Pressure Loss Modeling for Multi-Stage Obstacles in Pressurized Ducts
Abstract
:1. Introduction
2. Model and Methods
2.1. Experimental Setup
2.2. Measurements
2.3. Numerical Support for Coefficient Readjusment
3. Results
3.1. Head Loss Evolution for the Grid
3.2. Head Loss Evolution for Both Porous Foams
3.3. Head Loss Combination
3.4. Fibrous Porous Foam Characterization
3.5. Improvement of Interlaced Approach
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Notations
form coefficient of a bar [-] | |
maximum relative error [%] | |
mean of the relative error [%] | |
International Space Station | |
factor depending on foam characteristics [-] | |
K | permeability coefficient [m2] |
bar Reynolds number [-] | |
turbulent intensity [-] | |
b | bar width [m] |
e | bar spacing [m] |
thickness factor [-] | |
k | turbulent kinetic energy [m2·s−2] |
bar rack obstruction ratio [-] | |
p | bar depth [m] |
static pressure [Pa] | |
v | inlet water velocity [m·s−1] |
water velocity in the x-direction [m·s−1] | |
water velocity in the y-direction [m·s−1] | |
water velocity between bars [m·s−1] | |
transition water velocity in the porous foam [m·s−1] | |
dimentionless wall distance [-] | |
global pressure difference [Pa] | |
foam pressure difference [Pa] | |
bar rack pressure difference [Pa] | |
porous foam thickness [m] | |
Ergün coefficient [-] | |
Inclination angle of the bar rack [°] | |
dissipation of kinetic energy [m2·s−3] | |
pressure loss coefficient [-] | |
dynamic viscosity [Pa·s] | |
kinetic viscosity [m2·s−1] | |
turbulent viscosity [m2·s−1] | |
water density [kg·m−3] | |
turbulent specific dissipation rate [s−1] |
References
- Idel’cik, I.; Meury, M. Mémento des Pertes de Charge: Coefficients de Pertes de Charge Singulières et de Pertes de Charge par Frottement/I.E. Idel’cik; Traduit du Russe par Madame M. Meury; Collection du Centre de Recherches et d’essais de Chatou, Eyrolles: Paris, France, 1969. [Google Scholar]
- Blevins, R. Applied Fluid Dynamics Handbook; Krieger Pub.: Malabar, FL, USA, 2003; ISBN 1-57524-182-X. [Google Scholar]
- Rodriguez, F. The analogy between fluid flow and electric circuitry. Chem. Eng. Educ. Fla. Online J. 1979, 13, 96–98. [Google Scholar]
- Lemkecher, F.; Chatellier, L.; Courret, D.; David, L. Contribution of Different Elements of Inclined Trash Racks to Head Losses Modeling. Water 2020, 12, 966. [Google Scholar] [CrossRef]
- Xiong, W.; Kalkühler, K.; Merzkirch, W. Velocity and turbulence measurements downstream of flow conditioners. Flow Meas. Instrum. 2003, 14, 249–260. [Google Scholar] [CrossRef]
- Cho, H.H.; Rhee, D.H. Local heat/mass transfer measurement on the effusion plate in impingement/effusion cooling systems. J. Turbomach. 2000, 123, 601–608. [Google Scholar] [CrossRef]
- La Rosa, D.M.; Rossi, M.M.A.; Ferrarese, G.; Malavasi, S. On the pressure losses through multistage perforated plates. J. Fluids Eng. 2021, 143, 061205. [Google Scholar] [CrossRef]
- La Rosa, D.M.; Rossi, M.M.A.; Ferrarese, G.; Malavasi, S. Numerical investigation of parameters affecting energy losses in multi-stage perforated plates. J. Fluids Eng. 2023, 145, 091204. [Google Scholar] [CrossRef]
- Qian, J.Y.; Hou, C.W.; Wu, J.Y.; Gao, Z.X.; Jin, Z.J. Aerodynamics analysis of superheated steam flow through multi-stage perforated plates. Int. J. Heat Mass Transf. 2019, 141, 48–57. [Google Scholar] [CrossRef]
- Haimin, W.; Shujuan, X.; Qingyi, S.; Caimin, Z.; Hao, L.; Eryun, C. Experiment study on pressure drop of a multistage letdown orifice tube. Nucl. Eng. Des. 2013, 265, 633–638. [Google Scholar] [CrossRef]
- Kang, D.H.; Kim, N.K.; Kang, H.W. Electrostatic Charge Retention in PVDF Nanofiber-Nylon Mesh Multilayer Structure for Effective Fine Particulate Matter Filtration for Face Masks. Polymers 2021, 13, 3235. [Google Scholar] [CrossRef]
- Agui, J.H.; Green, R.D.; Vijayakumar, R. Development of a Multi-Stage Filter System for Cabin Ventilation Systems on the ISS and Future Deep Space Missions. In Proceedings of the International Conference on Environmental Systems (ICES 2018), Albuquerque, NM, USA, 8–12 July 2018. [Google Scholar]
- Walczak, N.; Walczak, Z.; Nieć, J. Influence of Debris on Water Intake Gratings in Small Hydroelectric Plants: An Experimental Study on Hydraulic Parameters. Energies 2021, 14, 3248. [Google Scholar] [CrossRef]
- Walczak, N. Operational Evaluation of a Small Hydropower Plant in the Context of Sustainable Development. Water 2018, 10, 1114. [Google Scholar] [CrossRef]
- Yan, T.; Qiu, B.; Yuan, J.; Qi, G. Experimental investigation on flow of trash rack blockage in front of pumping station. J. Hydraul. Res. 2023, 61, 775–787. [Google Scholar] [CrossRef]
- Schalko, I.; Ruiz-Villanueva, V.; Maager, F.; Weitbrecht, V. Wood Retention at Inclined Bar Screens: Effect of Wood Characteristics on Backwater Rise and Bedload Transport. Water 2021, 13, 2231. [Google Scholar] [CrossRef]
- Schalko, I.; Weitbrecht, V. Wood blockage and sediment transport at inclined bar screens. J. Hydraul. Res. 2021, 60, 164–172. [Google Scholar] [CrossRef]
- Zayed, M.; Farouk, E. Effect of blocked trash rack on open channel infrastructure. Water Pract. Technol. 2021, 16, 247–262. [Google Scholar] [CrossRef]
- Walczak, N.; Walczak, Z.; Nieć, J. Assessment of the Resistance Value of Trash Racks at a Small Hydropower Plant Operating at Low Temperature. Energies 2020, 13, 1775. [Google Scholar] [CrossRef]
- Gebre, S.; Timalsina, N.; Alfredsen, K. Some Aspects of Ice-Hydropower Interaction in a Changing Climate. Energies 2014, 7, 1641–1655. [Google Scholar] [CrossRef]
- Meusburger, H. Energieverluste an Einlaufrechen von Flusskraftwerken. Ph.D. Thesis, ETH, Zürich, Switzerland, 2002. [Google Scholar]
- Raynal, S.; Chatellier, L.; David, L.; Courret, D.; Larinier, M. Fish-friendly trashracks: Headloss formula and clogging effect for inclined racks. In Proceedings of the 2nd IAHR Europe Congress, Munich, Germany, 27–29 June 2012; p. 0. hal-04086634. [Google Scholar]
- Hribernik, A. Evaluation of Clogged Hydropower Plant Trash Rack Losses. Stroj. Vestn. J. Mech. Eng. 2020, 66, 142–152. [Google Scholar] [CrossRef]
- Dziubak, T. Experimental Testing of Filter Materials for Two-Stage Inlet Air Systems of Internal Combustion Engines. Energies 2024, 17, 2462. [Google Scholar] [CrossRef]
- Violeau, D.; EL Kadi Abderrezzak, K.; Buvat, C.; Gueguen, N.; Castro-Orgaz, O.; Cicero, G.M. Steady free-surface flow in vegetation debris pad clogging trash racks. J. Hydraul. Res. 2024, 62, 223–235. [Google Scholar] [CrossRef]
- Grahn, A.; Krepper, E.; Alt, S.; Kästner, W. Implementation of a strainer model for calculating the pressure drop across beds of compressible, fibrous materials. Nucl. Eng. Des. 2008, 238, 2546–2553. [Google Scholar] [CrossRef]
- Sotoodeh, K. Handling the pressure drop in strainers. Mar. Syst. Ocean. Technol. 2019, 14, 220–226. [Google Scholar] [CrossRef]
- Raynal, S. Étude Expérimentale et Numérique des Grilles Ichtyocompatibles. Ph.D. Thesis, Université de Poitiers, Poitiers, France, 2013. [Google Scholar]
- Raynal, S.; Chatellier, L.; David, L.; Courret, D.; Larinier, M. Numerical simulations of fish-friendly angled trashracks at model and real scale. In Proceedings of the 35th IAHR World Congress, Chengdu, China, 8–13 September 2013. [Google Scholar]
- Raynal, S.; Dominique, C.; Ludovic, C.; Michel, L.; David, L. An experimental study on fish-friendly trashracks—Part 1. Inclined trashracks. J. Hydraul. Res. 2013, 51, 56–66. [Google Scholar] [CrossRef]
Configurations | Spacings e [mm] | Bar Numbers | [%] |
---|---|---|---|
1 | 10 | 15 | 33 |
2 | 15 | 11 | 25 |
3 | 24 | 07 | 17 |
Inlet | Sides | Outlet | Bars | |
---|---|---|---|---|
velocity | Fixed velocity | No slip | Zero gradient | No slip |
pressure | Zero gradient | Zero gradient | Fixed pressure | Zero gradient |
TI | Fixed TI | Wall function | Zero gradient | Wall function |
v | Equation (4) [-] | Domain (x,y,z) [m] | Cell Size (x,y,z) [m] | [-] |
---|---|---|---|---|
0–0.8 | 0–6400 | (0.5,0.23,0.23) | (0.9,0.7,0.7) | 0.7–25 |
Case | Bar Spacing e [mm] | [-] | Equation (6) [-] | Equation (7) [-] |
---|---|---|---|---|
e10 | 10 | 0.767 ± 0.06 | 0.721 | 0.721 |
e15 | 15 | 0.459 ± 0.08 | 0.393 | 0.401 |
e24 | 24 | 0.182 ± 0.03 | 0.194 | 0.194 |
Porous Foam | TV | TV Extra |
---|---|---|
Permeability K [m2] | ± | ± |
Ergün [-] | 0.122 ± 0.020 | 0.150 ± 0.024 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bon, G.; Chatellier, L.; Le Guer, Y.; Bellot, C.; Casiot, X.; David, L. Pressure Loss Modeling for Multi-Stage Obstacles in Pressurized Ducts. Energies 2024, 17, 3505. https://doi.org/10.3390/en17143505
Bon G, Chatellier L, Le Guer Y, Bellot C, Casiot X, David L. Pressure Loss Modeling for Multi-Stage Obstacles in Pressurized Ducts. Energies. 2024; 17(14):3505. https://doi.org/10.3390/en17143505
Chicago/Turabian StyleBon, Guillaume, Ludovic Chatellier, Yves Le Guer, Cécile Bellot, Xavier Casiot, and Laurent David. 2024. "Pressure Loss Modeling for Multi-Stage Obstacles in Pressurized Ducts" Energies 17, no. 14: 3505. https://doi.org/10.3390/en17143505
APA StyleBon, G., Chatellier, L., Le Guer, Y., Bellot, C., Casiot, X., & David, L. (2024). Pressure Loss Modeling for Multi-Stage Obstacles in Pressurized Ducts. Energies, 17(14), 3505. https://doi.org/10.3390/en17143505