8.35 |
10 | Glogow | 53 | 22.23 | 18.53 | 6.73 | 12.56 |
11 | Daleszyce | 54 | 16.64 | 14.97 | 3.99 | 9.92 |
12 | Ostrowiec | 55 | 72.52 | 29.01 | 3.43 | 13.33 |
13 | Pinczow | 57 | 78.18 | 13.03 | 5.93 | 6.98 |
14 | Rozwadow | 57 | 30.58 | 22.02 | 5.69 | 11.81 |
15 | Rudnik | 62 | 19.56 | 20.54 | 5.02 | 7.03 |
16 | Gromnik | 65 | 1.98 | 22.77 | 0.69 | 7.92 |
17 | Goscieradow | 66 | 39.78 | 23.21 | 8.77 | 8.91 |
18 | Strzyżów | 67 | 40.31 | 29.56 | 0.82 | 12.35 |
19 | Starachowice | 69 | 2.24 | 14.31 | 1.61 | 14.18 |
20 | Suchedniow | 73 | 3.75 | 19.90 | 12.00 | 18.02 |
21 | Leżajsk | 77 | 35.45 | 25.7 | 2.37 | 15.82 |
22 | Jedrzejow | 78 | 70.17 | 23.39 | 4.12 | 7.54 |
23 | Zagnansk | 78 | 2.66 | 11.18 | 5.11 | 9.41 |
24 | Janow L | 80 | 56.67 | 44.39 | 31.14 | 20.92 |
25 | Kołaczyce | 81 | 30.33 | 22.24 | 6.90 | 9.68 |
26 | Brzesko | 82 | 26.75 | 19.62 | 0.06 | 5.55 |
27 | Kielce | 82 | 32.86 | 23.00 | 5.91 | 13.03 |
28 | Marcule | 82 | 40.38 | 16.82 | 0.28 | 2.94 |
29 | Krasnik | 85 | 87.35 | 30.57 | 2.80 | 2.94 |
30 | Skarżysko | 86 | 25.35 | 20.28 | 3.50 | 15.47 |
31 | Zwolen | 86 | 69.00 | 31.74 | 4.08 | 4.12 |
32 | Niepolomice | 88 | 15.01 | 10.70 | 10.5 | 10.17 |
33 | Biłgoraj | 92 | 42.48 | 40.35 | 8.07 | 8.04 |
34 | Gorlice | 92 | 1.03 | 20.64 | 14.01 | 15.79 |
35 | Miechow | 92 | 103.4 | 13.79 | 0.18 | 6.67 |
36 | Stąporkow | 94 | 2.77 | 17.20 | 2.10 | 8.56 |
37 | Kańczuga | 96 | 42.83 | 18.2 | 5.46 | 10.24 |
38 | Dukla | 99 | 18.57 | 19.81 | 16.84 | 14.53 |
39 | Brzozów | 100 | 21.82 | 24.73 | 6.83 | 15.51 |
40 | Sieniawa | 100 | 17.99 | 17.54 | 6.97 | 9.93 |
Total | - | 1444.04 | 857.98 | 245.60 | 420.14 |
Biomass Source | Potential Availability | Price |
---|---|---|
Forest biomass | Forest Data Bank [43] | State Forests [44] |
Straw from agriculture | Gradziuk et al. [45] | AgroProfil Agricultural Portal [46] |
ID | Low-Quality Wood | Firewood | Forest Residues | Agriculture Straw |
---|---|---|---|---|
1 | 2.00 | 2.63 | 3.48 | 6.42 |
2 | 6.02 | 9.48 | 9.44 | 50.45 |
3 | 3.47 | 4.85 | 5.89 | 11.46 |
4 | 4.76 | 6.85 | 7.99 | 38.99 |
5 | 2.76 | 3.98 | 4.60 | 64.18 |
6 | 4.79 | 7.16 | 7.87 | 89.59 |
7 | 4.41 | 7.18 | 6.72 | 24.95 |
8 | 3.26 | 5.24 | 5.11 | 8.82 |
9 | 5.37 | 9.92 | 7.36 | 17.46 |
10 | 3.65 | 5.41 | 5.98 | 12.90 |
11 | 3.28 | 4.67 | 5.50 | 9.93 |
12 | 7.01 | 10.47 | 11.38 | 43.33 |
13 | 3.24 | 5.37 | 4.88 | 69.11 |
14 | 4.53 | 6.04 | 7.91 | 30.00 |
15 | 4.09 | 5.72 | 6.95 | 17.77 |
16 | 4.27 | 7.92 | 5.84 | 1.18 |
17 | 4.55 | 6.69 | 7.46 | 39.75 |
18 | 6.08 | 11.12 | 8.40 | 106.69 |
19 | 3.68 | 5.12 | 6.22 | 0.64 |
20 | 3.53 | 5.01 | 5.92 | 1.53 |
21 | 4.87 | 7.47 | 7.77 | 19.30 |
22 | 4.24 | 6.44 | 6.83 | 54.28 |
23 | 2.43 | 3.36 | 4.11 | 1.41 |
24 | 8.42 | 11.77 | 14.37 | 68.65 |
25 | 3.82 | 6.81 | 5.41 | 18.41 |
26 | 4.31 | 7.84 | 6.02 | 30.01 |
27 | 4.48 | 6.40 | 7.47 | 22.51 |
28 | 3.57 | 4.84 | 6.10 | 23.76 |
29 | 5.78 | 10.10 | 8.50 | 109.51 |
30 | 3.88 | 5.34 | 6.62 | 16.25 |
31 | 5.48 | 7.95 | 9.11 | 51.08 |
32 | 2.41 | 3.73 | 3.82 | 19.43 |
33 | 5.79 | 7.67 | 10.11 | 40.13 |
34 | 5.32 | 9.51 | 7.46 | 0.46 |
35 | 4.36 | 8.29 | 5.83 | 93.69 |
36 | 2.60 | 3.31 | 4.60 | 0.86 |
37 | 3.35 | 6.36 | 4.47 | 27.90 |
38 | 3.67 | 6.64 | 5.09 | 44.22 |
39 | 7.18 | 13.54 | 9.56 | 37.94 |
40 | 4.61 | 7.94 | 6.80 | 26.54 |
Total | 175.32 | 276.14 | 274.95 | 1351.49 |
Biomass Assortment | Price (EUR/ton) | Transport Cost (EUR/km/ton) | Calorific Value (GJ/ton) |
---|---|---|---|
Low-quality stacked wood | 51.80 (a); 70.52 (b); 57.06 (c) | 0.12 | 17.5 |
Firewood | 25.20 (a); 35.62 (b); 31.34 (c) | 0.12 | 15.7 |
Forest residues | 44.20 | 0.28 | 13.0 |
Straw from agriculture | 50.56 | 0.45 | 14.0 |
Spatial Unit | Biomass (tons 103) | Energy (GJ) | Cost (EUR 103) | |||
---|---|---|---|---|---|---|
Firewood | Straw | Firewood | Straw | Firewood | Straw | |
Mielec | 2.63 | 6.42 | 41.42 | 89.88 | 116.27 | 370.82 |
Staszów | 9.48 | 7.87 | 149.31 | 110.12 | 423 | 461.65 |
Tuszyma | 4.85 | – | 76.39 | – | 219.85 | – |
Nowa Dęba | 6.85 | – | 107.89 | – | 316.61 | – |
Chmielnik | 3.98 | – | 62.69 | – | 185.19 | – |
Dąbrowa | 7.16 | – | 112.81 | – | 339.24 | – |
Łagów | 7.18 | – | 113.09 | – | 339.11 | – |
Kolbuszowa | 5.24 | – | 82.53 | – | 251.36 | – |
Dębica | 3.42 | – | 53.87 | – | 164.91 | – |
Total | 50.79 | 14.29 | 800.00 | 200.00 | 2355.54 | 832.47 |
65.08 | 1000 | 3188.01 |
1 TJ | 5 TJ | 10 TJ | 1 TJ | 5 TJ | 10 TJ | ||
---|---|---|---|---|---|---|---|
Scenario | Biomass Kind | Biomass (tons 103) | Unit Costs (EUR/MJ) | ||||
I | Firewood | 50.79 | 253.97 | 276.14 | 3.19 | 3.41 | 4.05 |
Straw | 14.29 | 71.43 | 142.86 | ||||
Residues | – | – | 217.21 | ||||
Low-quality wood | – | – | 47.26 | ||||
II | Firewood | 50.79 | 199.14 | 199.14 | 3.22 | 3.61 | 4.38 |
Straw | 14.29 | 71.43 | 142.86 | ||||
Residues | – | 66.43 | 196.23 | ||||
Low-quality wood | – | – | 132.15 | ||||
III | Straw | 14.29 | 58.36 (a) | in. | 4.37 | 4.92 (a) | in. |
Residues | 61.54 | 136.47 (a) | |||||
Low-quality wood | – | 85.37 (a) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Banaś, J.; Utnik-Banaś, K.; Zięba, S. Optimizing Biomass Supply Chains to Power Plants under Ecological and Social Restrictions: Case Study from Poland. Energies 2024, 17, 3136. https://doi.org/10.3390/en17133136
Banaś J, Utnik-Banaś K, Zięba S. Optimizing Biomass Supply Chains to Power Plants under Ecological and Social Restrictions: Case Study from Poland. Energies. 2024; 17(13):3136. https://doi.org/10.3390/en17133136
Chicago/Turabian StyleBanaś, Jan, Katarzyna Utnik-Banaś, and Stanisław Zięba. 2024. "Optimizing Biomass Supply Chains to Power Plants under Ecological and Social Restrictions: Case Study from Poland" Energies 17, no. 13: 3136. https://doi.org/10.3390/en17133136
APA StyleBanaś, J., Utnik-Banaś, K., & Zięba, S. (2024). Optimizing Biomass Supply Chains to Power Plants under Ecological and Social Restrictions: Case Study from Poland. Energies, 17(13), 3136. https://doi.org/10.3390/en17133136