On the Determination of Efficiency of a Gas Compressor
Abstract
:1. Introduction
1.1. Scope of Compressor Types Considered in This Work
1.2. Review of Frameworks for Compressor Efficiency Determination
1.3. Uncertainty of Compressor Efficiency Determination
1.4. Framework for Analysis
1.5. Determination of Work, Heat Transfer and Process Irreversibility
- (a)
- The physical system is adiabatic (no heat transfer):
- (b)
- The physical system introduces a known amount of heat transfer:
- (c)
- The physical system introduces a known amount of irreversibility:
- (d)
- A known amount of input specific work is applied to the system:
- (e)
- The physical system is ideal (no irreversibilities):
1.6. Flow Work Determination for Perfect, Ideal and Real Gas
2. ASME PTC-10, the Standard Method of Determination of Compressor Efficiency
2.1. Polytropic Efficiency
2.2. Isentropic Efficiency
3. A Practical Application of Efficiency Values
3.1. Real Process Defined with an Isentropic Efficiency
3.2. Real Process Defined with a Polytropic Efficiency
3.3. A Numerical Example
4. The Problem with ASME PTC-10
5. A Suggested Improvement for ASME PTC-10
5.1. Revised Formulation
5.2. Backward Compatibility with ASME PTC-10
5.3. Summary of the Benefits
- The overall effect is to extend the ASME PTC-10 scheme, so that actual compressor performance can be assessed, rather than the performance of a compression process.
- Compressor irreversibility becomes prominent as a comparison parameter, whereas beforehand, the standard did not consider it. Establishing effectively also quantifies of the compressor.
- The modification permits the consistent, and rational analysis of compressors capable of near isothermal performance, so that their performance can be sensibly compared with compressors designed to perform near adiabatically, whereas this was not possible with the ASME PTC-10 metric with an imputed .
5.4. A Further Numerical Example
6. Two Illustrative Case Studies
6.1. Multi-Stage Polytropic Air Compression
6.2. Hydraulic Air Compression
6.3. Comparison of Case Studies
7. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- ASME, American Society of Mechanical Engineers. Performance Test Code 10, 1997. Performance Test Code on Compressors and Exhausters; American Society of Mechanical Engineers: New York, NY, USA, 1997. [Google Scholar]
- Kayode Coker, A. (Ed.) Chapter 18—Compression Equipment (Including Fans). In Ludwig’s Applied Process Design for Chemical and Petrochemical Plants, 4th ed.; Gulf Professional Publishing: Houston, TX, USA, 2015; pp. 729–978. ISBN 9780750685245. [Google Scholar] [CrossRef]
- Pandeya, P.N.; Soedel, W. A Generalized Approach towards Compressor Performance Analysis. International Compressor Engineering Conference. p. 257. 1978. Available online: https://docs.lib.purdue.edu/icec/257 (accessed on 22 June 2024).
- Rasmussen, B.D.; Jakobsen, A. Review of Compressor Models and Performance Characterizing Variables. International Compressor Engineering Conference. 2000. p. 1429. Available online: https://docs.lib.purdue.edu/icec/1429 (accessed on 22 June 2024).
- Ueno, K.; Bye, R.E.; Hunter, K.S. Compressor Efficiency Definitions. Vairex Corporation. 2003. Available online: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=bda1db4820bf65e7fed2f935775245b8304ccdd2 (accessed on 22 June 2024).
- Panchal, K.; Hohlweg, W. How PTC-10 Has Evolved. Turbomach. Mag. 2023, 64, 24–26. Available online: https://cdn.sanity.io/files/0vv8moc6/turbomag/950321de3fecf83f0a76f44b21359d5695b49191.pdf/0123_0223_TRB_Jan_Feb_2023_ezine_web_2.pdf (accessed on 22 June 2024).
- Casey, M.V. Accounting for losses and definitions of efficiency in turbomachinery stages. Proc. IMechE Part A J. Power Energy 2007, 221, 735–743. [Google Scholar] [CrossRef]
- Lou, F.; Fabian, J.; Key, N. The effect of gas models on compressor efficiency including uncertainty. J. Eng. Gas Turbines Power 2014, 136, 012601-1–012601-8. [Google Scholar] [CrossRef]
- McPherson, M.J. Subsurface Ventilation and Environmental Engineering; Springer: Amsterdam, The Netherlands, 1993. [Google Scholar]
- Lemmon, E.W.; Huber, M.L.; McLinden, M.O. NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP; Version 9.1; National Institute of Standards and Technology, Standard Reference Data Program: Gaithersburg, ML, USA, 2013. [Google Scholar]
- Kunz, O.; Klimeck, R.; Wagner, W.; Jaescke, M. The GERG-2004 Wide-Range Equation of State for Natural Gases and Other Mixtures; GERG Technical Monograph 15 and Fortschr.-Ber. VDI, Reihe 6, Nr. 557; VDI Verlag: Düsseldorf, Germany, 2007. [Google Scholar]
- Press, W.H.; Teukolsky, S.A.; Vetterling, W.T.; Flannery, B.P. Numerical Recipes in C, The Art of Scientific Computing, 3rd ed.; Cambridge University Press: New York, NY, USA, 2007. [Google Scholar]
- Sandberg, M.R.; Colby, G.M. Limitations of ASME PTC-10 in accurately evaluating centrifugal compressor thermodynamic performance. In Proceedings of the 42nd Turbomachinery Symposium, Houston, TX, USA, 1–3 October 2013; Available online: https://pdfs.semanticscholar.org/07a4/dd1a96659eff5266d370fa0c1f15ef4aabf2.pdf (accessed on 22 June 2024).
- Schultz, J.M. The Polytropic analysis of centrifugal compressors. ASME J. Eng. Power 1962, 84, 69–82. [Google Scholar] [CrossRef]
- Wei, T.C. Real Gas vs. Ideal Gas, Predicting Discharge Temperature of a Centrifugal Compressor in a Realistic Way Using ASME PTC 10. CompressorTech2, August–September 2016. Available online: http://www.gallois.be/ggmagazine_2017/gg_02_03_2017_66.pdf (accessed on 22 October 2017).
- Manzoor, M.W. Comparison of Polytropic and Isentropic Efficiency of Natural Gas Compressor Calculated Using ASPEN HISYS and Using Manual Calculations. Online Presentation. 2014. Available online: https://www.slideshare.net/slideshow/presentation-on-calculation-of-polytropic-and-isentropic-efficiency-of-natural-gas-compressors/40692248 (accessed on 1 July 2024).
- Heo, J.N.; Kim, M.S.; Baik, S.; Bae, S.J.; Lee, J.I. Thermodynamic study of supercritical CO2 Brayton cycle using an isothermal compressor. Appl. Energy 2017, 206, 1118–1130. [Google Scholar] [CrossRef]
- Pavese, V.; Millar, D.L.; Verda, V. Mechanical efficiency of hydraulic air compressors. ASME J. Energy Resour. Technol. 2016, 138, 062005. [Google Scholar] [CrossRef]
- Millar, D.L.; Young, S.M. Performance map of the hydraulic air compressor (HAC) installed at Dynamic Earth, Sudbury. Appl. Therm. Eng. 2024, 248, 123156. [Google Scholar] [CrossRef]
- Young, S.M.; Pourmahdavi, M.; Hutchison, A.; Millar, D.L. Gas absorption in a hydraulic air compressor. Part I: Simultaneous hydrodynamic and mass transfer bubbly flow model. Chem. Eng. Sci. 2022, 260, 117871. [Google Scholar] [CrossRef]
- Young, S.; Millar, D. Hydraulic Air Compressor Demonstrator Performance Data, 1st ed.; Borealis (Canadian Dataverse Repository): Toronto, ON, Canada, 2023. [Google Scholar] [CrossRef]
- Pourmahdavi, M.; Young, S.M.; Hutchison, A.; Noula, C.; Millar, D.L. Gas absorption in a hydraulic air compressor. Part II: Experimental verification. Chem. Eng. Sci. 2022, 261, 117870. [Google Scholar] [CrossRef]
Case | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Sum of | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Efficiency type | Isentropic | Polytropic | Polytropic | Polytropic | Polytropic | Polytropic | Polytropic | Polytropic | Polytropic | Cases | ||
Defined value | 77.00% | 80.19% | 80.19% | 80.19% | 80.19% | 80.19% | 80.19% | 80.19% | 80.19% | 4 to 9 | ||
Initial air state | ||||||||||||
P1 | kPa | 101.325 | 101.325 | 101.325 | 101.325 | 121.691 | 146.151 | 175.528 | 210.809 | 253.181 | ||
t1 | °C | 20.00 | 20.00 | 20.00 | 20.00 | 39.77 | 60.84 | 83.30 | 107.23 | 132.68 | ||
T1 | K | 293.15 | 293.15 | 293.15 | 293.15 | 312.92 | 333.99 | 356.45 | 380.38 | 405.83 | ||
Pressure ratio | ||||||||||||
rp | 3 | 3 | 3 | 1.201 | 1.201 | 1.201 | 1.201 | 1.201 | 1.201 | |||
Final air state | ||||||||||||
P3 | kPa | 303.975 | 303.975 | 303.975 | 121.691 | 146.151 | 175.528 | 210.809 | 253.181 | 304.071 | ||
t3 | °C | 159.67 | 159.67 | 159.67 | 39.77 | 60.84 | 83.30 | 107.23 | 132.68 | 159.75 | ||
T3 | K | 432.82 | 432.82 | 432.82 | 312.92 | 333.99 | 356.45 | 380.38 | 405.83 | 432.90 | ||
Additional condition | ||||||||||||
qAB | qAB | FAB | qAB | qAB | qAB | qAB | qAB | qAB | ||||
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||||
Work, Heat and Irreversibility (Equation (5)) | ||||||||||||
dH | kJ/kg | 141.061 | 141.060 | 141.060 | 19.860 | 21.201 | 22.632 | 24.157 | 25.781 | 27.511 | 141.142 | |
IntVdP | kJ/kg | 113.101 | 113.101 | 113.101 | 15.925 | 17.001 | 18.148 | 19.371 | 20.674 | 22.061 | 113.180 | |
IntTdS | kJ/kg | 27.960 | 27.958 | 27.958 | 3.934 | 4.200 | 4.483 | 4.786 | 5.107 | 5.450 | 27.960 | |
w13 | kJ/kg | 141.061 | 141.060 | 113.101 | 19.860 | 21.201 | 22.632 | 24.157 | 25.781 | 27.511 | 141.142 | |
q13 | kJ/kg | 0.000 | 0.000 | 27.958 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |
F13 | kJ/kg | 27.960 | 27.958 | 0.000 | 3.934 | 4.200 | 4.483 | 4.786 | 5.107 | 5.450 | 27.960 | |
Backcalculated polytropic efficiency | ||||||||||||
ASME PTC 10 | 80.19% | 80.19% | 80.19% | 80.19% | 80.19% | 80.19% | 80.19% | 80.19% | 80.19% | |||
IntVdP/w13 | 80.18% | 80.18% | 100.00% | 80.19% | 80.19% | 80.19% | 80.19% | 80.19% | 80.19% | |||
Incremental polytropic efficiency | ||||||||||||
Mean density | kg/m3 | 1.280 | 1.439 | 1.620 | 1.822 | 2.051 | 2.308 | |||||
dP/dH | m3/kg | 1.025 | 1.154 | 1.298 | 1.460 | 1.644 | 1.850 | |||||
(Equation (15)) | 80.15% | 80.15% | 80.15% | 80.15% | 80.15% | 80.15% |
Case | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 7 | 8 | ||
---|---|---|---|---|---|---|---|---|---|---|---|
Efficiency type | Polytropic | Polytropic | Polytropic | Polytropic | Polytropic | Polytropic | Polytropic | Polytropic | Polytropic | ||
Defined value | 80.19% | 80.19% | 80.19% | 80.19% | 80.19% | 80.19% | 80.19% | 80.19% | 80.19% | ||
Initial air state | |||||||||||
P1 | kPa | 101.325 | 101.325 | 101.325 | 101.325 | 101.325 | 101.325 | 101.325 | 101.325 | 101.325 | |
t1 | °C | 20.00 | 20.00 | 20.00 | 20.00 | 20.00 | 20.00 | 20.00 | 20.00 | 20.00 | |
T1 | K | 293.15 | 293.15 | 293.15 | 293.15 | 293.15 | 293.15 | 293.15 | 293.15 | 293.15 | |
Pressure ratio | |||||||||||
rp | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | ||
Final air state | |||||||||||
P3 | kPa | 303.975 | 303.975 | 303.975 | 303.975 | 303.975 | 303.975 | 303.975 | 303.975 | 303.975 | |
t3 | °C | 159.67 | 159.67 | 147.83 | 127.84 | 100.04 | 69.81 | 39.32 | 27.05 | 20.03 | |
T3 | K | 432.82 | 432.82 | 420.98 | 400.99 | 373.19 | 342.96 | 312.47 | 300.20 | 293.18 | |
Additional condition | |||||||||||
qAB | qAB | qAB | qAB | qAB | qAB | qAB | qAB | qAB | |||
0 | −10 | −10 | −26.8 | −50 | −75 | −100 | −110 | −115.7 | |||
Work, Heat and Irreversibility (Equation (5)) | |||||||||||
dH | kJ/kg | 141.060 | 141.060 | 128.991 | 108.656 | 80.442 | 49.849 | 19.033 | 6.638 | −0.447 | |
IntVdP | kJ/kg | 113.101 | 113.101 | 111.443 | 108.609 | 104.588 | 100.103 | 95.441 | 93.520 | 92.409 | |
IntTdS | kJ/kg | 27.958 | 27.958 | 17.548 | 0.048 | −24.146 | −50.255 | −76.407 | −86.882 | −92.857 | |
w13 | kJ/kg | 141.060 | 141.060 | 138.991 | 135.456 | 130.442 | 124.849 | 119.033 | 116.638 | 115.253 | |
q13 | kJ/kg | 0.000 | 0.000 | −10.000 | −26.800 | −50.000 | −75.000 | −100.000 | −110.000 | −115.700 | |
F13 | kJ/kg | 27.958 | 27.958 | 27.548 | 26.848 | 25.854 | 24.745 | 23.593 | 23.118 | 22.843 | |
Backcalculated polytropic efficiency | |||||||||||
ASME PTC 10 | 80.19% | 80.19% | 86.41% | 99.97% | 130.03% | 200.8% | 501.5% | 1409% | −20,663% | ||
IntVdP/w13 | 80.18% | 80.18% | 80.18% | 80.18% | 80.18% | 80.18% | 80.18% | 80.18% | 80.18% |
Observed Operating Conditions | Equipped with Water Jacket | ||||||
---|---|---|---|---|---|---|---|
Stage 1 | Stage 2 | Stage 3 | Stage 1 | Stage 2 | Stage 3 | ||
Inlet condition | Inlet condition | ||||||
P1 (kPa) | 101.051 | 205.1 | 323.9 | P1 (kPa) | 101.051 | 205.1 | 323.9 |
t1 (°C) | −22.9 | 8.0 | 8.0 | t1 (°C) | −22.9 | 8.0 | 8.0 |
T1 (K) | 250.3 | 281.2 | 281.2 | T1 (K) | 250.3 | 281.2 | 281.2 |
Delivery condition | Delivery condition | ||||||
P3 (kPa) | 205.1 | 323.9 | 527.4 | P3 (kPa) | 205.1 | 323.9 | 527.4 |
t3_actual (°C) | 51.8 | 71.2 | 74.0 | ||||
T3_actual (K) | 325.0 | 344.4 | 347.2 | ||||
Process-defining parameters | Process-defining parameters | ||||||
Adiabatic | Adiabatic | Adiabatic | Real | Real | Real | ||
qAB (kJ/kg) | 0 | 0 | 0 | qAB (kJ/kg) | −38.000 | −57.000 | −60.000 |
eta_poly,adia | 77.47% | 64.31% | 65.97% | eta_poly,adia | 77.47% | 64.31% | 65.97% |
Stage performance | Stage performance | ||||||
T3_poly (K) | 325.0 | 344.3 | 347.1 | T3_poly (K) | 282.0 | 281.8 | 281.2 |
dH (kJ/kg) | 74.982 | 63.560 | 66.371 | dH (kJ/kg) | 31.667 | 0.356 | −0.453 |
IntVdP (kJ/kg) | 58.090 | 40.873 | 43.783 | IntVdP (kJ/kg) | 53.972 | 36.883 | 39.282 |
IntTdS (kJ/kg) | 16.892 | 22.687 | 22.587 | IntTdS (kJ/kg) | −22.306 | −36.527 | −39.735 |
w13 (kJ/kg) | 74.982 | 63.560 | 66.371 | w13 (kJ/kg) | 69.667 | 57.356 | 59.547 |
q13 (kJ/kg) | 0.000 | 0.000 | 0.000 | q13 (kJ/kg) | −38.000 | −57.000 | −60.000 |
F13 (kJ/kg) | 16.892 | 22.687 | 22.587 | F13 (kJ/kg) | 15.694 | 20.473 | 20.265 |
Motor sizing | Motor sizing | ||||||
Motor Eff | 98.0% | 98.0% | 98.0% | Motor Eff | 98.0% | 98.0% | 98.0% |
W13e (kJ/kg) | 76.512 | 64.857 | 67.726 | W13e (kJ/kg) | 71.089 | 58.527 | 60.762 |
Motor Pwr (kW) | 3316 | 2811 | 2935 | Motor Pwr (kW) | 3081 | 2537 | 2634 |
Intercooler/Aftercooler processes | Intercooler/Aftercooler processes | ||||||
P_i (kPa) | 205.1 | 323.9 | 527.4 | P_i (kPa) | 205.1 | 323.9 | 527.4 |
t_i (oC) | 8 | 8 | 11.8 | t_i (oC) | 8 | 8 | 11.8 |
T_i (K) | 281.15 | 281.15 | 284.95 | T_i (K) | 281.15 | 281.15 | 284.95 |
h_i (kJ/kg) | 325.241 | 344.631 | 347.134 | h_i (kJ/kg) | 281.926 | 281.427 | 280.311 |
h_i_del (kJ/kg) | 281.071 | 280.764 | 284.092 | h_i_del (kJ/kg) | 281.071 | 280.764 | 284.092 |
q _i (kJ/kg) | −44.170 | −63.867 | −63.043 | q _i (kJ/kg) | −0.854 | −0.663 | 3.781 |
Summary | Summary | ||||||
Total indicated work | 142.746 | (kJ/kg) | Total indicated work | 130.137 | (kJ/kg) | ||
Total input work | 204.913 | (kJ/kg) | Total work | 186.570 | (kJ/kg) | ||
Heat transferred in stages | 0.000 | (kJ/kg) | Heat transferred in stages | −155.000 | (kJ/kg) | ||
Heat transferred in coolers | −171.080 | (kJ/kg) | Heat transferred in coolers | 2.264 | (kJ/kg) | ||
Indicated work/Total work | 0.697 | Indicated work/Total work | 0.698 | ||||
Total electrical work | 209.095 | (kJ/kg) | Total electrical work | 190.378 | (kJ/kg) | ||
Total electrical power | 9063 | (kW) | Total electrical power | 8251 | (kW) |
Air Flow Rate (kg/s, scfm (CAGI)) | Delivery Air Temperature (°C) | (kJ/kg air) | CAGI Performance (kW/100 scfm (CAGI)) | ||
---|---|---|---|---|---|
3-stage centrifugal compressor with intercooling and aftercooling | 43.342 | 11.8 | 69.7% | 209.1 | 11.74 |
3-stage centrifugal compressor with stage water jackets, intercooling and aftercooling | 43.342 | 11.8 | 69.8% | 190.4 | 10.68 |
Hydraulic air compressor | 4.059 | 10.1 | 76.4% | 165.1 | 9.26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Millar, D.L. On the Determination of Efficiency of a Gas Compressor. Energies 2024, 17, 3260. https://doi.org/10.3390/en17133260
Millar DL. On the Determination of Efficiency of a Gas Compressor. Energies. 2024; 17(13):3260. https://doi.org/10.3390/en17133260
Chicago/Turabian StyleMillar, Dean L. 2024. "On the Determination of Efficiency of a Gas Compressor" Energies 17, no. 13: 3260. https://doi.org/10.3390/en17133260
APA StyleMillar, D. L. (2024). On the Determination of Efficiency of a Gas Compressor. Energies, 17(13), 3260. https://doi.org/10.3390/en17133260