Valorization of Coffee Residue from Convenience Store and Retail Mass-Selling Store for Producing Highly Porous Carbon Materials and Taiwan Perspectives
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Thermochemical Analyses of Coffee Residues
2.3. Pyrolysis Experiments
2.4. Pore and Textural Analyses of Resulting Biochar Products
3. Results
3.1. Thermochemical Properties of Coffee Residues
3.2. Textural Characteristics of Resulting Biochar Products
4. Discussion
4.1. Energy Use
4.2. Precursor for Highly Porous Carbon Material
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Statistics on Sales of Wholesale, Retail and Food Services in Taiwan. Available online: https://dmz26.moea.gov.tw/GA/query/Query.aspx (accessed on 29 November 2023).
- Statistics Database on Total Imports and Total Exports in Taiwan. Available online: https://portal.sw.nat.gov.tw/APGA/GA30E (accessed on 29 November 2023).
- Campos-Vega, R.; Loarca-Piña, G.; Vergara-Castañeda, H.A.; Dave Oomah, B. Spent coffee grounds: A review on current research and future prospects. Trends Food Sci. Technol. 2015, 45, 24–36. [Google Scholar] [CrossRef]
- Kovalcik, A.; Obruca, S.; Marova, I. Valorization of spent coffee grounds: A review. Food Bioprod. Process. 2018, 110, 104–119. [Google Scholar] [CrossRef]
- Mata, T.M.; Martins, A.A.; Caetano, N.S. Bio-refinery approach for spent coffee grounds valorization. Bioresour. Technol. 2018, 247, 1077–1084. [Google Scholar] [CrossRef]
- Atabani, A.E.; Al-Muhtaseb, A.H.; Kumar, G.; Saratale, G.D.; Aslam, M.; Khan, H.A.; Said, Z.; Mahmoud, E. Valorization of spent coffee grounds into biofuels and value-added products: Pathway towards integrated bio-refinery. Fuel 2019, 254, 115640. [Google Scholar] [CrossRef]
- Massaya, J.; Prates Pereira, A.; Mills-Lamptey, B.; Benjamin, J.; Chuck, C.J. Conceptualization of a spent coffee grounds biorefinery: A review of existing valorisation approaches. Food Bioprod. Process. 2019, 118, 149–166. [Google Scholar] [CrossRef]
- McNutt, J.; He, Q. Spent coffee grounds: A review on current utilization. J. Ind. Eng. Chem. 2019, 71, 78–88. [Google Scholar] [CrossRef]
- Zabaniotou, A.; Kamaterou, P. Food waste valorization advocating Circular Bioeconomy - A critical review of potentialities and perspectives of spent coffee grounds biorefinery. J. Clean. Prod. 2019, 211, 1553–1566. [Google Scholar] [CrossRef]
- Banu, J.R.; Kannah, R.Y.; Kumar, M.D.; Preethi Kavitha, S.; Gunasekaran, M.; Zhen, G.; Awasthi, M.K.; Kumar, G. Spent coffee grounds based circular bioeconomy: Technoeconomic and commercialization aspects. Renew. Sustain. Energy Rev. 2021, 152, 111721. [Google Scholar] [CrossRef]
- Tsai, W.T. Biochar production from the pyrolysis of exhausted coffee residue. In Handbook of Coffee Processing By-Products: Sustainable Applications; Galanakis, C.M., Ed.; Elsevier: Oxford, UK, 2017; pp. 493–527. [Google Scholar]
- Atabani, A.E.; Ali, I.; Naqvi, S.R.; Badruddin, I.A.; Aslam, M.; Mahmoud, E.; Almomani, F.; Juchelková, D.; Atelge, M.R.; Khan, T.M.Y. A state-of-the-art review on spent coffee ground (SCG) pyrolysis for future biorefinery. Chemosphere 2022, 286 Pt 2, 131730. [Google Scholar] [CrossRef] [PubMed]
- Tran, T.K.N.; Ngo, T.C.Q.; Nguyen, Q.V.; Do, T.S.; Hoang, N.B. Chemistry potential and application of activated carbon manufactured from coffee grounds in the treatment of wastewater: A review. Mater. Today Proc. 2022, 60 Pt 3, 1914–1919. [Google Scholar] [CrossRef]
- Gebreeyessus, G.D. Towards the sustainable and circular bioeconomy: Insights on spent coffee grounds valorization. Sci. Total Environ. 2022, 833, 155113. [Google Scholar] [CrossRef] [PubMed]
- Johnson, K.; Liu, Y.; Lu, M. A review of recent advances in spent coffee grounds upcycle technologies and practices. Front. Chem. Eng. 2022, 4, 838605. [Google Scholar] [CrossRef]
- Andrade, T.S.; Vakros, J.; Mantzavinos, D.; Lianos, P. Biochar obtained by carbonization of spent coffee grounds and its application in the construction of an energy storage device. Chem. Eng. J. Adv. 2020, 4, 100061. [Google Scholar] [CrossRef]
- Shin, J.; Lee, S.H.; Kim, S.; Ochir, D.; Park, Y.; Kim, J.; Lee, Y.G.; Chon, K. Effects of physicochemical properties of biochar derived from spent coffee grounds and commercial activated carbon on adsorption behavior and mechanisms of strontium ions (Sr2+). Environ. Sci. Pollut. Res. 2021, 28, 40623–40632. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.A.; Parvin, M.I.; Dada, T.K.; Kumar, R.; Antunes, E. Silver adsorption on biochar produced from spent coffee grounds: Validation by kinetic and isothermal modelling. Biomass Conv. Bioref. 2022, 1–15. [Google Scholar] [CrossRef]
- Jeníček, L.; Tunklová, B.; Malaťák, J.; Neškudla, M.; Velebil, J. Use of spent coffee ground as an alternative fuel and possible soil amendment. Materials 2022, 15, 6722. [Google Scholar] [CrossRef] [PubMed]
- Nepal, R.; Kim, H.J.; Poudel, J.; Oh, S.C. A study on torrefaction of spent coffee ground to improve its fuel properties. Fuel 2022, 318, 123643. [Google Scholar] [CrossRef]
- Lee, K.T.; Shih, Y.T.; Rajendran, S.; Park, Y.K.; Chen, W.H. Spent coffee ground torrefaction for waste remediation and valorization. Environ. Pollut. 2023, 324, 121330. [Google Scholar] [CrossRef]
- Tsai, W.T.; Liu, S.C.; Hsieh, C.H. Preparation and fuel properties of biochars from the pyrolysis of exhausted coffee residue. J. Anal. Appl. Pyrolysis 2012, 93, 63–67. [Google Scholar] [CrossRef]
- Tsai, W.T.; Liu, S.C. Effect of temperature on thermochemical property and true density of torrefied coffee residue. J. Anal. Appl. Pyrolysis 2013, 102, 47–52. [Google Scholar] [CrossRef]
- Chia, C.H.; Downie, A.; Munroe, P. Characteristics of biochar: Physical and structural properties. In Biochar for Environmental Management, 2nd ed.; Lehmann, J., Joseph, S., Eds.; Routledge: New York, NY, USA, 2015; pp. 89–109. [Google Scholar]
- Condon, J.B. Surface Area and Porosity Determinations by Physisorption: Measurements and Theory; Elsevier: Amsterdam, The Netherlands, 2006; pp. 55–90. [Google Scholar]
- Lowell, S.; Shields, J.E.; Thomas, M.A.; Thommes, M. Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density; Springer: Dordrecht, The Netherlands, 2006; pp. 58–81. [Google Scholar]
- Tsai, W.T. Perspectives on the promotion of solid recovered fuels in Taiwan. Energies 2023, 16, 2944. [Google Scholar] [CrossRef]
- Basu, P. Biomass Gasification, Pyrolysis and Torrefaction, 3rd ed.; Academic Press: London, UK, 2018; pp. 47–86. [Google Scholar]
- Jenkins, B.M.; Baxter, L.L.; Miles, T.R., Jr.; Miles, T.R. Combustion properties of biomass. Fuel Process. Technol. 1998, 54, 17–46. [Google Scholar] [CrossRef]
- Vassilev, S.V.; Vassileva, C.G.; Vassilev, V.S. Advantages and disadvantages of composition and properties of biomass in comparison with coal: An overview. Fuel 2015, 158, 330–350. [Google Scholar] [CrossRef]
- Bansal, R.C.; Donnet, J.B.; Stoeckli, F. Active Carbon; Marcel Dekker: New York, NY, USA, 1988; pp. 119–162. [Google Scholar]
Year | Imported Amount (Metric Tons) | |||
---|---|---|---|---|
Coffee (Not Roasted, Not Decaffeinated) | Coffee (Roasted, Not Decaffeinated) | Coffee (Not Roasted, Decaffeinated) | Coffee (Roasted, Decaffeinated) | |
2003 | 7602 | 1025 | 5 | 49 |
2004 | 9589 | 1195 | 21 | 73 |
2005 | 10,179 | 1220 | 12 | 66 |
2006 | 9423 | 1231 | 29 | 82 |
2007 | 12,298 | 1416 | 67 | 92 |
2008 | 9761 | 1673 | 66 | 99 |
2009 | 11,585 | 1686 | 24 | 100 |
2010 | 15,879 | 1843 | 48 | 117 |
2011 | 15,211 | 2258 | 88 | 129 |
2012 | 15,802 | 2509 | 56 | 77 |
2013 | 18,782 | 2846 | 108 | 65 |
2014 | 20,597 | 2997 | 103 | 76 |
2015 | 23,782 | 4433 | 199 | 128 |
2016 | 25,436 | 4656 | 122 | 141 |
2017 | 28,098 | 6666 | 104 | 637 |
2018 | 29,093 | 6519 | 155 | 41 |
2019 | 31,315 | 6306 | 74 | 24 |
2020 | 35,593 | 5787 | 105 | 22 |
2021 | 34,515 | 6251 | 77 | 23 |
2022 | 36,518 | 6345 | 83 | 32 |
Property | Value c | |
---|---|---|
CR-1 | CR-2 | |
Proximate analysis a | ||
Volatile matter (wt%) | 81.73 ± 0.13 | 80.72 ± 0.11 |
Ash (wt%) | 1.34 ± 0.08 | 1.93 ± 0.19 |
Fixed carbon b (wt%) | 16.93 | 17.36 |
Calorific value (MJ/kg) a | 27.00 ± 0.11 | 26.61 ± 0.57 |
Pore Property | This Study | Andrade et al. [16] | |
---|---|---|---|
BC/CR-1 | BC/CR-2 | ||
Single point surface area (m2/g, at P/P0 of about 0.1 for BC/CF-1 and 0.3 for BC/CF-2) | 799.00 | 688.92 | - d |
Langmuir surface area (m2/g) | 968.96 | 1066.45 | - |
BET surface area (m2/g) a | 783.60 | 825.13 | 492 |
t-plot micropore area (m2/g) b | 608.10 | 568.11 | 379 |
t-plot external surface area (m2/g) | 175.50 | 257.02 | 113 |
Single point adsorption total pore volume (cm3/g, at P/Po of about 0.995) | 0.404 | 0.386 | 0.238 |
t-plot micropore volume (cm3/g) b | 0.250 | 0.227 | 0.117 |
Average pore diameter (nm) c | 2.060 | 1.870 | - |
Elemental Content (wt%) | BC/CR-1 | BC/CR-2 |
---|---|---|
Carbon (C) | 84.77 | 64.77 |
Oxygen (O) | 8.99 | 16.55 |
Potassium (K) | 2.48 | 14.29 |
Magnesium (Mg) | 1.67 | 2.52 |
Calcium (Ca) | 2.09 | 1.87 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, Y.-R.; Huang, H.-L.; Tsai, C.-H.; Tsai, W.-T. Valorization of Coffee Residue from Convenience Store and Retail Mass-Selling Store for Producing Highly Porous Carbon Materials and Taiwan Perspectives. Energies 2024, 17, 683. https://doi.org/10.3390/en17030683
Lee Y-R, Huang H-L, Tsai C-H, Tsai W-T. Valorization of Coffee Residue from Convenience Store and Retail Mass-Selling Store for Producing Highly Porous Carbon Materials and Taiwan Perspectives. Energies. 2024; 17(3):683. https://doi.org/10.3390/en17030683
Chicago/Turabian StyleLee, Yu-Ru, Hsiang-Lan Huang, Chi-Hung Tsai, and Wen-Tien Tsai. 2024. "Valorization of Coffee Residue from Convenience Store and Retail Mass-Selling Store for Producing Highly Porous Carbon Materials and Taiwan Perspectives" Energies 17, no. 3: 683. https://doi.org/10.3390/en17030683
APA StyleLee, Y. -R., Huang, H. -L., Tsai, C. -H., & Tsai, W. -T. (2024). Valorization of Coffee Residue from Convenience Store and Retail Mass-Selling Store for Producing Highly Porous Carbon Materials and Taiwan Perspectives. Energies, 17(3), 683. https://doi.org/10.3390/en17030683