A Review on Surface Functionalization and Characterization of Silicon Oxide Nanoparticle: Implications for Enhanced Hydrocarbon Recovery
Abstract
:1. Introduction
2. Functionalization and Characterization of SiO2-NP
2.1. Functionalization
2.2. Characterization
2.2.1. The Morphology
2.2.2. Particle Size Distribution
2.2.3. Wettability
2.2.4. Functional Groups
2.2.5. Surface Electrical Properties
3. Current Research Gaps and Future Outlooks
- (1)
- Surface functionalization of SiO2-NPs occasionally has low grafting rates or coating failures [35]. To circumvent these issues, it is recommended to introduce innovative coating agents such as catalysts or ionic liquids and modulate environmental conditions such as temperature and pressure. Another possibility is to alter the surface properties of SiO2-NP during synthesis to augment functionalization efficiency [24].
- (2)
- The effect of functionalization on SiO2-NP surface roughness remains underexplored despite the potential influence of roughness on particle wettability [65]. Hence, it becomes essential to extensively characterize the state of particle surface roughness both before and after modification.
- (3)
- The wettability of the SiO2-NP surface plays an important role in the EOR mechanism [66]. The current method for the characterization of SiO2-NP surface wettability needs further improvement. It is recommended that SiO2-NP surface wettability be characterized using microfluidics [67] combined with immersion thermal measurements [39].
- (4)
- In the process of improving crude oil recovery, some specific chemicals such as biodiesel-based flow improvers (Biodiesel based on soybean oil) and a non-ionic surfactant (Alkyl glucoside derivative) are used in the process to improve crude oil recovery [68,69]. Attempting EOR of specific chemicals mixed functionalized SiO2-NP. Similar to the evaluation of functionalized SiO2-NP in EOR, the performance of EOR of these two chemical products and the mixtures can be evaluated through core flooding experiments or microfluidic experiments [44,46,47,50].
- (5)
- The addition of functionalized SiO2-NPs during the geological storage of CO2 in natural gas hydrate reservoirs reduces the fluidity of CO2 and improves its geological storage efficiency. Furthermore, the potential impact of functionalized SiO2-NPs on hydrogen geological storage and farming, such as the wettability of geological rock surfaces, solid–fluid interface tension, capillary pressure, relative permeability, and flowability ratio, may be affected by using functionalized SiO2-NPs [70,71,72,73].
4. Conclusions
- (1)
- Physical adsorption [21] and chemical bonding [20] are the main methods for SiO2-NP surface functionalization, where physical adsorption functionalization typically occurs between SiO2-NP and surfactants, while chemical bonding happens between SiO2-NP and any modifier, both surfactants and polymers [24].
- (2)
- (3)
- The types of modifiers have a significant impact on the surface properties of SiO2-NPs [31,32,37]. Current characterization techniques mainly focus on analyzing the surface properties of SiO2-NPs before and after functionalization, such as morphology, size distribution, wettability, functional groups and electrical properties [24].
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhou, Y.; Wu, X.; Zhong, X.; Sun, W.; Pu, H.; Zhao, J.X. Surfactant-augmented functional silica nanoparticle based nanofluid for enhanced oil recovery at high temperature and salinity. ACS Appl. Mater. Interfaces 2019, 11, 45763–45775. [Google Scholar] [CrossRef] [PubMed]
- Cao, W.; Xie, K.; Lu, X.; Liu, Y.; Zhang, Y. Effect of profile-control oil-displacement agent on increasing oil recovery and its mechanism. Fuel 2019, 237, 1151–1160. [Google Scholar] [CrossRef]
- Bai, Y.; Wang, Z.; Shang, X.; Dong, C.; Zhao, X.; Liu, P. Experimental evaluation of a surfactant/compound organic alkalis flooding system for enhanced oil recovery. Energy Fuels 2017, 31, 5860–5869. [Google Scholar] [CrossRef]
- Xie, K.; Lu, X.; Li, Q.; Jiang, W.; Yu, Q. Analysis of reservoir applicability of hydrophobically associating polymer. Spe J. 2016, 21, 1–9. [Google Scholar] [CrossRef]
- Chen, C.; Wang, S.; Kadhum, M.J.; Harwell, J.H.; Shiau, B.-J. Using carbonaceous nanoparticles as surfactant carrier in enhanced oil recovery: A laboratory study. Fuel 2018, 222, 561–568. [Google Scholar] [CrossRef]
- Guo, C.; Xu, J.; Wei, M.; Jiang, R. Experimental study and numerical simulation of hydraulic fracturing tight sandstone reservoirs. Fuel 2015, 159, 334–344. [Google Scholar] [CrossRef]
- Alvarado, V.; Manrique, E. Enhanced oil recovery: An update review. Energies 2010, 3, 1529–1575. [Google Scholar] [CrossRef]
- Kim, I.; Taghavy, A.; DiCarlo, D.; Huh, C. Aggregation of silica nanoparticles and its impact on particle mobility under high-salinity conditions. J. Pet. Sci. Eng. 2015, 133, 376–383. [Google Scholar] [CrossRef]
- Gong, X.; Lin, B. Time-varying effects of oil supply and demand shocks on China’s macro-economy. Energy 2018, 149, 424–437. [Google Scholar] [CrossRef]
- Askari, H.; Krichene, N. An oil demand and supply model incorporating monetary policy. Energy 2010, 35, 2013–2021. [Google Scholar] [CrossRef]
- Ghosh, S. Import demand of crude oil and economic growth: Evidence from India. Energy Policy 2009, 37, 699–702. [Google Scholar] [CrossRef]
- Hendraningrat, L.; Li, S.; Torsæter, O. Effect of some parameters influencing enhanced oil recovery process using silica nanoparticles: An experimental investigation. In Proceedings of the SPE Reservoir Characterisation and Simulation Conference and Exhibition, Abu Dhabi, UAE, 16–18 September 2013; p. SPE-165955-MS. [Google Scholar]
- Rezvani, H.; Panahpoori, D.; Riazi, M.; Parsaei, R.; Tabaei, M.; Cortés, F.B. A novel foam formulation by Al2O3/SiO2 nanoparticles for EOR applications: A mechanistic study. J. Mol. Liq. 2020, 304, 112730. [Google Scholar] [CrossRef]
- Mohajeri, M.; Rasaei, M.R.; Hekmatzadeh, M. Experimental study on using SiO2 nanoparticles along with surfactant in an EOR process in micromodel. Pet. Res. 2019, 4, 59–70. [Google Scholar] [CrossRef]
- Ahmadi, M.-A.; Ahmad, Z.; Phung, L.T.K.; Kashiwao, T.; Bahadori, A. Evaluation of the ability of the hydrophobic nanoparticles of SiO2 in the EOR process through carbonate rock samples. Pet. Sci. Technol. 2016, 34, 1048–1054. [Google Scholar] [CrossRef]
- Kazemzadeh, Y.; Sharifi, M.; Riazi, M.; Rezvani, H.; Tabaei, M. Potential effects of metal oxide/SiO2 nanocomposites in EOR processes at different pressures. Colloids Surf. A Physicochem. Eng. Asp. 2018, 559, 372–384. [Google Scholar] [CrossRef]
- Corredor, L.M.; Aliabadian, E.; Husein, M.; Chen, Z.; Maini, B.; Sundararaj, U. Heavy oil recovery by surface modified silica nanoparticle/HPAM nanofluids. Fuel 2019, 252, 622–634. [Google Scholar] [CrossRef]
- Bila, A.; Stensen, J.Å.; Torsæter, O. Experimental evaluation of oil recovery mechanisms using a variety of surface-modified silica nanoparticles in the injection water. In Proceedings of the SPE Norway Subsurface Conference, Bergen, Norway, 17 April 2019; p. D011S003R003. [Google Scholar]
- Jia, H.; Dai, J.; Miao, L.; Wei, X.; Tang, H.; Huang, P.; Jia, H.; He, J.; Lv, K.; Liu, D. Potential application of novel amphiphilic Janus-SiO2 nanoparticles stabilized O/W/O emulsion for enhanced oil recovery. Colloids Surf. A Physicochem. Eng. Asp. 2021, 622, 126658. [Google Scholar] [CrossRef]
- Dai, C.; Wang, X.; Li, Y.; Lv, W.; Zou, C.; Gao, M.; Zhao, M. Spontaneous imbibition investigation of self-dispersing silica nanofluids for enhanced oil recovery in low-permeability cores. Energy Fuels 2017, 31, 2663–2668. [Google Scholar] [CrossRef]
- Zhao, M.; Lv, W.; Li, Y.; Dai, C.; Wang, X.; Zhou, H.; Zou, C.; Gao, M.; Zhang, Y.; Wu, Y. Study on the synergy between silica nanoparticles and surfactants for enhanced oil recovery during spontaneous imbibition. J. Mol. Liq. 2018, 261, 373–378. [Google Scholar] [CrossRef]
- Omran, M.; Akarri, S.; Torsaeter, O. The effect of wettability and flow rate on oil displacement using polymer-coated silica nanoparticles: A microfluidic study. Processes 2020, 8, 991. [Google Scholar] [CrossRef]
- Sun, X.; Zhang, Y.; Chen, G.; Gai, Z. Application of nanoparticles in enhanced oil recovery: A critical review of recent progress. Energies 2017, 10, 345. [Google Scholar] [CrossRef]
- Sun, W.; Pu, H.; Pierce, D.; Zhao, J.X. Silica-Based Nanoparticles: Outlook in the Enhanced Oil Recovery. Energy Fuels 2023, 37, 16267–16281. [Google Scholar] [CrossRef]
- Afekare, D.; Garno, J.; Rao, D. Enhancing oil recovery using silica nanoparticles: Nanoscale wettability alteration effects and implications for shale oil recovery. J. Pet. Sci. Eng. 2021, 203, 108897. [Google Scholar] [CrossRef]
- ShamsiJazeyi, H.; Miller, C.A.; Wong, M.S.; Tour, J.M.; Verduzco, R. Polymer-coated nanoparticles for enhanced oil recovery. J. Appl. Polym. Sci. 2014, 131. [Google Scholar] [CrossRef]
- Hadia, N.J.; Ng, Y.H.; Stubbs, L.P.; Torsæter, O. High salinity and high temperature stable colloidal silica nanoparticles with wettability alteration ability for eor applications. Nanomaterials 2021, 11, 707. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Davidson, A.; Bryant, S.L.; Huh, C. Nanoparticle-stabilized emulsions for applications in enhanced oil recovery. In Proceedings of the SPE Improved Oil Recovery Conference, Tulsa, OK, USA, 24–28 April 2010; p. SPE-129885-MS. [Google Scholar]
- Zhang, T.; Murphy, M.; Yu, H.; Bagaria, H.G.; Yoon, K.Y.; Nielson, B.M.; Bielawski, C.W.; Johnston, K.P.; Huh, C.; Bryant, S.L. Investigation of nanoparticle adsorption during transport in porous media. In Proceedings of the SPE Annual Technical Conference and Exhibition, New Orleans, LA, USA, 30 September–2 October 2013; p. D021S020R005. [Google Scholar]
- Cheraghian, G.; Kiani, S.; Nassar, N.N.; Alexander, S.; Barron, A.R. Silica nanoparticle enhancement in the efficiency of surfactant flooding of heavy oil in a glass micromodel. Ind. Eng. Chem. Res. 2017, 56, 8528–8534. [Google Scholar] [CrossRef]
- Jang, H.; Lee, W.S.; Lee, J. Performance evaluation of surface-modified silica nanoparticles for enhanced oil recovery in carbonate reservoirs. Colloids Surf. A Physicochem. Eng. Asp. 2024, 681, 132784. [Google Scholar] [CrossRef]
- Bai, Y.; Pu, C.; Li, X.; Huang, F.; Liu, S.; Liang, L.; Liu, J. Performance evaluation and mechanism study of a functionalized silica nanofluid for enhanced oil recovery in carbonate reservoirs. Colloids Surf. A Physicochem. Eng. Asp. 2022, 652, 129939. [Google Scholar] [CrossRef]
- Ahmed, A.; Saaid, I.M.; Ahmed, A.A.; Pilus, R.M.; Baig, M.K. Evaluating the potential of surface-modified silica nanoparticles using internal olefin sulfonate for enhanced oil recovery. Pet. Sci. 2020, 17, 722–733. [Google Scholar] [CrossRef]
- Lu, H.-T. Synthesis and characterization of amino-functionalized silica nanoparticles. Colloids J. 2013, 75, 311–318. [Google Scholar] [CrossRef]
- Yan, Y.-l.; Cai, Y.-x.; Liu, X.-c.; Ma, G.-w.; Lv, W.; Wang, M.-x. Hydrophobic modification on the surface of SiO2 nanoparticle: Wettability control. Langmuir 2020, 36, 14924–14932. [Google Scholar] [CrossRef] [PubMed]
- Sun, D.; Kang, S.; Liu, C.; Lu, Q.; Cui, L.; Hu, B. Effect of zeta potential and particle size on the stability of SiO2 nanospheres as carrier for ultrasound imaging contrast agents. Int. J. Electrochem. Sci. 2016, 11, 8520–8529. [Google Scholar] [CrossRef]
- Wen, S.; Wang, P.; Wang, L. Preparation and antifouling performance evaluation of fluorine-containing amphiphilic silica nanoparticles. Colloids Surf. A Physicochem. Eng. Asp. 2021, 611, 125823. [Google Scholar] [CrossRef]
- Cao, J.; Wang, J.; Wang, X.; Zhang, J.; Liu, K.; Wang, Y.; Zhen, W.; Chen, Y. Preparation and characterization of modified amphiphilic nano-silica for enhanced oil recovery. Colloids Surf. A Physicochem. Eng. Asp. 2022, 633, 127864. [Google Scholar] [CrossRef]
- Weston, J.; Jentoft, R.; Grady, B.; Resasco, D.; Harwell, J. Silica nanoparticle wettability: Characterization and effects on the emulsion properties. Ind. Eng. Chem. Res. 2015, 54, 4274–4284. [Google Scholar] [CrossRef]
- Azarshin, S.; Moghadasi, J.; Aboosadi, Z.A. Surface functionalization of silica nanoparticles to improve the performance of water flooding in oil wet reservoirs. Energy Explor. Exploit. 2017, 35, 685–697. [Google Scholar] [CrossRef]
- Provost, M.; Raulin, K.; Maindron, T.; Gaud, V. Influence of silane coupling agent on the properties of UV curable SiO2-PMMA hybrid nanocomposite. J. Sol-Gel Sci. Technol. 2019, 89, 796–806. [Google Scholar] [CrossRef]
- Zhao, M.; Ma, Z.; Song, X.; Wu, W.; Sun, Y.; Cheng, Y.; Wang, X.; Yan, X.; Dai, C. Study on the main factors and mechanism of functional silica nanofluid spontaneous imbibition for enhanced oil recovery. J. Mol. Liq. 2024, 394, 123699. [Google Scholar] [CrossRef]
- Sharma, I.; Pattanayek, S.K.; Aggarwal, V.; Ghosh, S. Morphology of self assembled monolayers using liquid phase reaction on silica and their effect on the morphology of adsorbed insulin. Appl. Surf. Sci. 2017, 405, 503–513. [Google Scholar] [CrossRef]
- Jiang, K.; Xiong, C.; Ding, B.; Geng, X.; Liu, W.; Chen, W.; Huang, T.; Xu, H.; Xu, Q.; Liang, B. Nanomaterials in EOR: A Review and Future Perspectives in Unconventional Reservoirs. Energy Fuels 2023, 37, 10045–10060. [Google Scholar] [CrossRef]
- Zhou, W.; Tang, X.; Liu, X.; Yan, Y.; Chen, C. Interfacial Behaviors and Oil Detachment Mechanisms by Modified Silica Nanoparticles: Insights from Molecular Simulations. J. Phys. Chem. B 2024, 128, 2985–2994. [Google Scholar] [CrossRef] [PubMed]
- Khajeh Kulaki, A.; Hosseini-Nasab, S.M.; Hormozi, F. Low-salinity water flooding by a novel hybrid of nano γ-Al2O3/SiO2 modified with a green surfactant for enhanced oil recovery. Sci. Rep. 2024, 14, 14033. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.; Chang, J.; Wu, H.; Shao, W.; Li, G.; Hou, J.; Kang, N.; Yang, J. Enhanced oil recovery performance of surfactant-enhanced janus SiO2 nanofluid for high temperature and salinity reservoir. Colloids Surf. A Physicochem. Eng. Asp. 2023, 657, 130545. [Google Scholar] [CrossRef]
- Wenlong, Q.; Guoqing, L.; Lu, L.; Hanxi, L.; Ruixuan, L.; Guowei, Q.; Jiang, Y. Investigation of silica nanoparticles grafted with sulphonated polymer for enhanced oil recovery at high temperature and high salt. Can. J. Chem. Eng. 2023, 101, 5794–5801. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, C.; Yao, Z.; Shen, J.; Han, C.; Zhao, X.; Pan, Y. Copolymer Grafted Nano Silica Particles for Enhanced Oil Recovery from Low-Permeability Reservoirs. Chem. Technol. Fuels Oils 2024, 60, 59–68. [Google Scholar] [CrossRef]
- Kumar, R.S.; Arif, M.; Das, K.; Sharma, T. Recent Trends in EOR: Nanofluid Flooding. In Advancements in Chemical Enhanced Oil Recovery; Apple Academic Press: Palm Bay, FL, USA, 2024; pp. 155–172. [Google Scholar]
- Jang, H.; Lee, W.; Lee, J. Nanoparticle dispersion with surface-modified silica nanoparticles and its effect on the wettability alteration of carbonate rocks. Colloids Surf. A Physicochem. Eng. Asp. 2018, 554, 261–271. [Google Scholar] [CrossRef]
- Wang, D.; Sun, S.; Cui, K.; Li, H.; Gong, Y.; Hou, J.; Zhang, Z. Wettability alteration in low-permeability sandstone reservoirs by “SiO2–Rhamnolipid” nanofluid. Energy Fuels 2019, 33, 12170–12181. [Google Scholar] [CrossRef]
- Behzadi, A.; Mohammadi, A. Environmentally responsive surface-modified silica nanoparticles for enhanced oil recovery. J. Nanopart. Res. 2016, 18, 266. [Google Scholar] [CrossRef]
- Yan, N.; Maham, Y.; Masliyah, J.H.; Gray, M.R.; Mather, A.E. Measurement of contact angles for fumed silica nanospheres using enthalpy of immersion data. J. Colloid Interface Sci. 2000, 228, 1–6. [Google Scholar] [CrossRef]
- Grdadolnik, J. ATR-FTIR spectroscopy: Its advantage and limitations. Acta Chim. Slov. 2002, 49, 631–642. [Google Scholar]
- Berthomieu, C.; Hienerwadel, R. Fourier transform infrared (FTIR) spectroscopy. Photosynth. Res. 2009, 101, 157–170. [Google Scholar] [CrossRef] [PubMed]
- Naghizadeh, M.; Taher, M.A.; Behzadi, M.; Moghaddam, F.H. Simultaneous preconcentration of bismuth and lead ions on modified magnetic core–shell nanoparticles and their determination by ETAAS. Chem. Eng. J. 2015, 281, 444–452. [Google Scholar] [CrossRef]
- Fan, H.-T.; Sun, T.; Xu, H.-B.; Yang, Y.-J.; Tang, Q.; Sun, Y. Removal of arsenic (V) from aqueous solutions using 3-[2-(2-aminoethylamino) ethylamino] propyl-trimethoxysilane functionalized silica gel adsorbent. Desalination 2011, 278, 238–243. [Google Scholar] [CrossRef]
- Roshani, M.M.; Rostaminikoo, E.; Joonaki, E.; Dastjerdi, A.M.; Najafi, B.; Taghikhani, V.; Hassanpouryouzband, A. Applications of the quartz crystal microbalance in energy and environmental sciences: From flow assurance to nanotechnology. Fuel 2022, 313, 122998. [Google Scholar] [CrossRef]
- Jacobs, C.; Kayser, O.; Müller, R. Nanosuspensions as a new approach for the formulation for the poorly soluble drug tarazepide. Int. J. Pharm. 2000, 196, 161–164. [Google Scholar] [CrossRef] [PubMed]
- Yin, T.; Yang, Z.; Dong, Z.; Lin, M.; Zhang, J. Physicochemical properties and potential applications of silica-based amphiphilic Janus nanosheets for enhanced oil recovery. Fuel 2019, 237, 344–351. [Google Scholar] [CrossRef]
- Lashari, N.; Ganat, T.; Ayoub, M.A.; Kalam, S.; Ali, I. Coreflood investigation of HPAM/GO-SiO2 composite through wettability alteration. J. Mol. Liq. 2023, 371, 121130. [Google Scholar] [CrossRef]
- Llanos, S.; Giraldo, L.J.; Santamaria, O.; Franco, C.A.; Cortés, F.B. Effect of sodium oleate surfactant concentration grafted onto SiO2 nanoparticles in polymer flooding processes. ACS Omega 2018, 3, 18673–18684. [Google Scholar] [CrossRef] [PubMed]
- Kumar, G.; Mani, E.; Sangwai, J.S. Microfluidic Investigation of Surfactant-Assisted Functional Silica Nanofluids in Low-Salinity Seawater for Enhanced Oil Recovery Using Reservoir-on-a-Chip. Energy Fuels 2023, 37, 10329–10343. [Google Scholar] [CrossRef]
- Kiyomura, I.S.; Nascimento, F.; Cunha, A.; Cardoso, E.M. Analysis of the influence of surface roughness and nanoparticle concentration on the contact angle. In Proceedings of the 23rd ABCM International Congress of Mechanical Engineering, Rio de Janeiro, Brazil, 6–11 December 2015. [Google Scholar]
- Wasan, D.T.; Nikolov, A.D. Spreading of nanofluids on solids. Nature 2003, 423, 156–159. [Google Scholar] [CrossRef]
- Li, S.; Dan, D.; Lau, H.C.; Hadia, N.J.; Torsæter, O.; Stubbs, L.P. Investigation of wettability alteration by silica nanoparticles through advanced surface-wetting visualization techniques. In Proceedings of the SPE Annual Technical Conference and Exhibition, Calgary, AB, Canada, 30 September–2 October 2019; p. D031S040R002. [Google Scholar]
- Perez-Sanchez, J.F.; Palacio-Perez, A.; Suarez-Dominguez, E.J.; Diaz-Zavala, N.P.; Izquierdo-Kulich, E. Evaluation of surface tension modifiers for crude oil transport through porous media. J. Pet. Sci. Eng. 2020, 192, 107319. [Google Scholar] [CrossRef]
- Cortes-Cano, J.M.; Suarez-Dominguez, E.J.; Perez-Sanchez, J.F.; Lozano-Navarro, J.I.; Palacio-Perez, A. Clay-Sand Wettability Evaluation for Heavy Crude Oil Mobility. Chem. Chem. Technol. 2022, 16, 448–453. [Google Scholar] [CrossRef]
- Hassanpouryouzband, A.; Yang, J.; Tohidi, B.; Chuvilin, E.; Istomin, V.; Bukhanov, B.; Cheremisin, A. CO2 capture by injection of flue gas or CO2–N2 mixtures into hydrate reservoirs: Dependence of CO2 capture efficiency on gas hydrate reservoir conditions. Environ. Sci. Technol. 2018, 52, 4324–4330. [Google Scholar] [CrossRef] [PubMed]
- Rognmo, A.; Horjen, H.; Fernø, M. Nanotechnology for improved CO2 utilization in CCS: Laboratory study of CO2-foam flow and silica nanoparticle retention in porous media. Int. J. Greenh. Gas. Control 2017, 64, 113–118. [Google Scholar] [CrossRef]
- Pan, B.; Yin, X.; Ju, Y.; Iglauer, S. Underground hydrogen storage: Influencing parameters and future outlook. Adv. Colloids Interface Sci. 2021, 294, 102473. [Google Scholar] [CrossRef]
- Tan, Y.; Li, Q.; Xu, L.; Onyekwena, C.C.; Yu, T.; Xu, L. Effects of SiO2 Nanoparticles on Wettability and CO2–Brine–Rock Interactions in Carbonate Reservoirs: Implications for CO2 Storage. Energy Fuels 2024, 38, 1258–1270. [Google Scholar] [CrossRef]
References | Materials | Function | Influencing Factors |
---|---|---|---|
[1,20,21] | surfactants | increasing storage stability, increasing oil droplets contact angle, increasing structural disjoining pressure, alternation of wettability | relative concentrations of surfactant and nanoparticle |
[22,26] | polymers | obtaining stable emulsions, alternation of wettability, increasing solution and chemical stability, reduction of interfacial tension | pH, light, temperature |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Y.; Jiang, Y.; Lin, J.; Aidarova, S.; Gabdullin, M.; Issakhov, M.; Fan, H. A Review on Surface Functionalization and Characterization of Silicon Oxide Nanoparticle: Implications for Enhanced Hydrocarbon Recovery. Energies 2024, 17, 3429. https://doi.org/10.3390/en17143429
Zhou Y, Jiang Y, Lin J, Aidarova S, Gabdullin M, Issakhov M, Fan H. A Review on Surface Functionalization and Characterization of Silicon Oxide Nanoparticle: Implications for Enhanced Hydrocarbon Recovery. Energies. 2024; 17(14):3429. https://doi.org/10.3390/en17143429
Chicago/Turabian StyleZhou, Yuhang, Yiran Jiang, Junzhang Lin, Saule Aidarova, Maratbek Gabdullin, Miras Issakhov, and Huifang Fan. 2024. "A Review on Surface Functionalization and Characterization of Silicon Oxide Nanoparticle: Implications for Enhanced Hydrocarbon Recovery" Energies 17, no. 14: 3429. https://doi.org/10.3390/en17143429
APA StyleZhou, Y., Jiang, Y., Lin, J., Aidarova, S., Gabdullin, M., Issakhov, M., & Fan, H. (2024). A Review on Surface Functionalization and Characterization of Silicon Oxide Nanoparticle: Implications for Enhanced Hydrocarbon Recovery. Energies, 17(14), 3429. https://doi.org/10.3390/en17143429