Life Cycle Assessment of Electricity Production from Different Biomass Sources in Italy
Abstract
:1. Introduction
2. Materials and Methods
2.1. LCA Methodology
2.2. Goal and Scope Definition
Functional Unit and System Boundary
2.3. Inventory Data Analysis and Assumptions
2.3.1. Biogas Inventory
2.3.2. Solid Biomass: System Description and Inventory
2.3.3. Bioliquids: System Description and Inventory
Input/Output Flows | Unit | Biogas | Solid Biomass | Bioliquids |
---|---|---|---|---|
Inputs | ||||
Biomass | ||||
Dedicated biomass | ton | 2.41 × 10−03 | - | 1.68 × 10−04 |
Residual biomass | ton | 4.53 × 10−03 | 1.43 × 10−03 | 4.88 × 10−05 |
Transformation proceses | ||||
Pre-treatment (chipping) | ton | - | 9.69 × 10−04 | - |
Anaerobic digestion plant | p | 3.64 × 10−08 | - | - |
Oil power plant | p | - | - | 9.24 × 10−10 |
Cogeneration Plant | ||||
Electricity | kWh | 1.15 × 10+00 | 6.50 × 10−01 | - |
Heat | MJ | 4.07 × 10+00 | - | - |
Amount of lubricant | kg | 7.99 × 10−04 | - | - |
Water consumption | ||||
Water (vegetable, industrial, washing) | ton | 2.95 × 10−04 | 1.71 × 10−03 | - |
Transport | ||||
Transport, freight, lorry | tkm | 1.33 × 10−01 | 1.38 × 10−01 | 1.09 × 10−02 |
Transport, freight, sea | tkm | 1.44 × 10−01 | 1.83 × 10+00 | |
Transport, freight, train | tkm | 3.65 × 10−02 | ||
Outputs | ||||
Electricity | kWh | 1.00 | 1.00 | 1.00 |
Heat | MJ | 3.52 | - | - |
Waste | ||||
Wastewater | m3 | - | 5.36 × 10−04 | - |
Hazardous waste | ton | - | 5.67 × 10−08 | - |
Inert waste | ton | - | 4.36 × 10−07 | - |
Emissions to the air | ||||
* Methane, biogenic | g | 4.10 × 10+00 | - | - |
Carbon dioxide, biogenic | g | 4.35 × 10+02 | 3.26 × 10+02 | 3.43 × 10+02 |
Methane, biogenic | g | 1.46 × 10+00 | 7.54 × 10−01 | 1.08 × 10−02 |
Dinitrogen monoxide | g | 2.46 × 10−02 | 4.36 × 10−02 | 7.20 × 10−03 |
Nitrogen oxides, IT | g | 8.21 × 10+00 | 1.56 × 10−01 | 1.09 × 10+00 |
Carbon monoxide, biogenic | g | 2.46 × 10+00 | 1.09 × 10+01 | 5.40 × 10−02 |
NMVOC, non-methane volatile organic compounds, unspecified origin | g | 7.30 × 10−01 | 1.25 × 10+00 | 1.08 × 10−02 |
Particulates, < 10 um | g | 8.21 × 10−02 | 7.74 × 10−01 | 3.60 × 10−03 |
Particulate, <2.5 um | g | 8.21 × 10−02 | 7.74 × 10−01 | 2.76 × 10−03 |
Carbon black | g | 3.29 × 10−03 | 7.35 × 10−02 | 1.54 × 10−04 |
Sulfur dioxide, IT | g | - | 3.27 × 10−02 | 4.74 × 10−02 |
Ammonia, IT | g | - | 1.13 × 10−02 | - |
PAH, polycyclic aromatic hydrocarbons | g | - | 4.55 × 10−04 | 3.20 × 10−06 |
Benzo[a]pyrene | g | - | 1.37 × 10−04 | - |
Benzo[ß]fluoranthene | g | - | 1.55 × 10−04 | - |
Benzo[ĸ]fluoranthene | g | - | 6.96 × 10−05 | - |
Indeno[1,2,3-cd]pyrene | g | - | 8.91 × 10−05 | - |
Dioxin,2,3,7,8 Tetrachlorodibenzo-p- | g | - | 8.65 × 10−10 | 8.77 × 10−11 |
Polychlorinated biphenyls | g | - | 1.38 × 10−07 | - |
Benzene, hexachloro | g | - | 1.38 × 10−08 | - |
Cadmium | g | - | 1.27 × 10−05 | 5.16 × 10−07 |
Copper | g | - | 1.74 × 10−05 | 1.72 × 10−05 |
Mercury | g | - | 1.17 × 10−05 | 2.79 × 10−06 |
Lead | g | - | 4.53 × 10−05 | 9.08 × 10−06 |
Zinc | g | - | 3.30 × 10−04 | 1.25 × 10−05 |
Arsenic | g | - | 5.77 × 10−07 | 2.79 × 10−06 |
Chromium | g | - | 3.95 × 10−06 | 1.71 × 10−05 |
Nickel | g | 2.31 × 10−06 | 1.03 × 10−04 | |
Selenium | g | 5.77 × 10−07 | 3.71 × 10−06 |
2.4. Impact Assessment
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eurostat. «Eurostat Population Projections, 2019». Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Population_projections_at_regional_level (accessed on 20 February 2024).
- European Commission. «EU Reference Scenario 2020—Energy, Transport and GHG Emissions—Trends to 2050». Available online: https://energy.ec.europa.eu/system/files/2021-07/eu_reference_scenario_2020_final_report_0.pdf (accessed on 20 February 2024).
- Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions—The European Green Deal. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:52019DC0640 (accessed on 3 June 2024).
- Evans, A.; Strezov, V.; Evans, T.J. Assessment of sustainability indicators for renewable energy technologies. Renew. Sustain. Energy Rev. 2009, 13, 1082–1088. [Google Scholar] [CrossRef]
- Martín-Gamboa, M.; Iribarren, D.; García-Gusano, D.; Dufour, J. A review of life-cycle approaches coupled with data envelopment analysis within multi-criteria decision analysis for sustainability assessment of energy systems. J. Clean. Prod. 2017, 150, 164–174. [Google Scholar] [CrossRef]
- Madurai Elavarasan, R. The Motivation for Renewable Energy and its Comparison with Other Energy Sources: A Review. Eur. J. Sustain. Dev. Res. 2019, 3, em0076. [Google Scholar] [CrossRef] [PubMed]
- San Miguel, G.; Cerrato, M. Life Cycle Sustainability Assessment of the Spanish Electricity: Past, Present and Future Projections. Energies 2020, 13, 1896. [Google Scholar] [CrossRef]
- Mastisya Saharudin, D.; Kumar Jeswani, H.; Azapagic, A. Bioenergy with carbon capture and storage (BECSS): Life cycle environmental and economic assessment of electricity generated from palm oil wastes. Appl. Energy 2023, 349, 121506. [Google Scholar] [CrossRef]
- Duval-Dachary, S.; Beauchet, S.; Lorne, D.; Salou, T.; Helias, A.; Pastor, A. Life cycle assessment of bioenergy with carbon capture and storage systems: Critical review of life cycle inventories. Renew. Sust. Energy Rev. 2023, 183, 113415. [Google Scholar] [CrossRef]
- Garcia, R.; Marques, P.; Freire, F. Life-cycle assessment of electricity in Portugal. Appl. Energy 2014, 134, 563–572. [Google Scholar] [CrossRef]
- Messagie, M.; Mertens, J.; Oliveira, L.; Rangaraju, S.; Sanfelix, J.; Coosemans, T.; Van Mierlo, J.; Macharis, C. The hourly life cycle carbon footprint of electricity generation in Belgium, bringing a temporal resolution in life cycle assessment. Appl. Energy 2014, 134, 469–476. [Google Scholar] [CrossRef]
- Rakotoson, V.; Praene, J. A life cycle assessment approach to the electricity generation of French overseas territories. J. Clean. Prod. 2017, 168, 755–763. [Google Scholar] [CrossRef]
- Turconi, R.; Simonsen, C.G.; Byriel, I.P.; Astrup, T. Life cycle assessment of the Danish electricity distribution network. Int. J. Life Cycle Assess. 2014, 19, 100–108. [Google Scholar] [CrossRef]
- Stamford, L.; Azapagic, A. Life cycle sustainability assessment of UK electricity scenarios to 2070. Energy Sustain. Dev. 2014, 23, 194–211. [Google Scholar] [CrossRef]
- Thonemann, N.; Maga, D. Life Cycle Assessment of German Energy Scenarios. In Book Progress in Life Cycle Assessment; Springer: Cham, Switzerland, 2019; pp. 165–175. [Google Scholar] [CrossRef]
- Cellura, M.; Cusenza, M.; Guarino, F.; Longo, S.; Mistretta, M. Life cycle assessment of electricity generation scenarios in Italy. In Book Life Cycle Assessment of Energy Systems and Sustainable Energy Technologies; Springer: Cham, Switzerland, 2019; pp. 3–15. [Google Scholar] [CrossRef]
- Carvalho, M.L.; Marmiroli, B.; Girardi, P. Life cycle assessment of Italian electricity production and comparison with the European context. Energy Rep. 2022, 8, 561–568. [Google Scholar] [CrossRef]
- Parvez Mahmud, M.A.; Huda, N.; Hisan Farjana, H.; Lang, C. Life-cycle impact assessment of renewable electricity generation systems in the United States. Renew. Energy 2020, 151, 1028–1045. [Google Scholar] [CrossRef]
- Arcadia. Available online: www.arcadia.enea.it (accessed on 5 May 2024).
- Zucaro, A.; Ansanelli, G.; Fiorentino, G.; Cerbone, A.; Picarelli, A.; Beltrani, T.; Sbaffoni, S.; Scalbi, S.; Giammartini, M.; Giocoli, A.; et al. Studi di Life Cycle Assessment di filiera e sviluppo di dataset per la Banca Dati Italiana LCA del progetto Arcadia. Arcadia_Monografia_Energia. ISBN 978-88-8286-463-7. 2024; Available online: https://www.arcadia.enea.it/component/jdownloads/?task=download.send&id=57&Itemid=101 (accessed on 3 June 2024).
- ILCD International Life Cycle Data System. Available online: https://eplca.jrc.ec.europa.eu/ilcd.html (accessed on 3 June 2024).
- TERNA. Available online: https://www.terna.it/en/media/press-releases/detail/electrical-consumption-2022 (accessed on 20 February 2024).
- del Verme, M.; Lipari, D.; Lucido, G.; Maio, V.; Surace, V.; Liberatore, P. Rapporto Statistico 2021 Energia da Fonti Rinnovabili in Italia; Gestore dei Servizi Energetici S.p.A.: Rome, Italy, 2023. [Google Scholar]
- Decreto Legislativo 3 Marzo 2011, n. 28. Available online: https://www.gazzettaufficiale.it/eli/id/2011/03/28/011G0067/sg (accessed on 3 June 2024).
- Bordoni, A.; Romagnoli, E.; Foppa Pedretti, E.; Toscano, G.; Rossini, G.; Cozzolino, E.; Riva, G.L. La Filiera del Biogas. Aspetti Salienti Dello Stato Dell’arte e Prospettive; Ed. ASSAM—Agenzia Servizi Settore Agroalimentare delle Marche: Ancona, Italy, 2009; pp. 1–48. ISBN 9788882490904. [Google Scholar]
- Centro Ricerche Produzioni Animali. Available online: https://www.crpa.it/nqcontent.cfm?a_id=1109&lang=en (accessed on 20 February 2024).
- Consorzio Biogas. Available online: https://www.consorziobiogas.it/en/home-2/ (accessed on 20 February 2024).
- Ministerial Decree 15 September 2022. Available online: https://www.gse.it/documenti_site/Documenti%20GSE/Servizi%20per%20te/Attuazione%20misure%20PNRR/PRODUZIONE%20DI%20BIOMETANO/Normativa%20Servizi/Decreto%20Ministeriale_Biometano_15-9-2022.pdf (accessed on 3 June 2024).
- Centro Ricerche Produzioni Animali—C.R.P.A. S.p.A. Studio per la Valutazione degli Effetti sulle Emissioni delle Trasformazioni in Corso nel Settore degli Allevamenti; Prot.4/6/7.96 DOC-2018-2844, LaV, Studio_ISPRA_emissioni.docx, 15/10/18; C.R.P.A. S.p.A.: Reggio Emilia, Italy, 2018. [Google Scholar]
- Marchiori, C. Ricadute Socio-Economiche della Produzione di Energia da Biomasse Solide. 2019. Available online: https://www.centralemercure.com/wp-content/uploads/2020/06/RICADUTE-SOCIO-ECONOMICHE-DELLA-PRODUZIONE-DI-ENERGIA-DA-BIOMASSE-SOLIDE.pdf (accessed on 3 June 2024).
- Ministerial Decree 2 March 2010—Attuazione della Legge 27 Dicembre 2006, n. 296, sulla Tracciabilità delle Biomasse per la Produzione di Energia Elettrica. Available online: https://www.gazzettaufficiale.it/eli/id/2010/05/05/10A05115/sg (accessed on 3 June 2024).
- Legislative Decree 31 March 2011, n. 55. Available online: https://www.gazzettaufficiale.it/eli/id/2011/04/28/011G0098/sg (accessed on 3 June 2024).
- Zucaro, A.; Fiorentino, G.; Ulgiati, S. Constraints, impacts and benefits of lignocellulose conversion pathways to liquid biofuels and biochemicals. In Lignocellulosic Biomass to Liquid Biofuels, 2nd ed.; Elsevier Academic Press: Cambridge, MA, USA, 2020; pp. 249–282. [Google Scholar] [CrossRef]
- UE Commission Regulation 147/2013. Available online: https://eur-lex.europa.eu/eli/reg/2013/147/oj (accessed on 3 June 2024).
- FIPER (Federazione di Produttori di Energia da Fonti Rinnovabili). Quaderno CMA—Strategia 2024—BIOGAS: Driver per la Filiera Agroalimentare; FIPER: Milan, Italy, 2018; ISBN 9788894343717. Available online: https://www.monvisoenergia.it/wp-content/uploads/2019/01/QUADERNO-CMA-STRATEGIA-2024.pdf (accessed on 3 June 2024).
- Carrosio, G. La diffusione degli impianti per la produzione di energia da biogas agricolo in Italia: Una storia di isomorfismo istituzionale. Studi Organ. 2012, 9–26. [Google Scholar] [CrossRef]
- ISO 14040; Environmental Management—Life Cycle Assessment—Principles and Framework. ISO (International Organization for Standardization): Geneva, Switzerland, 2006. Available online: https://www.iso.org/standard/37456.html (accessed on 3 June 2024).
- ISO 14044; Environmental Management—Life Cycle Assessment—Requirements and Guidelines. ISO (International Organization for Standardization): Geneva, Switzerland, 2006. Available online: https://www.iso.org/standard/38498.html (accessed on 3 June 2024).
- Singh, A.D.; Upadhyay, A.; Shrivastava, S.; Vivekanand, V. Life-cycle assessment of sewage sludge-based large-scale biogas plant. Bioresour. Technol. 2020, 309, 123373. [Google Scholar] [CrossRef] [PubMed]
- Pennington, D.W.; Potting, J.; Finnveden, G.; Lindeijer, E.; Jolliet, O.; Rydberg, T.; Rebitzer, T. Life cycle assessment Part 2: Current impact assessment practice. Environ. Int. 2004, 30, 721–739. [Google Scholar] [CrossRef] [PubMed]
- Ekvall, T.; Assefa, G.; Björklund, A.; Eriksson, O.; Finnveden, G. What life-cycle assessment does and does not do in assessments of waste management. Waste Manag. 2007, 27, 989–996. [Google Scholar] [CrossRef] [PubMed]
- Energia da Biomasse Solide (EBS). Available online: https://biomasseenergia.eu/en/home-en/ (accessed on 3 June 2024).
- Agrillo, A.; dal Verme, M.; Liberatore, P.; Lipari, D.; Lucido, G.; Surace, V.M.e.V. Rapporto Statistico 2020 Energia da Fonti Rinnovabili in Italia; Gestore dei Servizi Energetici S.p.A.: Rome, Italy, 2022; Available online: https://www.gse.it/documenti_site/Documenti%20GSE/Rapporti%20statistici/Rapporto%20Statistico%20GSE%20-%20FER%202020.pdf (accessed on 20 March 2022).
- Bosco, S.; Nassi o Di Nasso, N.; Roncuccia, N.; Mazzoncini, M.; Bonari, E. Environmental performances of giant reed (Arundo donax L.) cultivated in fertile and marginal lands: A case study in the Mediterranean. Eur. J. Agron. 2016, 78, 20–31. [Google Scholar] [CrossRef]
- Agrillo, A.; dal Verme, M.; Liberatore, P.; Lipari, D.; Lucido, G.; Maio, V.; Surace, V. Rapporto Statistico 2019 Fonti Rinnovabili; Gestore dei Servizi Energetici S.p.A.: Rome, Italy, 2021; Available online: https://www.gse.it/documenti_site/Documenti%20GSE/Rapporti%20statistici/Rapporto%20Statistico%20GSE%20-%20FER%202019.pdf (accessed on 20 March 2023).
- Reichhalter, H.; Bozzo, A.; Dal Savio, S.; Guerra, T. Analisi Energetica, Ambientale ed Economica di Impianti a Biogas in Provincia di Bolzano—Relazione Conclusiva. 2011. Available online: http://www.provincia.bz.it/agricoltura/download/Bilancio_ecologico_di_impianti_a_biogas.pdf (accessed on 3 June 2024).
- Herambiente, T. Dichiarazione Ambientale 2020 Relativa al Complesso Impiantistico Via Traversagno 30, Località Voltana, Lugo (RA). 2020. Available online: https://ha.gruppohera.it/binary/hera_herambiente_r15/dichiarazioni_ambientali/Dichiarazione_Ambientale_Via_Traversagno_Voltana.1597749927.pdf (accessed on 20 December 2021).
- ISPRA; (Istituto Superiore per la Protezione e la Ricerca Ambientale, Rome, Italy). Personal communication, 2019.
- Jungbluth, N.; Chudacoff, M.; Dauriat, A.; Dinkel, F.; Doka, G.; Faist Emmenegger, M.; Gnansounou, E.; Kljun, N.; Schleiss, K.; Spielmann, M.; et al. Life Cycle Inventories of Bioenergy. Ecoinvent Report No.17, Dübendorf, CH. Available online: https://db.ecoinvent.org/reports/17_bioenergy.pdf (accessed on 3 June 2024).
- GSE—Gestore Servizi Energetici—Atlaimpianti 2020. Available online: https://www.gse.it/dati-e-scenari/atlaimpianti (accessed on 20 November 2022).
- Scrucca, F.; Rinaldi, C.; Morara, E.; Argnani, A. Studio LCA di filiera del cippato forestale. In Studi di Life Cycle Assessment di Filiera e Sviluppo di Dataset per la Banca Dati Italiana LCA del Progetto Arcadia; ENEA: Rome, Italy, 2022; pp. 5–15. ISBN 978-88-8286-465-1. Available online: https://www.arcadia.enea.it/component/jdownloads/?task=download.send&id=55&Itemid=101 (accessed on 3 June 2024).
- Ministerial Decree 6 July 2012—Incentivi per Energia da Fonti Rinnovabili Elettriche Non Fotovoltaiche. Available online: https://www.mise.gov.it/images/stories/normativa/DM_6_luglio_2012_sf.pdf (accessed on 3 June 2024).
- Entilocali Online. 2022. Available online: https://www.entilocali-online.it/ebs-energia-da-biomasse-virtuosa-per-ambiente-ed-economia (accessed on 3 June 2024).
- ISTAT 2020. Available online: http://dati.istat.it/Index.aspx?DataSetCode=DCSC_TRAMERCIS1# (accessed on 20 November 2022).
- FIPER (Federazione di Produttori di Energia da Fonti Rinnovabili). Biomasse Legnose—Petrolio verde per il Teleriscaldamento Italiano; FIPER: Milan, Italy, 2015; Available online: https://www.fiper.it/wp-content/uploads/libroFIPER-biomasse-legnose-petrolio-verde-per-il-teleriscaldamento-italiano.pdf (accessed on 3 June 2024).
- SeaRates. Available online: https://www.searates.com/it (accessed on 20 February 2023).
- ISTAT 2022. Available online: http://dati.istat.it/Index.aspx?DataSetCode=DCSC_TRAFERR (accessed on 20 July 2022).
- Progetto Biomasse. ENAMA (Ente Nazionale per la Meccanizzazione Agricola). Available online: https://www.progettobiomasse.it/it/documenti.php (accessed on 3 June 2024).
- Simapro. Available online: https://simapro.com (accessed on 3 June 2024).
- Zampori, L.; Pant, R. Suggestions for Updating the Product Environmental Footprint (PEF) Method, EUR 29682 EN; Publications Office of the European Union: Luxembourg, 2019; ISBN 978-92-76-00654-1. [Google Scholar] [CrossRef]
- Zucaro, A.; Forte, A.; Fagnano, M.; Bastianoni, S.; Basosi, R.; Fierro, A. Comparative attributional life cycle assessment of annual and perennial lignocellulosic feedstocks production under Mediterranean climate for biorefinery framework. Integr. Environ. Assess. Manag. 2015, 11, 397–403. [Google Scholar] [CrossRef]
- Forte, A.; Zucaro, A.; Faugno, S.; Basosi, R.; Fierro, A. Carbon footprint and fossil energy consumption of bio-ethanol fuel production from Arundo donax L. crops on marginal lands of Southern Italy. Energy 2018, 150, 222–235. [Google Scholar] [CrossRef]
- UE 58. SWD/2022/230 Final—Commission Staff Working Document: Implementing the Repower EU Action Plan: Investment, Hydrogen Accelerator and Achieving the Biomethane Targets. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52022SC0230 (accessed on 3 June 2024).
- Ghisellini, P.; Santagata, R.; Zucaro, A.; Ulgiati, S. Circular patterns of waste prevention and recovery. In E3S Web of Conferences; EDP Sciences: Les Ulis, France, 2019; Volume 119, p. 00003. [Google Scholar] [CrossRef]
- CONOE. Report Annuale 2018—Consuntivo Dell’attività di Raccolta e Trattamento degli Oli e dei Grassi Vegetali ed Animali Esausti da Parte del CONOE; CONOE: Rome, Italy, 2018; Available online: https://www.conoe.it/wp-content/uploads/2018/11/ANNUAL-REPORT-2018.pdf (accessed on 3 June 2024).
- EconomiaCircolare.com—Scusa, mi Ricicli L’olio? I Quaderni di EconomiaCircolare.com June 2022. Available online: https://economiacircolare.com/dossier-oli-esausti/ (accessed on 3 June 2024).
- Reijnders, L.; Huijbregts, M. Palm oil and the emission of carbon-based greenhouse gases. J. Clean. Prod. 2008, 16, 477–482. [Google Scholar] [CrossRef]
- Bissonnette, J.F. Is oil palm agribusiness a sustainable development option for Indonesia? A review of issues and options. Can. J. Dev. Stud. 2016, 37, 446–465. [Google Scholar] [CrossRef]
- Meijaard, E.; Garcia-Ulloa, J.; Sheil, D.; Wich, S.A.; Carlson, K.M.; Juffe-Bignoli, D.; Brooks, T.M. Oil Palm and Biodiversity: A Situation Analysis by the IUCN Oil Palm Task Force; IUCN; Oil Palm Task Force: Gland, Switzerland, 2018; p. xiii+116. Available online: https://portals.iucn.org/library/sites/library/files/documents/2018-027-En.pdf (accessed on 3 June 2024). [CrossRef]
- Memoria ENEA: Considerazioni sullo Stato Dell’arte e le Prospettive di Sviluppo delle Bioenergie in Italia; ENEA: Rome, Italy, 2020. Available online: https://www.camera.it/application/xmanager/projects/leg18/attachments/upload_file_doc_acquisiti/pdfs/000/004/007/Memoria_ENEA.pdf (accessed on 3 June 2024).
Impact Category | Unit | Abbreviation |
---|---|---|
Climate change | kg CO2 eq | CC |
Ozone depletion | kg CFC11 eq | OD |
Ionising radiation | kBq U-235 eq | IR |
Photochemical ozone formation | kg NMVOC eq | POD |
Particulate matter | disease inc. | PM |
Human toxicity, non-cancer | CTUh | HTnon-c |
Human toxicity, cancer | CTUh | HTc |
Acidification | mol H+ eq | AC |
Eutrophication, freshwater | kg P eq | EUf |
Eutrophication, marine | kg N eq | EUm |
Eutrophication, terrestrial | mol N eq | EUt |
Ecotoxicity, freshwater | CTUe | ECT |
Land use | Pt | LU |
Water use | m3 depriv. | WU |
Resource use, fossils | MJ | RDf |
Resource use, minerals and metals | kg Sb eq | RDm |
Impact Category | Unit | Biogas | Biomass | Bioliquids |
---|---|---|---|---|
CC | kg CO2 eq | 9.62 × 10−01 | 7.10 × 10−02 | 8.46 × 10−01 |
OD | kg CFC11 eq | 4.96 × 10−08 | 1.16 × 10−08 | 5.52 × 10−08 |
IR | kBq U-235 eq | 2.54 × 10−02 | 2.17 × 10−03 | 3.02 × 10−02 |
POD | kg NMVOC eq | 1.03 × 10−02 | 1.53 × 10−03 | 2.99 × 10−03 |
PM | disease inc. | 1.19 × 10−07 | 2.47 × 10−07 | 6.45 × 10−08 |
HTnon-c | CTUh | 1.88 × 10−08 | 3.72 × 10−09 | 1.94 × 10−08 |
HTc | CTUh | 6.50 × 10−10 | 8.88 × 10−10 | 1.37 × 10−09 |
AC | mol H+ eq | 1.09 × 10−02 | 1.68 × 10−04 | 4.84 × 10−03 |
EUf | kg P eq | 3.23 × 10−04 | 2.46 × 10−05 | 3.62 × 10−03 |
EUm | kg N eq | 1.10 × 10−02 | 1.13 × 10−04 | 3.96 × 10−03 |
EUt | mol N eq | 4.96 × 10−02 | 7.16 × 10−04 | 1.68 × 10−02 |
ECT | CTUe | 8.05 × 10+01 | 1.07 × 10+00 | 4.72 × 10+01 |
LU | Pt | 7.86 × 10+01 | 3.43 × 10−01 | 2.23 × 10+01 |
WU | m3 depriv. | 9.72 × 10+00 | 8.56 × 10−02 | 1.30 × 10+00 |
RDf | MJ | 6.27 × 10+00 | 4.77 × 10−01 | 4.30 × 10+00 |
RDm | kg Sb eq | 5.33 × 10−06 | 1.13 × 10−07 | 1.53 × 10−05 |
Impact Category | Electricity from Bioliquids | Electricity from Biogas | Electricity from Solid Biomass |
---|---|---|---|
CC | 1.04 × 10−04 | 1.19 × 10−04 | 8.76 × 10−06 |
OD | 1.03 × 10−06 | 9.25 × 10−07 | 2.16 × 10−07 |
IR | 7.15 × 10−06 | 6.02 × 10−06 | 5.15 × 10−07 |
POD | 7.36 x10−05 | 2.53 × 10−04 | 3.78 × 10−05 |
PM | 1.08 × 10−04 | 2.00 × 10−04 | 4.14 × 10−04 |
HTnon-c | 8.43 × 10−05 | 8.18 × 10−05 | 1.62 × 10−05 |
HTc | 8.09 × 10−05 | 3.85 × 10−05 | 5.26 × 10−05 |
AC | 8.72 × 10−05 | 1.96 × 10−04 | 3.03 × 10−06 |
EUf | 2.26 × 10−03 | 2.01 × 10−04 | 1.53 × 10−05 |
EUm | 2.03 × 10−04 | 5.64 × 10−04 | 5.76 × 10−06 |
EUt | 9.49 × 10−05 | 2.81 × 10−04 | 4.05 × 10−06 |
ECT | 1.11 × 10−03 | 1.89 × 10−03 | 2.50 × 10−05 |
LU | 2.73 × 10−05 | 9.59 × 10−05 | 4.18 × 10−07 |
WU | 1.14 × 10−04 | 8.48 × 10−04 | 7.46 × 10−06 |
RDf | 6.62 × 10−05 | 9.64 × 10−05 | 7.34 × 10−06 |
RDm | 2.40 × 10−04 | 8.37 × 10−05 | 1.78 × 10−06 |
Impact Category | Unit | Electricity from Biogas | ||
---|---|---|---|---|
BaU Scenario | Alterative Scenario | % of Variation | ||
CC | kg CO2 eq | 9.62 × 10−01 | 1.87 × 10−01 | 81% |
OD | kg CFC11 eq | 4.96 × 10−08 | 3.31 × 10−09 | 93% |
IR | kBq U-235 eq | 2.54 × 10−02 | 1.69 × 10−03 | 93% |
POD | kg NMVOC eq | 1.03 × 10−02 | 7.75 × 10−03 | 25% |
PM | disease inc. | 1.19 × 10−07 | 3.32 × 10−08 | 72% |
HTnon-c | CTUh | 1.88 × 10−08 | 5.95 × 10−10 | 97% |
HTc | CTUh | 6.50 × 10−10 | 2.75 × 10−11 | 96% |
AC | mol H+ eq | 1.09 × 10−02 | 5.86 × 10−04 | 95% |
EUf | kg P eq | 3.23 × 10−04 | 5.10 × 10−06 | 98% |
EUm | kg N eq | 1.10 × 10−02 | 2.74 × 10−03 | 75% |
EUt | mol N eq | 4.96 × 10−02 | 1.06 × 10−02 | 79% |
ECT | CTUe | 8.05 × 10+01 | 1.07 × 10+00 | 99% |
LU | Pt | 7.86 × 10+01 | 2.93 × 10−01 | 99% |
WU | m3 depriv. | 9.72 × 10+00 | 2.39 × 10−03 | 99% |
RDf | MJ | 6.27 × 10+00 | 2.82 × 10−01 | 95% |
RDm | kg Sb eq | 5.33 × 10−06 | 3.60 × 10−07 | 93% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zucaro, A.; Ansanelli, G.; Cerbone, A.; Picarelli, A.; Rinaldi, C.; Beltrani, T.; Sbaffoni, S.; Fiorentino, G. Life Cycle Assessment of Electricity Production from Different Biomass Sources in Italy. Energies 2024, 17, 2771. https://doi.org/10.3390/en17112771
Zucaro A, Ansanelli G, Cerbone A, Picarelli A, Rinaldi C, Beltrani T, Sbaffoni S, Fiorentino G. Life Cycle Assessment of Electricity Production from Different Biomass Sources in Italy. Energies. 2024; 17(11):2771. https://doi.org/10.3390/en17112771
Chicago/Turabian StyleZucaro, Amalia, Giuliana Ansanelli, Antonietta Cerbone, Antonio Picarelli, Caterina Rinaldi, Tiziana Beltrani, Silvia Sbaffoni, and Gabriella Fiorentino. 2024. "Life Cycle Assessment of Electricity Production from Different Biomass Sources in Italy" Energies 17, no. 11: 2771. https://doi.org/10.3390/en17112771
APA StyleZucaro, A., Ansanelli, G., Cerbone, A., Picarelli, A., Rinaldi, C., Beltrani, T., Sbaffoni, S., & Fiorentino, G. (2024). Life Cycle Assessment of Electricity Production from Different Biomass Sources in Italy. Energies, 17(11), 2771. https://doi.org/10.3390/en17112771