Empirical Modeling of Synthetic Fuel Combustion in a Small Turbofan
Abstract
:1. Introduction
2. Combustion Modeling
2.1. Chemical Kinetics in Combustion
- emission indices;
- fuel–air ratio;
- combustion efficiency;
- thermodynamic properties of exhaust gases.
+ P3(O2) + P4(H2O) + P5(CO) + P6(CxHy) + P7(NO2) + P8(NO) + P9(SO2)
2.2. Reactivity Model for Combustion
- links the function describing the flow of energy across the boundaries of the system with the function describing the change in the internal energy of the system resulting from chemical reactions taking place in the system;
- introduces a quantitative measure of reactivity in the form of the reactivity coefficient αi.
- CO2 and H2O formation reaction:CxHy + (x + y/4) O2 → x[CO2] + y/2 H2O
- CO and H2O formation reaction:CxHy + (x/2 + y/4) O2 → x[CO] + y/2 H2O
- CO–to-CO2 reaction:CO + ½ O2 → CO2
ln[CO2]meas = ln[CO2]ch − ln(AF)
- (a)
- for parallel reactions:[CO] = c2kCO t mf−n+1
- (b)
- for follow-up reactions:[CO] = {c2kCO [1 + et]/et c5kCO2 }mfn
ln[CO]meas = ln[CO]ch − ln(AF)
[CO]meas = {c2kCO [1 + et]/et c5kCO2}mfn/(AF)
[CO]ch = (AF) [CO]meas = (kCO/kCO2)ch {c2[1 +et]/et c5}mfn
αiCO = amf/DCO ACO exp[(−EaCO/R)(1/T)]
lnαiCO = ln(amf) − ln(DCO ACO) + EaCO/RT
EaCO/RT = lnαiCO DCO ACO − ln(amf)
3. Materials and Methods
3.1. Fuels
3.2. Engine Testing
4. Results
4.1. EaCO2 and αiCO2 Determined from Engine Operating Parameters
4.2. EaCO2ch and αiCO2ch Determined from Emission Measurements
4.3. EaCO and αiCOch Determined from Emission Measurements
5. Discussion
- activation energy Ea related to the whole chain of combustion reactions;
- coefficient of reactivity αi related to thrust F, fuel flow mf, and constant rate determined for all chain of combustion reactions k.
- SAF in a concentration between 5 and 20 wt% has a negligible impact on the kinetics of the entire fuel combustion chain, since the EaCO2ch values for all tested fuels are similar;
- SAF affects the kinetics of the reaction chain ending with the formation of CO.
- for CO2 formation, the slowest stage is CO oxidation,
- for CO formation, the slowest is one of the reactions in the chain of fuel hydrocarbon oxidation to CO.
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
a | slope in linear regression |
CO | carbon monoxide |
CO2 | carbon dioxide |
F | thrust |
ITWL | Air Force Institute of Technology in Warsaw |
mf | fuel flow |
NH | High-pressure turbine speed |
NL | Low-pressure turbine speed |
O2 | oxygen |
OEM | original equipment manufacturer |
PLA | power lever angle |
rpm | revolutions per minute |
SAF | sustainable aviation fuel |
SFC | specific fuel consumption |
WESTT | Whole Engine Simulator Turbine Technology |
References
- Dahal, K.; Brynolf, S.; Xisto, C.; Hansson, J.; Grahn, M.; Grönstedt, T.; Lehtveer, M. Techno-economic review of alternative fuels and propulsion systems for the aviation sector. Renew. Sustain. Energy Rev. 2021, 151, 111564. [Google Scholar] [CrossRef]
- Directive (EU) 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the promotion of the use of energy from renewable sources. Off. J. Eur. Union 2018, 328, 82–209.
- Yang, J.; Xin, Z.; Corscadden, K.; Niu, H. An overview on performance characteristics of bio-jet fuels. Fuel 2019, 237, 916–936. [Google Scholar] [CrossRef]
- Kumal, R.R.; Liu, J.; Gharpure, A.; Vander Wal, R.L.; Kinsey, J.S.; Giannelli, B.; Stevens, J.; Leggett, C.; Howard, R.; Forde, M.; et al. Impact of biofuel blends on black carbon emissions from a gas turbine engine. Energy Fuels 2020, 34, 4958–4966. [Google Scholar] [CrossRef] [PubMed]
- ASTM D7566; Standard Specification for Aviation Turbine Fuel Containing Synthesized Hydrocarbons. ASTM International: West Conshohocken, PA, USA, 2022.
- ASTM D4054; Standard Practice for Evaluation of New Aviation Turbine Fuels and Fuel Additives. ASTM International: West Conshohocken, PA, USA, 2022.
- Heyne, J.; Rauch, B.; Le Clercq, P.; Colket, M. Sustainable aviation fuel prescreening tools and procedures. Fuel 2021, 290, 120004. [Google Scholar] [CrossRef]
- Zhang, C.; Hui, X.; Lin, Y.; Sung, C.-J. Recent development in studies of alternative jet fuel combustion: Progress, challenges, and opportunities. Renew. Sustain. Energy Rev. 2016, 54, 120–138. [Google Scholar] [CrossRef]
- Kramer, S.; Andac, G.; Heyne, J.; Ellsworth, J.; Herzig, P.; Lewis, K.C. Perspectives on fully synthesized sustainable aviation fuels: Direction and opportunities. Front. Energy Res. 2022, 9, 782823. [Google Scholar] [CrossRef]
- Reddy, V.J.; Hariram, N.P.; Maity, R.; Ghazali, M.F.; Kumarasamy, S. Sustainable e-fuels: Green hydrogen, methanol and ammonia for carbon-neutral transportation. World Electr. Veh. J. 2023, 14, 349. [Google Scholar] [CrossRef]
- Peacock, J.; Cooper, R.; Waller, N.; Richardson, G. Decarbonising aviation at scale through synthesis of sustainable e-fuel: A techno-economic assessment. Int. J. Hydrogen Energy 2024, 50, 869–890. [Google Scholar] [CrossRef]
- d’Amore, F.; Nava, A.; Colbertaldo, P.; Visconti, C.G.; Romano, M. Turning CO2 from fuel combustion into e-fuel? Consider alternative pathways. Energy Convers. Manag. 2023, 289, 117170. [Google Scholar] [CrossRef]
- Åkerblom, A.; Pignatelli, F.; Fureby, C. Numerical simulations of spray combustion in jet engines. Aerospace 2022, 9, 38. [Google Scholar] [CrossRef]
- Kick, T.; Herbst, J.; Kathrotia, T.; Marquetand, M.; Braun-Unkhoff, M.; Naumann, C.; Riedel, U. An experimental and modeling study of burning velocities of possible future synthetic jet fuels. Energy 2012, 43, 111–123. [Google Scholar] [CrossRef]
- Wang, K.; Xu, R.; Parise, T.; Shao, J.; Movaghar, A.; Lee, D.J.; Park, J.-W.; Gao, Y.; Lu, T.; Egolfopoulos, F.N.; et al. A physics-based approach to modeling real-fuel combustion chemistry—IV. HyChem modeling of combustion kinetics of a bio-derived jet fuel and its blends with a conventional Jet A. Combust. Flame 2018, 198, 477–489. [Google Scholar] [CrossRef]
- Suchocki, T.; Lampart, P.; Klonowicz, P. Numerical investigation of a GTM-140 turbojet engine. Open Eng. 2015, 5, 1. [Google Scholar] [CrossRef]
- Fulara, S.; Chmielewski, M.; Gieras, M. Variable geometry in miniature gas turbine for improved performance and reduced environmental impact. Energies 2020, 13, 5230. [Google Scholar] [CrossRef]
- Gawron, G.; Białecki, T. Impact of a Jet A-1/HEFA blend on the performance and emission characteristics of a miniature turbojet engine. Int. J. Environ. Sci. Technol. 2018, 15, 1501–1508. [Google Scholar] [CrossRef]
- Przysowa, R.; Gawron, B.; Białecki, T.; Łęgowik, A.; Merkisz, J.; Jasiński, R. Performance and emissions of a microturbine and turbofan powered by alternative fuels. Aerospace 2021, 8, 25. [Google Scholar] [CrossRef]
- Curran, H.J. Developing detailed chemical kinetic mechanisms for fuel combustion. P. Combust. Inst. 2019, 37, 57–81. [Google Scholar] [CrossRef]
- Meeks, E.; Ando, H.; Chou, C.P.; Dean, A.M.; Hodgson, D.; Koshi, M.; Lengyel, I.; Maas, U.; Naik, C.V.; Puduppakkam, K.V.; et al. New modeling approaches using detailed kinetics for advanced engines. In Proceedings of the 7th International Conference on Modeling and Diagnostics for Advanced Engine Systems, (COMODIA 2008), Sapporo, Japan, 28–31 July 2008. [Google Scholar] [CrossRef]
- Kroyan, Y.; Wojcieszyk, M.; Kaario, O.; Larmi, M. Modeling the impact of sustainable aviation fuel properties on end-use performance and emissions in aircraft jet engines. Energy 2022, 255, 124470. [Google Scholar] [CrossRef]
- Kaźmierczak, U.; Dzięgielewski, W.; Kulczycki, A. Miscibility of aviation turbine engine fuels containing various synthetic components. Energies 2022, 15, 6187. [Google Scholar] [CrossRef]
- Yan, S.; Tang, G.; Zhou, C.Q.; Guo, X. Computational fluid dynamics modeling of combustion characteristics of a CH4/O2 combustor in a copper anode furnace. ACS Omega 2019, 4, 12449–12458. [Google Scholar] [CrossRef] [PubMed]
- Nassini, P.C.; Pampaloni, D.; Meloni, R.; Andreini, A. Lean blow-out prediction in an industrial gas turbine combustor through a LES-based CFD analysis. Combust. Flame 2021, 229, 111391. [Google Scholar] [CrossRef]
- Mansel, A.C.; Kahle, D.J.; Bellert, D.J. Calculating RRKM rate constants from vibrational frequencies and their dynamic interpretation. Math. J. 2017, 19, 1–20. [Google Scholar] [CrossRef]
- Zhao, H.; Liu, H. Breakup Morphology and Mechanisms of Liquid Atomization; Environmental Impact of Aviation and Sustainable Solutions; IntechOpen: Rijeka, Croatia, 2019. [Google Scholar] [CrossRef]
- ARP 1533C; Procedure for the Analysis and Evaluation of Gaseous Emission from Aircraft Engines. SAE International: Warrendale, PA, USA, 2016.
- Cuoci, A.; Frassoldati, A.; Faravelli, T.; Ranzi, E. A computational tool for the detailed kinetic modeling of laminar flames: Application to C2H4/CH4 coflow flames. Combust. Flame 2013, 160, 870–886. [Google Scholar] [CrossRef]
- Wang, H.; Liu, B.; Xie, C.; Li, Y.; Cui, J.; Xing, L.; Wang, Z. Thermal decomposition of isopentanol: A theoretical calculation and kinetic modeling analysis. Combust. Flame 2022, 245, 112320. [Google Scholar] [CrossRef]
- Kozakiewicz, A.; Kołodziejska, A.; Kieszek, R. Application of laboratory tests in numerical analysis for exhaust emissions in business jet engines. Adv. Sci. Technol. Res. J. 2023, 17, 21–35. [Google Scholar] [CrossRef]
- DGEN 380 BR Training. DSF-000008-A01 (Unpublished); Price Induction: Anglet, France, 2017.
Blend | Jet A-1 | SAF |
---|---|---|
A0 | 100% | 0% |
A5 | 95% | 5% |
A20 | 80% | 20% |
A30 | 70% | 30% |
A | 0% | 100% |
Property | Unit | Requirement | Lab-Test Result | ||||
---|---|---|---|---|---|---|---|
A0 | A5 | A20 | A30 | A | |||
Density at 15 °C | kg/m3 | 775–840 | 798 | 796 | 790 | 786 | 759 |
Viscosity at −20 °C | mm2/s | max 8.0 | 3.40 | 3.45 | 3.57 | 3.66 | 4.78 |
Net heat of combustion | MJ/kg | min 42.8 | 43.2 | 43.3 | 43.4 | 43.4 | 44.0 |
Aromatics | (v/v)% | max 25 | 16.7 | 15.7 | 13.0 | 11.3 | 0 |
Naphthalenes | (v/v)% | max 3 | 0.58 | 0.55 | 0.46 | 0.40 | |
Flash point | °C | min 38 | 49.5 | 49.0 | 49.0 | 49.0 | 47.5 |
Freezing point | °C | max −40 | −63.5 | −65.5 | −66.5 | −66.8 | −67.5 |
Smoke point | mm | min 18 | 20 | 23 | 25 | 28 |
Maximum Thrust | 255 daN |
---|---|
Specific Fuel Consumption (for maximum thrust) | 12.4 g/kN·s |
Bypass ratio | 7.6 |
Weight | 85 kg |
Lifetime | 3600 h |
Step | Thrust [%] | Thrust [daN] | NH [%] | NL [%] | PLA [%] | Fuel Flow [L/h] | Operating Mode |
---|---|---|---|---|---|---|---|
1 | 10 | 26.4 | 52.7 | 33.5 | 0 | 32 | Idle |
2 | 13 | 33.8 | 57.8 | 37.8 | 11 | 37 | |
3 | 20 | 50.9 | 66.2 | 45.8 | 29 | 44 | Cruise |
4 | 26 | 65.8 | 74.9 | 57.3 | 57 | 49 | |
5 | 40 | 100.9 | 81.1 | 65.3 | 61 | 66 | Max |
6 | 56 | 141.6 | 87.7 | 75.3 | 75 | 86 | |
7 | 72 | 183.5 | 93.3 | 86.1 | 87 | 112 | |
8 | 97 | 246.3 | 99.3 | 99.4 | 100 | 151 | Take-off |
Fuel | a | F0 | R2 |
---|---|---|---|
A0 | 6.123 | 18.7 | 0.9978 |
A5 | 6.384 | 25.11 | 0.9980 |
A20 | 6.397 | 24.7 | 0.9976 |
A30 | 6.374 | 24.98 | 0.9982 |
Fuel | R2 | EaCO2ch/R | EaCO2ch [kJ/mol] | (αiCO2chACO2D/a) | (αiCO2chACO2DCO2) | ln(αiCO2chACO2DCO2) |
---|---|---|---|---|---|---|
A0 | 0.9979 | 3480 | 29.8 | 438.38 | 2684 | 7.90 |
A5 | 0.9977 | 3525 | 29.3 | 440.32 | 2811 | 7.94 |
A20 | 0.9973 | 3556 | 29.5 | 445.71 | 2851 | 7.96 |
A30 | 0.9978 | 3705 | 30.8 | 509.79 | 3249 | 8.08 |
Fuel | R2 | ACO2mfpO2qt | EaCO2meas/R | EaCO2meas |
---|---|---|---|---|
A0 | 0.9589 | 0.2293 | −840 | −6972 |
A5 | 0.9505 | 0.2425 | −850 | −7055 |
A20 | 0.9641 | 0.2259 | −924 | −7669 |
A30 | 0.9635 | 0.205 | −1022 | −8483 |
Fuel | R2 | aCOmeas | n |
---|---|---|---|
A0 | 0.9070 | 2918 | −1.281 |
A5 | 0.8464 | 1153 | −0.616 |
A20 | 0.8123 | 1036 | −0.545 |
A30 | 0.8064 | 1007 | −0.535 |
Fuel | R2 | (−EaCOch + EaCO2ch)/R | {c2[1 + et]/etc5}mfn/(AF) |
---|---|---|---|
A0 | 0.7411 | 2459 | 0.0017 |
A5 | 0.8464 | 1625 | 0.0049 |
A20 | 0.8123 | 1507 | 0.0059 |
A30 | 0.8064 | 734 | 0.0122 |
Fuel | R2 | (EaCOch − EaCO2ch)/R | EaCOch/R | EaCOch [kJ/mol] | lnαiCOACODCO | n1 |
---|---|---|---|---|---|---|
A0 | 0.9973 | 2459 | 1021 | 8.5 | 2.29 | 0.29 |
A5 | 0.9980 | 1625 | 1900 | 15.8 | 4.30 | 0.54 |
A20 | 0.9968 | 1507 | 2049 | 17.0 | 4.58 | 0.57 |
A30 | 0.9989 | 734 | 2971 | 24.7 | 6.44 | 0.79 |
Fuel | EaCO2ch/R | lnαiCO2chACO2DCO2 | EaCO2meas/R | EaCOch/R | lnαiCOACODCO |
---|---|---|---|---|---|
A0 | 3590 | 7.90 | −840 | 1021 | 2.29 |
A5 | 3528 | 7.94 | −850 | 1900 | 4.30 |
A20 | 3554 | 7.96 | −924 | 2049 | 4.58 |
A30 | 3707 | 8.09 | −1022 | 2971 | 6.44 |
Parameter | Predicted | Empirically Determined |
---|---|---|
EaCO2Ch/R | 3538 | 3525 |
EaCOCh/R | 1278 | 1900 |
lnαiCO2chACO2DCO2 | 7.92 | 7.94 |
lnαiCOACODCO | 2.86 | 4.30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kulczycki, A.; Przysowa, R.; Białecki, T.; Gawron, B.; Jasiński, R.; Merkisz, J.; Pielecha, I. Empirical Modeling of Synthetic Fuel Combustion in a Small Turbofan. Energies 2024, 17, 2622. https://doi.org/10.3390/en17112622
Kulczycki A, Przysowa R, Białecki T, Gawron B, Jasiński R, Merkisz J, Pielecha I. Empirical Modeling of Synthetic Fuel Combustion in a Small Turbofan. Energies. 2024; 17(11):2622. https://doi.org/10.3390/en17112622
Chicago/Turabian StyleKulczycki, Andrzej, Radoslaw Przysowa, Tomasz Białecki, Bartosz Gawron, Remigiusz Jasiński, Jerzy Merkisz, and Ireneusz Pielecha. 2024. "Empirical Modeling of Synthetic Fuel Combustion in a Small Turbofan" Energies 17, no. 11: 2622. https://doi.org/10.3390/en17112622
APA StyleKulczycki, A., Przysowa, R., Białecki, T., Gawron, B., Jasiński, R., Merkisz, J., & Pielecha, I. (2024). Empirical Modeling of Synthetic Fuel Combustion in a Small Turbofan. Energies, 17(11), 2622. https://doi.org/10.3390/en17112622