Production of Sustainable Liquid Fuels
Abstract
:1. Introduction
2. Biodiesel
3. Green Diesel
3.1. Transesterification
- By conducting the reaction in steps by partially adding the alcohol and catalyst and removing the glycerol at each step, the amount of alcohol used can be reduced.
- Other alcohols can be used, such as ethanol, propanol, isopropanol, butanol, and pentanol. However, methanol is generally used due to its lower boiling point, low cost and availability.
- Water and free fatty acids inhibit the reaction, where higher alcohols are particularly sensitive to contamination with water.
3.2. Hydrocracking
3.3. Hydrodeoxygenation
4. Fish Waste as a Feedstock
5. Reaction Kinetics and Associated Models
5.1. Hydrodeoxygenation
5.2. Isomerisation and Hydrocracking
- mi0 is the initial mass of component i fed into the reactor.
- vi,j is the stoichiometric coefficient of i in reaction j.
- mi is the mass of component i in the reaction mixture plus or minus any consumption.
- xj is the conversion, where it is assumed that the hydrocracking reactions occur in parallel, while isomerisation occurs after.
6. Catalysts
Catalyst Deactivation
7. Economic Analysis
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- International Energy Agency. CO2 Emissions in 2022; IEA: Paris, France, 2023. [Google Scholar]
- International Energy Agency. Biofuels; IEA: Paris, France, 2023. [Google Scholar]
- Gross, S. The Challenge of Decarbonizing Heavy Transport; Brookings: Washington, DC, USA, 2020. [Google Scholar]
- Clean Energy Institute. Lithium-Ion Battery; Clean Energy Institute: Washington, DC, USA, 2023. [Google Scholar]
- Bills, A.; Sripad, S.; Fredericks, W.L.; Singh, M.; Viswanathan, V. Performance Metrics Required of Next-Generation Batteries to Electrify Commercial Aircraft. ACS Energy Lett. 2020, 5, 663–668. [Google Scholar] [CrossRef]
- Hajilary, N.; Rezakazemi, M.; Shirazian, S. Biofuel types and membrane separation. Environ. Chem. Lett. 2019, 17, 1–18. [Google Scholar] [CrossRef]
- Oh, Y.; Hwang, K.; Kim, C.; Kim, J.R.; Lee, J. Recent developments and key barriers to advanced biofuels: A short review. Bioresour. Technol. 2018, 257, 320–333. [Google Scholar]
- Gui, M.M.; Lee, K.T.; Bhatia, S. Feasibility of edible oil vs. non-edible oil vs. waste edible oil as biodiesel feedstock. Energy 2008, 33, 1646–1653. [Google Scholar] [CrossRef]
- Chen, W.-H.; Lee, K.T.; Ong, H.C. Biofuel and Bioenergy Technology. Energies 2019, 12, 290. [Google Scholar] [CrossRef]
- Abd Rabu, R.; Janajreh, I.; Honnery, D. Transesterification of waste cooking oil: Process optimization and conversion rate evaluation. Energy Convers. Manag. 2013, 65, 764–769. [Google Scholar] [CrossRef]
- Pinto, A.C.; Guarieiro, L.L.N.; Rezende, M.J.C.; Ribeiro, N.M.; Torres, E.A.; Lopes, W.A.; Pereira, P.A.d.P.; Andrade, J.B.d. Biodiesel: An overview. J. Braz. Chem. Soc. 2005, 16, 1313–1330. [Google Scholar] [CrossRef]
- Ma, F.; Hanna, M.A. Biodiesel production: A review. Bioresour. Technol. 1999, 70, 1–15. [Google Scholar] [CrossRef]
- Plazas-González, M.; Guerrero-Fajardo, C.A.; Sodré, J.R. Modelling and simulation of hydrotreating of palm oil components to obtain green diesel. J. Clean. Prod. 2018, 184, 301–308. [Google Scholar] [CrossRef]
- Gerpen, J.V. Biodiesel processing and production. Fuel Process. Technol. 2005, 86, 1097–1107. [Google Scholar] [CrossRef]
- Sivasamy, A.; Cheah, K.; Fornasiero, P.; Kemausuor, F.; Zinoviev, S.; Miertus, S. Catalytic Applications in the Production of Biodiesel from Vegetable Oils. ChemSusChem 2009, 2, 278–300. [Google Scholar] [CrossRef]
- Schwab, A.W.; Dykstra, G.J.; Selke, E.; Sorenson, S.C.; Pryde, E.H. Diesel Fuel from Thermal Decomposition of Soybean Oil. J. Am. Oil Chem. Soc. 1988, 65, 1781–1786. [Google Scholar] [CrossRef]
- Nylund, N.; Erkkilä, K.; Ahtiainen, M.; Murtonen, T.; Saikkonen, P.; Amberla, A.; Aatola, H. Optimized usage of NExBTL renewable diesel fuel. OPTIBIO 2011, 2604, 1–172. [Google Scholar]
- Bezergianni, S.; Kalogianni, A. Hydrocracking of used cooking oil for biofuels production. Bioresour. Technol. 2009, 100, 3927–3932. [Google Scholar] [CrossRef]
- Tsiotsias, A.I.; Hafeez, S.; Charisiou, N.D.; Al-Salem, S.M.; Manos, G.; Constantinou, A.; AlKhoori, S.; Sebastian, V.; Hinder, S.J.; Baker, M.A.; et al. Selective catalytic deoxygenation of palm oil to produce green diesel over Ni catalysts supported on ZrO2 and CeO2–ZrO2: Experimental and process simulation modelling studies. Renew. Energy 2023, 206, 582–596. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, X.; Yu, P.; Hu, C. Temperature-tuned selectivity to alkanes or alcohol from ethyl palmitate deoxygenation over zirconia-supported cobalt catalyst. Fuel 2020, 278, 118–295. [Google Scholar] [CrossRef]
- Kim, S.K.; Lee, H.; Hong, M.H.; Lim, J.S.; Kim, J. Low-temperature, Selective Catalytic Deoxygenation of Vegetable Oil in Supercritical Fluid Media. ChemSusChem 2014, 7, 492–500. [Google Scholar] [CrossRef]
- Wang, S.; Zhou, P.; Jiang, L.; Zhang, Z.; Deng, K.; Zhang, Y.; Zhao, Y.; Li, J.; Bottle, S.; Zhu, H. Selective deoxygenation of carbonyl groups at room temperature and atmospheric hydrogen pressure over nitrogen-doped carbon supported Pd catalyst. J. Catal. 2018, 368, 207–216. [Google Scholar] [CrossRef]
- Rogers, K.A.; Zheng, Y. Selective Deoxygenation of Biomass-Derived Bio-oils within Hydrogen-Modest Environments: A Review and New Insights. ChemSusChem 2016, 9, 1750–1772. [Google Scholar] [CrossRef] [PubMed]
- Morales-Delarosa, S.; Campos-Martin, J.M. 6—Catalytic processes and catalyst development in biorefining. In Advances in Biorefineries; Waldron, K., Ed.; Woodhead Publishing: Sawston, UK, 2014; p. 152. [Google Scholar]
- Yuvaraj, D.; Bharathiraja, B.; Rithika, J.; Dhanasree, S.; Ezhilarasi, V.; Lavanya, A.; Praveenkumar, R. Production of biofuels from fish wastes: An overview. Biofuels 2019, 10, 301–307. [Google Scholar] [CrossRef]
- Tanwar, D.; Tanwar, A.; Sharma, D.; Mathur, Y.P.; Khatri, K.K.; Soni, S.L. Production and characterization of fish oil methyl ester. Int. J. Innov. Technol. Res. 2013, 1, 209–217. [Google Scholar]
- Wu, T.H.; Bechtel, P.J. Salmon by-product storage and oil extraction. Food Chem. 2008, 111, 868–871. [Google Scholar] [CrossRef]
- RAC. Petrol and Diesel Prices; RAC: London, UK, 2023. [Google Scholar]
- Huth, M.; Heilos, A. 14—Fuel flexibility in gas turbine systems: Impact on burner design and performance. In Modern Gas Turbine Systems; Jansohn, P., Ed.; Woodhead Publishing: Sawston, UK, 2013; p. 635. [Google Scholar]
- Selina Wamucii. United Kingdom Fish Oil Prices. 2023. Available online: https://www.selinawamucii.com/insights/prices/united-kingdom/fish-oil/#google_vignette (accessed on 7 November 2023).
- Tyrovola, T.; Dodos, G.S.; Kalligeros, S.; Zannikos, F.E. The Introduction of Biofuels in Marine Sector. J. Environ. Sci. Eng. 2017, 6, 415–421. [Google Scholar] [CrossRef]
- Lin, D.; Mao, Z.; Feng, X.; Zhou, X.; Yan, H.; Zhu, H.; Liu, Y.; Chen, X.; Tuo, Y.; Peng, C.; et al. Kinetic insights into deoxygenation of vegetable oils to produce second-generation biodiesel. Fuel 2023, 333, 126–416. [Google Scholar] [CrossRef]
- Kumar, P.; Yenumala, S.R.; Maity, S.K.; Shee, D. Kinetics of hydrodeoxygenation of stearic acid using supported nickel catalysts: Effects of supports. Appl. Catal. A Gen. 2014, 471, 28–38. [Google Scholar] [CrossRef]
- Arora, P.; Grennfelt, E.L.; Olsson, L.; Creaser, D. Kinetic study of hydrodeoxygenation of stearic acid as a model compound for renewable oils. Chem. Eng. J. 2019, 364, 376–389. [Google Scholar] [CrossRef]
- CheGuide. Property Estimation Joback Method. 2023. Available online: https://cheguide.com/ (accessed on 8 November 2023).
- Kissin, Y.V. Chemical mechanisms of catalytic cracking over solid acidic catalysts: Alkanes and alkenes. Catal. Rev. 2001, 43, 85–146. [Google Scholar] [CrossRef]
- Kotrel, S.; Knözinger, H.; Gates, B.C. The Haag–Dessau mechanism of protolytic cracking of alkanes. Microporous Mesoporous Mater. 2000, 35–36, 11–20. [Google Scholar] [CrossRef]
- Tang, X.; Huang, G.; Zhang, M.; Han, J. Compositional Characteristics and Geochemical Significance of N-alkanes in Process of Crude Oil Cracking. Earth Sci. Front. 2009, 16, 372–378. [Google Scholar] [CrossRef]
- Martinez-Hernandez, E.; Ramírez-Verduzco, L.F.; Amezcua-Allieri, M.A.; Aburto, J. Process simulation and techno-economic analysis of bio-jet fuel and green diesel production—Minimum selling prices. Chem. Eng. Res. Des. 2019, 146, 60–70. [Google Scholar] [CrossRef]
- Santillan-Jimenez, E.; Crocker, M. Catalytic deoxygenation of fatty acids and their derivatives to hydrocarbon fuels via decarboxylation/decarbonylation. J. Chem. Technol. Biotechnol. 2012, 87, 1041–1050. [Google Scholar] [CrossRef]
- Snåre, M.; Kubičková, I.; Mäki-Arvela, P.; Eränen, K.; Murzin, D.Y. Heterogeneous Catalytic Deoxygenation of Stearic Acid for Production of Biodiesel. Ind. Eng. Chem. Res. 2006, 45, 5708–5715. [Google Scholar] [CrossRef]
- Berenblyum, A.S.; Podoplelova, T.A.; Shamsiev, R.S.; Katsman, E.A.; Danyushevsky, V.Y. On the mechanism of catalytic conversion of fatty acids into hydrocarbons in the presence of palladium catalysts on alumina. Pet. Chem. 2011, 51, 336–341. [Google Scholar] [CrossRef]
- Berenblyum, A.S.; Danyushevsky, V.Y.; Katsman, E.A.; Podoplelova, T.A.; Flid, V.R. Production of engine fuels from inedible vegetable oils and fats. Pet. Chem. 2010, 50, 305–311. [Google Scholar] [CrossRef]
- Immer, J.G.; Kelly, M.J.; Lamb, H.H. Catalytic reaction pathways in liquid-phase deoxygenation of C18 free fatty acids. Appl. Catal. A Gen. 2010, 375, 134–139. [Google Scholar] [CrossRef]
- Lestari, S.; Mäki-Arvela, P.; Eränen, K.; Beltramini, J.; Max Lu, G.Q.; Murzin, D.Y. Diesel-like Hydrocarbons from Catalytic Deoxygenation of Stearic Acid over Supported Pd Nanoparticles on SBA-15 Catalysts. Catal. Lett. 2010, 134, 250–257. [Google Scholar] [CrossRef]
- Morgan, T.; Grubb, D.; Santillan-Jimenez, E.; Crocker, M. Conversion of Triglycerides to Hydrocarbons Over Supported Metal Catalysts. Top. Catal. 2010, 53, 820–829. [Google Scholar] [CrossRef]
- Mäki-Arvela, P.; Snåre, M.; Eränen, K.; Myllyoja, J.; Murzin, D.Y. Continuous decarboxylation of lauric acid over Pd/C catalyst. Fuel 2008, 87, 3543–3549. [Google Scholar] [CrossRef]
- Bui, V.N.; Laurenti, D.; Afanasiev, P.; Geantet, C. Hydrodeoxygenation of guaiacol with CoMo catalysts. Part I: Promoting effect of cobalt on HDO selectivity and activity. Appl. Catal. B Environ. 2011, 101, 239–245. [Google Scholar] [CrossRef]
- Echeandia, S.; Arias, P.L.; Barrio, V.L.; Pawelec, B.; Fierro, J.L.G. Synergy effect in the HDO of phenol over Ni–W catalysts supported on active carbon: Effect of tungsten precursors. Appl. Catal. B Environ. 2010, 101, 1–12. [Google Scholar] [CrossRef]
- MOWI. Salmon Farming Industry Handbook; Springer: Berlin/Heidelberg, Germany, 2019; pp. 1–56. [Google Scholar]
Chain | Name | Percentage Makeup/% |
---|---|---|
C14:0 | Myristic Acid | 11.32 |
C16:0 | Palmitic Acid | 25.77 |
C16:1 | Palmitoleic Acid | 12.93 |
C17:0 | Heptadecanoic Acid | 1.86 |
C17:1 | Heptadecanoic Acid | 1.23 |
C18:0 | Stearic Acid | 6.27 |
C18:1 | Oleic Acid | 13.92 |
C18:2 | Linoleic Acid | 2.37 |
C18:3 | Linolenic Acid | 1.55 |
C20:2 | Eicosadienoic Acid | 2.42 |
C20:4 | Arachadonic Acid | 2.52 |
C20:5 | Eicosapentanoic Acid | 14.64 |
Fatty Acid | Fatty Acids Composition per 100 g of Water | Percentage Composition (%) |
---|---|---|
C14:0 | 0.05 | 5.31 |
C16:0 | 0.149 | 15.82 |
C16:1 | 0.048 | 5.1 |
C18:0 | 0.03 | 3.19 |
C18:1 ω 9cis | 0.134 | 14.23 |
C18:1 ω 7cis | 0.024 | 2.55 |
C18:2 ω 6 | 0.017 | 1.8 |
C18:3 ω 3 | 0.013 | 1.38 |
C18:4 ω 3 | 0.03 | 3.18 |
C20:1 ω 12 | 0.06 | 6.37 |
C20:1 ω 9 | 0.028 | 2.97 |
C20:4 ω 3 | 0.019 | 2.02 |
C20:5 ω 3 EPA | 0.106 | 11.25 |
C22:1 ω 11 | 0.08 | 8.49 |
C22:5 ω 3 DPA | 0.025 | 2.65 |
C22:6 ω 3 DHA | 0.129 | 13.69 |
Reaction Scheme | Rate Expression |
---|---|
C18H36O2 + H2 → C18H36O + H2O | |
C18H36O2 → C17H36 + CO2 | |
C18H36O + H2 → C18H37OH | |
C18H36O → C17H36 + CO | |
C18H37OH → C18H38 + H2O |
Catalyst | Feed | Temperature (°C) | Pressure (atm) | Atmosphere | Reaction Time (h) | Reactor Mode | Conversion (%) | Selectivity (%) | |
---|---|---|---|---|---|---|---|---|---|
60% Ni/SiO2 | Stearic acid | 300 | 6 | He | 6 | Semi-batch | 18.1 | 19 (heptadecane) | [41] |
30 (heptadecene) | |||||||||
58 (total C17) | |||||||||
5% Ru/C | Stearic acid | 300 | 6 | He | 6 | Semi-batch | 13.2 | 24 (heptadecane) | [41] |
27 (heptadecene) | |||||||||
65 (total C17) | |||||||||
5%Pd/C | Stearic acid | 300 | 6 | He | 6 | Semi-batch | 100 | 95 (heptadecane) | [41] |
0 (heptadecene) | |||||||||
99 (total C17) | |||||||||
5% Pt/C | Stearic acid | 300 | 6 | He | 6 | Semi-batch | 86 | 87 (heptadecane) | [41] |
1 (heptadecene) | |||||||||
95 (total C17) | |||||||||
1% Ir/SiO2 | Stearic acid | 300 | 6 | He | 6 | Semi-batch | 4.6 | 14 (heptadecane) | [41] |
29 (heptadecene) | |||||||||
69 (total C17) | |||||||||
5% Os/C | Stearic acid | 300 | 6 | He | 6 | Semi-batch | 6.9 | 29 (heptadecane) | [41] |
15 (heptadecene) | |||||||||
53 (total C17) | |||||||||
1% Rh/C | Stearic acid | 300 | 6 | He | 6 | Semi-batch | 19.9 | 18 (heptadecane) | [41] |
13 (heptadecene) | |||||||||
85 (total C17) | |||||||||
0.5% Pd/Al2O3 | Stearic acid | 350 | 14 | H2 | 3 | Batch | 100 | 95.1 (paraffins) | [42] |
90.3 (C17) | |||||||||
4.8 (C18) | |||||||||
5% Pd/Al2O3 | Stearic acid | 350 | 14 | H2 | 3 | Batch | 100 | 100 (paraffins) | [42] |
91 (C17) | |||||||||
9 (C18) | |||||||||
5% Pd/ WO3/ ZrO2 | Stearic acid | 300 | 16 | H2 | 6 | Batch | 100 | 100 (paraffins) | [43] |
59.3 (C17) | |||||||||
40.7 (C18) | |||||||||
5% Pd/C | Stearic acid | 300 | 14.8 | He | 5 | Semi-batch | 100 | 98 (saturated C17) | [44] |
2 (unsaturated C17) | |||||||||
0.6% Pd/SBA-15 | Stearic acid | 300 | 16.8 | 5% H2/Ar | 5 | Semi-batch | 96 | 98 (C17) | [45] |
1% Pt/C | Tristearin | 350 | 6.8 | N2 | 4 | Batch | 42 | 83 (C8–C17) | [46] |
5% Pd/C | Tristearin | 350 | 6.8 | N2 | 4 | Batch | 29 | 93 (C8–C17) | [46] |
20% Ni/C | Tristearin | 350 | 6.8 | N2 | 4 | Batch | 85 | 56 (C8–C17) | [46] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ormond, N.; Kamel, D.; Lima, S.; Saha, B. Production of Sustainable Liquid Fuels. Energies 2024, 17, 3506. https://doi.org/10.3390/en17143506
Ormond N, Kamel D, Lima S, Saha B. Production of Sustainable Liquid Fuels. Energies. 2024; 17(14):3506. https://doi.org/10.3390/en17143506
Chicago/Turabian StyleOrmond, Nathan, Dina Kamel, Sergio Lima, and Basudeb Saha. 2024. "Production of Sustainable Liquid Fuels" Energies 17, no. 14: 3506. https://doi.org/10.3390/en17143506
APA StyleOrmond, N., Kamel, D., Lima, S., & Saha, B. (2024). Production of Sustainable Liquid Fuels. Energies, 17(14), 3506. https://doi.org/10.3390/en17143506