Renewable Hydrogen from Biomass: Technological Pathways and Economic Perspectives
Abstract
:1. Introduction
2. Type of Biomass Used in Renewable-H2 Production
3. Methods for Renewable-H2 Production from Biomass
3.1. Biological Methods
3.1.1. Bio-Photolysis
3.1.2. Fermentation
3.1.3. Integrated Systems
3.1.4. Advantages and Challenges of the Different Biological Methods for Renewable-H2 Production
3.2. Thermochemical Methods
3.2.1. Gasification
3.2.2. Pyrolysis
3.2.3. Hydrothermal Processes
3.2.4. Advantages and Challenges of the Different Thermochemical Methods for Renewable-H2 Production
4. Techno-Economic Overview of Renewable-H2 Production Technologies
4.1. Biological Methods
4.2. Thermochemical Methods
5. Environmental Impact Assessment Overview of Renewable-H2 Production Technologies
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Salahshoor, S.; Afzal, S. Subsurface Technologies for Hydrogen Production from Fossil Fuel Resources: A Review and Techno-Economic Analysis. Int. J. Hydrogen Energy 2022. [Google Scholar] [CrossRef]
- Gao, F.Y.; Yu, P.C.; Gao, M.R. Seawater Electrolysis Technologies for Green Hydrogen Production: Challenges and Opportunities. Curr. Opin. Chem. Eng. 2022, 36, 100827. [Google Scholar] [CrossRef]
- Koneczna, R.; Cader, J. Towards Effective Monitoring of Hydrogen Economy Development: A European Perspective. Int. J. Hydrogen Energy 2024, 59, 430–446. [Google Scholar] [CrossRef]
- Dou, Y.; Sun, L.; Ren, J.; Dong, L. Chapter 17—Opportunities and Future Challenges in Hydrogen Economy for Sustainable Development. In Hydrogen Economy, 2nd ed.; Scipioni, A., Manzardo, A., Ren, J., Eds.; Academic Press: Cambridge, MA, USA, 2023; pp. 537–569. ISBN 978-0-323-99514-6. [Google Scholar]
- Hermesmann, M.; Müller, T.E. Green, Turquoise, Blue, or Grey? Environmentally Friendly Hydrogen Production in Transforming Energy Systems. Prog. Energy Combust. Sci. 2022, 90, 100996. [Google Scholar] [CrossRef]
- Eloffy, M.G.; Elgarahy, A.M.; Saber, A.N.; Hammad, A.; El-Sherif, D.M.; Shehata, M.; Mohsen, A.; Elwakeel, K.Z. Biomass-to-Sustainable Biohydrogen: Insights into the Production Routes, and Technical Challenges. Chem. Eng. J. Adv. 2022, 12, 100410. [Google Scholar] [CrossRef]
- Mosca, L.; Jimenez, J.A.M.; Wassie, S.A.; Gallucci, F.; Palo, E.; Colozzi, M.; Taraschi, S.; Galdieri, G.; Medrano Jimenez, J.A.; Wassie, S.A.; et al. Process Design for Green Hydrogen Production. Int. J. Hydrogen Energy 2020, 45, 7266–7277. [Google Scholar] [CrossRef]
- Pal, D.B.; Singh, A.; Bhatnagar, A. A Review on Biomass Based Hydrogen Production Technologies. Int. J. Hydrogen Energy 2022, 47, 1461–1480. [Google Scholar] [CrossRef]
- Blay-Roger, R.; Bach, W.; Bobadilla, L.F.; Reina, T.R.; Odriozola, J.A.; Amils, R.; Blay, V. Natural Hydrogen in the Energy Transition: Fundamentals, Promise, and Enigmas. Renew. Sustain. Energy Rev. 2024, 189, 113888. [Google Scholar] [CrossRef]
- Ciechanowska, M. Hydrogen Strategy for a Climate-Neutral Europe. Nafta-Gaz 2020, 2020, 951–954. [Google Scholar] [CrossRef]
- European Commission. REPowerEU: A Plan to Rapidly Reduce Dependence on Russian Fossil Fuels and Fast Forward the Green Transition; European Commission: Brussels, Belgium, 2022; pp. 1–11. [Google Scholar]
- Akhlaghi, N.; Najafpour-Darzi, G. A Comprehensive Review on Biological Hydrogen Production. Int. J. Hydrogen Energy 2020, 45, 22492–22512. [Google Scholar] [CrossRef]
- Mudhoo, A.; Forster-Carneiro, T.; Sánchez, A. Biohydrogen Production and Bioprocess Enhancement: A Review. Crit. Rev. Biotechnol. 2011, 31, 250–263. [Google Scholar] [CrossRef]
- Singh, A.; Sevda, S.; Reesh, I.M.A.; Vanbroekhoven, K.; Rathore, D.; Pant, D.; Abu Reesh, I.M.; Vanbroekhoven, K.; Rathore, D.; Pant, D. Biohydrogen Production from Lignocellulosic Biomass: Technology and Sustainability. Energies 2015, 8, 13062–13080. [Google Scholar] [CrossRef]
- Chong, C.C.; Cheng, Y.W.; Ng, K.H.; Vo, D.V.N.; Lam, M.K.; Lim, J.W. Bio-Hydrogen Production from Steam Reforming of Liquid Biomass Wastes and Biomass-Derived Oxygenates: A Review. Fuel 2022, 311, 122623. [Google Scholar] [CrossRef]
- Valle, B.; Aramburu, B.; Benito, P.L.; Bilbao, J.; Gayubo, A.G. Biomass to Hydrogen-Rich Gas via Steam Reforming of Raw Bio-Oil over Ni/La2O3-αAl2O3 Catalyst: Effect of Space-Time and Steam-to-Carbon Ratio. Fuel 2018, 216, 445–455. [Google Scholar] [CrossRef]
- Yang, H.; Yan, R.; Chen, H.; Lee, D.H.; Liang, D.T.; Zheng, C. Pyrolysis of Palm Oil Wastes for Enhanced Production of Hydrogen Rich Gases. Fuel Process. Technol. 2006, 87, 935–942. [Google Scholar] [CrossRef]
- Fahmy, T.Y.A.; Fahmy, Y.; Mobarak, F.; El-Sakhawy, M.; Abou-Zeid, R.E. Biomass Pyrolysis: Past, Present, and Future. Environ. Dev. Sustain. 2020, 22, 17–32. [Google Scholar] [CrossRef]
- Valliyappan, T.; Bakhshi, N.N.; Dalai, A.K. Pyrolysis of Glycerol for the Production of Hydrogen or Syn Gas. Bioresour. Technol. 2008, 99, 4476–4483. [Google Scholar] [CrossRef] [PubMed]
- Kaewpanha, M.; Guan, G.; Ma, Y.; Hao, X.; Zhang, Z.; Reubroychareon, P.; Kusakabe, K.; Abudula, A. Hydrogen Production by Steam Reforming of Biomass Tar over Biomass Char Supported Molybdenum Carbide Catalyst. Int. J. Hydrogen Energy 2015, 40, 7974–7982. [Google Scholar] [CrossRef]
- Parthasarathy, P.; Narayanan, K.S. Hydrogen Production from Steam Gasification of Biomass: Influence of Process Parameters on Hydrogen Yield—A Review. Renew. Energy 2014, 66, 570–579. [Google Scholar] [CrossRef]
- Tijmensen, M.J.A.; Faaij, A.P.C.; Hamelinck, C.N.; Van Hardeveld, M.R.M. Exploration of the Possibilities for Production of Fischer Tropsch Liquids and Power via Biomass Gasification. Biomass Bioenergy 2002, 23, 129–152. [Google Scholar] [CrossRef]
- Florin, N.H.; Harris, A.T. Enhanced Hydrogen Production from Biomass with In Situ Carbon Dioxide Capture Using Calcium Oxide Sorbents. Chem. Eng. Sci. 2008, 63, 287–316. [Google Scholar] [CrossRef]
- Shahbaz, M.; Yusup, S.; Inayat, A.; Patrick, D.O.; Partama, A. System Analysis of Poly-Generation of SNG, Power and District Heating from Biomass Gasification System. Chem. Eng. Trans. 2016, 52, 781–786. [Google Scholar] [CrossRef]
- Ghiat, I.; AlNouss, A.; McKay, G.; Al-Ansari, T. Biomass-Based Integrated Gasification Combined Cycle with Post-Combustion CO2 Recovery by Potassium Carbonate: Techno-Economic and Environmental Analysis. Comput. Chem. Eng. 2020, 135, 106758. [Google Scholar] [CrossRef]
- Huang, J.; Zhu, C.; Lian, X.; Feng, H.; Sun, J.; Wang, L.; Jin, H. Catalytic Supercritical Water Gasification of Glucose with In-Situ Generated Nickel Nanoparticles for Hydrogen Production. Int. J. Hydrogen Energy 2019, 44, 21020–21029. [Google Scholar] [CrossRef]
- Sheikhdavoodi, M.J.; Almassi, M.; Ebrahimi-Nik, M.; Kruse, A.; Bahrami, H. Gasification of Sugarcane Bagasse in Supercritical Water; Evaluation of Alkali Catalysts for Maximum Hydrogen Production. J. Energy Inst. 2015, 88, 450–458. [Google Scholar] [CrossRef]
- K\ipçak, E.; Akgün, M. Hydrogen Production by Supercritical Water Gasification of Biomass. In Production of Hydrogen from Renewable Resources; Fang, Z., Smith, R.L., Jr., Qi, X., Eds.; Springer: Dordrecht, The Netherlands, 2015; pp. 179–220. ISBN 978-94-017-7330-0. [Google Scholar]
- Reddy, S.N.; Nanda, S.; Dalai, A.K.; Kozinski, J.A. Supercritical Water Gasification of Biomass for Hydrogen Production. Int. J. Hydrogen Energy 2014, 39, 6912–6926. [Google Scholar] [CrossRef]
- Shahbaz, M.; Al-Ansari, T.; Aslam, M.; Khan, Z.; Inayat, A.; Athar, M.; Naqvi, S.R.; Ahmed, M.A.; McKay, G. A State of the Art Review on Biomass Processing and Conversion Technologies to Produce Hydrogen and Its Recovery via Membrane Separation. Int. J. Hydrogen Energy 2020, 45, 15166–15195. [Google Scholar] [CrossRef]
- UNFCCC. Clarifications on Definition of Biomass and Considerations of Changes in Carbon Pools Due to a CDN Project Activity; 2005; p. 1. Available online: https://cdm.unfccc.int/EB/020/eb20repan08.pdf (accessed on 10 July 2024).
- Chowdhury, R.; Ghosh, S.; Debnath, B.; Manna, D. Indian Agro-Wastes for 2G Biorefineries: Strategic Decision on Conversion Processes. In Sustainable Energy Technology and Policies: A Transformational Journey; De, S., Bandyopadhyay, S., Assadi, M., Mukherjee, D.A., Eds.; Springer: Singapore, 2018; Volume 1, pp. 353–373. ISBN 978-981-10-7188-1. [Google Scholar]
- Kalak, T. Potential Use of Industrial Biomass Waste as a Sustainable Energy Source in the Future. Energies 2023, 16, 1783. [Google Scholar] [CrossRef]
- Sivabalan, K.; Hassan, S.; Ya, H.; Pasupuleti, J. A Review on the Characteristic of Biomass and Classification of Bioenergy through Direct Combustion and Gasification as an Alternative Power Supply. J. Phys. Conf. Ser. 2021, 1831, 012033. [Google Scholar] [CrossRef]
- Tursi, A. A Review on Biomass: Importance, Chemistry, Classification, and Conversion. Biofuel Res. J. 2019, 6, 962–979. [Google Scholar] [CrossRef]
- Abreu, M.; Silva, L.; Ribeiro, B.; Ferreira, A.; Alves, L.; Paixão, S.M.; Gouveia, L.; Moura, P.; Carvalheiro, F.; Duarte, L.C.; et al. Low Indirect Land Use Change (ILUC) Energy Crops to Bioenergy and Biofuels—A Review. Energies 2022, 15, 4348. [Google Scholar] [CrossRef]
- Musharavati, F.; Ahmad, A.; Javed, M.H.; Sajid, K.; Nizami, A.S. Advancing Biohydrogen Production from Organic Fraction of Municipal Solid Waste through Thermal Liquefaction. Int. J. Hydrogen Energy 2024. [Google Scholar] [CrossRef]
- Khan, A.H.; López-Maldonado, E.A.; Alam, S.S.; Khan, N.A.; López, J.R.L.; Herrera, P.F.M.; Abutaleb, A.; Ahmed, S.; Singh, L. Municipal Solid Waste Generation and the Current State of Waste-to-Energy Potential: State of Art Review. Energy Convers. Manag. 2022, 267, 115905. [Google Scholar] [CrossRef]
- Ayeleru, O.O.; Okonta, F.N.; Ntuli, F. Municipal Solid Waste Generation and Characterization in the City of Johannesburg: A Pathway for the Implementation of Zero Waste. Waste Manag. 2018, 79, 87–97. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Si, B.; Lu, J.; Watson, J.; Zhang, Y.; Liu, Z. Elemental Migration and Characterization of Products during Hydrothermal Liquefaction of Cornstalk. Bioresour. Technol. 2017, 243, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Watson, J.; Liu, Z.; Wu, Y. Elemental Migration and Transformation during Hydrothermal Liquefaction of Biomass. J. Hazard. Mater. 2022, 423, 126961. [Google Scholar] [CrossRef] [PubMed]
- Mathanker, A.; Das, S.; Pudasainee, D.; Khan, M.; Kumar, A.; Gupta, R. A Review of Hydrothermal Liquefaction of Biomass for Biofuels Production with a Special Focus on the Effect of Process Parameters, Co-Solvents, and Extraction Solvents. Energies 2021, 14, 4916. [Google Scholar] [CrossRef]
- Wang, F.; Chang, Z.; Duan, P.; Yan, W.; Xu, Y.; Zhang, L.; Miao, J.; Fan, Y. Hydrothermal Liquefaction of Litsea Cubeba Seed to Produce Bio-Oils. Bioresour. Technol. 2013, 149, 509–515. [Google Scholar] [CrossRef]
- Pio, D.T.; Tarelho, L.A.C. Empirical and Chemical Equilibrium Modelling for Prediction of Biomass Gasification Products in Bubbling Fluidized Beds. Energy 2020, 202, 117654. [Google Scholar] [CrossRef]
- Lu, J.; Li, H.; Zhang, Y.; Liu, Z. Nitrogen Migration and Transformation during Hydrothermal Liquefaction of Livestock Manures. ACS Sustain. Chem. Eng. 2018, 6, 13570–13578. [Google Scholar] [CrossRef]
- Cheikhwafa, J.; Glińska, K.; Torrens, E.; Bengoa, C. Effect of Temperature on Hydrothermal Liquefaction of High Lipids and Carbohydrates Content Municipal Primary Sludge. Heliyon 2024, 10, E24731. [Google Scholar] [CrossRef] [PubMed]
- Nazem, M.A.; Tavakoli, O. Bio-Oil Production from Refinery Oily Sludge Using Hydrothermal Liquefaction Technology. J. Supercrit. Fluids 2017, 127, 33–40. [Google Scholar] [CrossRef]
- Copa, J.R.; Tuna, C.E.; Silveira, J.L.; Boloy, R.A.M.; Brito, P.; Silva, V.; Cardoso, J.; Eusébio, D. Techno-Economic Assessment of the Use of Syngas Generated from Biomass to Feed an Internal Combustion Engine. Energies 2020, 13, 3097. [Google Scholar] [CrossRef]
- Kossalbayev, B.D.; Yilmaz, G.; Sadvakasova, A.K.; Zayadan, B.K.; Belkozhayev, A.M.; Kamshybayeva, G.K.; Sainova, G.A.; Bozieva, A.M.; Alharby, H.F.; Tomo, T.; et al. Biotechnological Production of Hydrogen: Design Features of Photobioreactors and Improvement of Conditions for Cultivating Cyanobacteria. Int. J. Hydrogen Energy 2024, 49, 413–432. [Google Scholar] [CrossRef]
- Trchounian, K.; Trchounian, A. Hydrogen Production from Glycerol by Escherichia coli and Other Bacteria: An Overview and Perspectives. Appl. Energy 2015, 156, 174–184. [Google Scholar] [CrossRef]
- Cheng, J.; Li, H.; Ding, L.; Zhou, J.; Song, W.; Li, Y.Y.; Lin, R. Improving Hydrogen and Methane Co-Generation in Cascading Dark Fermentation and Anaerobic Digestion: The Effect of Magnetite Nanoparticles on Microbial Electron Transfer and Syntrophism. Chem. Eng. J. 2020, 397, 125394. [Google Scholar] [CrossRef]
- Gutekunst, K.; Chen, X.; Schreiber, K.; Kaspar, U.; Makam, S.; Appel, J. The Bidirectional NiFe-Hydrogenase in Synechocystis sp. PCC 6803 Is Reduced by Flavodoxin and Ferredoxin and Is Essential under Mixotrophic, Nitrate-Limiting Conditions. J. Biol. Chem. 2014, 289, 1930–1937. [Google Scholar] [CrossRef]
- Márquez-Reyes, L.A.; del Pilar Sánchez-Saavedra, M.; Valdez-Vazquez, I. Improvement of Hydrogen Production by Reduction of the Photosynthetic Oxygen in Microalgae Cultures of Chlamydomonas gloeopara and Scenedesmus obliquus. Int. J. Hydrogen Energy 2015, 40, 7291–7300. [Google Scholar] [CrossRef]
- Torzillo, G.; Scoma, A.; Faraloni, C.; Ena, A.; Johanningmeier, U. Increased Hydrogen Photoproduction by Means of a Sulfur-Deprived Chlamydomonas reinhardtii D1 Protein Mutant. Int. J. Hydrogen Energy 2009, 34, 4529–4536. [Google Scholar] [CrossRef]
- Rashid, N.; Lee, K.; Mahmood, Q. Bio-Hydrogen Production by Chlorella vulgaris under Diverse Photoperiods. Bioresour. Technol. 2011, 102, 2101–2104. [Google Scholar] [CrossRef]
- Paramesh, K.; Chandrasekhar, T. Improvement of Photobiological Hydrogen Production in Chlorococcum minutum Using Various Oxygen Scavengers. Int. J. Hydrogen Energy 2020, 45, 7641–7646. [Google Scholar] [CrossRef]
- Mona, S.; Kaushik, A.; Kaushik, C.P. Hydrogen Production and Metal-Dye Bioremoval by a Nostoc linckia Strain Isolated from Textile Mill Oxidation Pond. Bioresour. Technol. 2011, 102, 3200–3205. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Sherman, D.M.; Shermana, L.A. The Uptake Hydrogenase in the Unicellular Diazotrophic Cyanobacterium Cyanothece sp. Strain PCC 7822 Protects Nitrogenase from Oxygen Toxicity. J. Bacteriol. 2014, 196, 840–849. [Google Scholar] [CrossRef] [PubMed]
- Eroglu, E.; Melis, A. Photobiological Hydrogen Production: Recent Advances and State of the Art. Bioresour. Technol. 2011, 102, 8403–8413. [Google Scholar] [CrossRef] [PubMed]
- Javed, M.A.; Zafar, A.M.; Aly Hassan, A.; Zaidi, A.A.; Farooq, M.; El Badawy, A.; Lundquist, T.; Mohamed, M.M.A.; Al-Zuhair, S. The Role of Oxygen Regulation and Algal Growth Parameters in Hydrogen Production via Biophotolysis. J. Environ. Chem. Eng. 2022, 10, 107003. [Google Scholar] [CrossRef]
- Azwar, M.Y.; Hussain, M.A.; Abdul-Wahab, A.K. Development of Biohydrogen Production by Photobiological, Fermentation and Electrochemical Processes: A Review. Renew. Sustain. Energy Rev. 2014, 31, 158–173. [Google Scholar] [CrossRef]
- Das, D.; Veziroglu, T.N. Advances in Biological Hydrogen Production Processes. Int. J. Hydrogen Energy 2008, 33, 6046–6057. [Google Scholar] [CrossRef]
- Xu, X.; Zhou, Q.; Yu, D. The Future of Hydrogen Energy: Bio-Hydrogen Production Technology. Int. J. Hydrogen Energy 2022, 47, 33677–33698. [Google Scholar] [CrossRef]
- Jiménez-Llanos, J.; Ramírez-Carmona, M.; Rendón-Castrillón, L.; Ocampo-López, C. Sustainable Biohydrogen Production by Chlorella sp. Microalgae: A Review. Int. J. Hydrogen Energy 2020, 45, 8310–8328. [Google Scholar] [CrossRef]
- Song, W.; Rashid, N.; Choi, W.; Lee, K. Biohydrogen Production by Immobilized Chlorella sp. Using Cycles of Oxygenic Photosynthesis and Anaerobiosis. Bioresour. Technol. 2011, 102, 8676–8681. [Google Scholar] [CrossRef]
- Sengmee, D.; Cheirsilp, B.; Suksaroge, T.T.; Prasertsan, P. Biophotolysis-Based Hydrogen and Lipid Production by Oleaginous Microalgae Using Crude Glycerol as Exogenous Carbon Source. Int. J. Hydrogen Energy 2017, 42, 1970–1976. [Google Scholar] [CrossRef]
- Pyo Kim, J.; Duk Kang, C.; Hyun Park, T.; Sun Kim, M.; Jun Sim, S. Enhanced Hydrogen Production by Controlling Light Intensity in Sulfur-Deprived Chlamydomonas reinhardtii Culture. Int. J. Hydrogen Energy 2006, 31, 1585–1590. [Google Scholar] [CrossRef]
- Bala Amutha, K.; Murugesan, A.G. Biological Hydrogen Production by the Algal Biomass Chlorella vulgaris MSU 01 Strain Isolated from Pond Sediment. Bioresour. Technol. 2011, 102, 194–199. [Google Scholar] [CrossRef] [PubMed]
- Chader, S.; Hacene, H.; Agathos, S.N. Study of Hydrogen Production by Three Strains of Chlorella Isolated from the Soil in the Algerian Sahara. Int. J. Hydrogen Energy 2009, 34, 4941–4946. [Google Scholar] [CrossRef]
- Hong, M.E.; Shin, Y.S.; Kim, B.W.; Sim, S.J. Autotrophic Hydrogen Photoproduction by Operation of Carbon-Concentrating Mechanism in Chlamydomonas reinhardtii under Sulfur Deprivation Condition. J. Biotechnol. 2016, 221, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Huesemann, M.H.; Hausmann, T.S.; Carter, B.M.; Gerschler, J.J.; Benemann, J.R. Hydrogen Generation Through Indirect Biophotolysis in Batch Cultures of the Nonheterocystous Nitrogen-Fixing Cyanobacterium Plectonema boryanum. Appl. Biochem. Biotechnol. 2010, 162, 208–220. [Google Scholar] [CrossRef] [PubMed]
- Vargas, S.R.; dos Santos, P.V.; Giraldi, L.A.; Zaiat, M.; Calijuri, M.d.C. Anaerobic Phototrophic Processes of Hydrogen Production by Different Strains of Microalgae Chlamydomonas sp. FEMS Microbiol. Lett. 2018, 365, fny073. [Google Scholar] [CrossRef] [PubMed]
- Vargas, S.R.; Zaiat, M.; Calijuri, M.d.C. Influence of Culture Age, Ammonium and Organic Carbon in Hydrogen Production and Nutrient Removal by Anabaena sp. in Nitrogen-Limited Cultures. Int. J. Hydrogen Energy 2020, 45, 30222–30231. [Google Scholar] [CrossRef]
- Raksajit, W.; Satchasataporn, K.; Lehto, K.; Mäenpää, P.; Incharoensakdi, A. Enhancement of Hydrogen Production by the Filamentous Non-Heterocystous Cyanobacterium Arthrospira sp. PCC 8005. Int. J. Hydrogen Energy 2012, 37, 18791–18797. [Google Scholar] [CrossRef]
- Vargas, S.R.; Zaiat, M.; Calijuri, M.d.C. Chlamydomonas Strains Respond Differently to Photoproduction of Hydrogen and By-Products and Nutrient Uptake in Sulfur-Deprived Cultures. J. Environ. Chem. Eng. 2021, 9, 105930. [Google Scholar] [CrossRef]
- Kaushik, A.; Anjana, K. Biohydrogen Production by Lyngbya Perelegans: Influence of Physico-Chemical Environment. Biomass Bioenergy 2011, 35, 1041–1045. [Google Scholar] [CrossRef]
- Tiwari, A.; Pandey, A. Cyanobacterial Hydrogen Production—A Step towards Clean Environment. Int. J. Hydrogen Energy 2012, 37, 139–150. [Google Scholar] [CrossRef]
- Kossalbayev, B.D.; Tomo, T.; Zayadan, B.K.; Sadvakasova, A.K.; Bolatkhan, K.; Alwasel, S.; Allakhverdiev, S.I. Determination of the Potential of Cyanobacterial Strains for Hydrogen Production. Int. J. Hydrogen Energy 2020, 45, 2627–2639. [Google Scholar] [CrossRef]
- Tamburic, B.; Zemichael, F.W.; Maitland, G.C.; Hellgardt, K. Parameters Affecting the Growth and Hydrogen Production of the Green Alga Chlamydomonas reinhardtii. Int. J. Hydrogen Energy 2011, 36, 7872–7876. [Google Scholar] [CrossRef]
- Mishra, P.; Krishnan, S.; Rana, S.; Singh, L.; Sakinah, M.; Ab Wahid, Z. Outlook of Fermentative Hydrogen Production Techniques: An Overview of Dark, Photo and Integrated Dark-Photo Fermentative Approach to Biomass. Energy Strateg. Rev. 2019, 24, 27–37. [Google Scholar] [CrossRef]
- Koku, H.; Erolu, I.; Gündüz, U.; Yücel, M.; Türker, L. Aspects of the Metabolism of Hydrogen Production by Rhodobacter sphaeroides. Int. J. Hydrogen Energy 2002, 27, 1315–1329. [Google Scholar] [CrossRef]
- Ghosh, S.; Dairkee, U.K.; Chowdhury, R.; Bhattacharya, P. Hydrogen from Food Processing Wastes via Photofermentation Using Purple Non-Sulfur Bacteria (PNSB)—A Review. Energy Convers. Manag. 2017, 141, 299–314. [Google Scholar] [CrossRef]
- Sakurai, H.; Masukawa, H.; Kitashima, M.; Inoue, K. Photobiological Hydrogen Production: Bioenergetics and Challenges for Its Practical Application. J. Photochem. Photobiol. C Photochem. Rev. 2013, 17, 1–25. [Google Scholar] [CrossRef]
- Budiman, P.M.; Wu, T.Y. Role of Chemicals Addition in Affecting Biohydrogen Production through Photofermentation. Energy Convers. Manag. 2018, 165, 509–527. [Google Scholar] [CrossRef]
- Ahmad, A.; Rambabu, K.; Hasan, S.W.; Show, P.L.; Banat, F. Biohydrogen Production through Dark Fermentation: Recent Trends and Advances in Transition to a Circular Bioeconomy. Int. J. Hydrogen Energy 2024, 52, 335–357. [Google Scholar] [CrossRef]
- Chandrasekhar, K.; Lee, Y.J.; Lee, D.W. Biohydrogen Production: Strategies to Improve Process Efficiency through Microbial Routes. Int. J. Mol. Sci. 2015, 16, 8266–8293. [Google Scholar] [CrossRef] [PubMed]
- Bundhoo, Z.M.A. Coupling Dark Fermentation with Biochemical or Bioelectrochemical Systems for Enhanced Bio-Energy Production: A Review. Int. J. Hydrogen Energy 2017, 42, 26667–26686. [Google Scholar] [CrossRef]
- Hallenbeck, P.C.; Abo-Hashesh, M.; Ghosh, D. Strategies for Improving Biological Hydrogen Production. Bioresour. Technol. 2012, 110, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Su, H.; Zhou, J.; Song, W.; Cen, K. Microwave-Assisted Alkali Pretreatment of Rice Straw to Promote Enzymatic Hydrolysis and Hydrogen Production in Dark- and Photo-Fermentation. Int. J. Hydrogen Energy 2011, 36, 2093–2101. [Google Scholar] [CrossRef]
- García-Sánchez, R.; Ramos-Ibarra, R.; Guatemala-Morales, G.; Arriola-Guevara, E.; Toriz-González, G.; Corona-González, R.I. Photofermentation of Tequila Vinasses by Rhodopseudomonas pseudopalustris to Produce Hydrogen. Int. J. Hydrogen Energy 2018, 43, 15857–15869. [Google Scholar] [CrossRef]
- Yue, T.; Sun, Y.; Zhang, Q.; Jiang, D.; Zhang, Z.; Zhang, H.; Li, Y.; Zhang, Y.; Zhang, T. Enhancement of Biohydrogen Production by Photo-Fermentation of Corn Stover via Visible Light Catalyzed Titanium Dioxide/Activated Carbon Fiber. Bioresour. Technol. 2024, 399, 130459. [Google Scholar] [CrossRef]
- Lu, C.; Wang, G.; Zhang, Q.; Yang, X.; Yu, J.; Liu, T.; Petracchini, F.; Zhang, Z.; Sun, Y.; Jiang, D.; et al. Comparison of Biorefinery Characteristics: Photo-Fermentation Biohydrogen, Dark Fermentation Biohydrogen, Biomethane, and Bioethanol Production. Appl. Energy 2023, 347, 121463. [Google Scholar] [CrossRef]
- Budiman, P.M.; Wu, T.Y.; Ramanan, R.N.; Jahim, J.M. Improving Photofermentative Biohydrogen Production by Using Intermittent Ultrasonication and Combined Industrial Effluents from Palm Oil, Pulp and Paper Mills. Energy Convers. Manag. 2017, 132, 110–118. [Google Scholar] [CrossRef]
- Kim, D.H.; Kim, S.H.; Kim, K.Y.; Shin, H.S. Experience of a Pilot-Scale Hydrogen-Producing Anaerobic Sequencing Batch Reactor (ASBR) Treating Food Waste. Int. J. Hydrogen Energy 2010, 35, 1590–1594. [Google Scholar] [CrossRef]
- Kumar, G.; Bakonyi, P.; Sivagurunathan, P.; Kim, S.H.; Nemestóthy, N.; Bélafi-Bakó, K.; Lin, C.Y. Enhanced Biohydrogen Production from Beverage Industrial Wastewater Using External Nitrogen Sources and Bioaugmentation with Facultative Anaerobic Strains. J. Biosci. Bioeng. 2015, 120, 155–160. [Google Scholar] [CrossRef]
- Yang, Y.; Bu, J.; Tiong, Y.W.; Xu, S.; Zhang, J.; He, Y.; Zhu, M.; Tong, Y.W. Enhanced Thermophilic Dark Fermentation of Hydrogen Production from Food Waste by Fe-Modified Biochar. Environ. Res. 2024, 244, 117946. [Google Scholar] [CrossRef]
- Zhao, B.; Yuan, A.; Cao, S.; Dong, Z.; Sha, H.; Song, Z. Advancing Two-Stage Hydrogen Production from Corn Stover via Dark Fermentation: Contributions of Thermally Modified Maifanite to Microbial Proliferation and PH Self-Regulation. Bioresour. Technol. 2024, 403, 130853. [Google Scholar] [CrossRef]
- Chantawan, N.; Moungprayoon, A.; Lunprom, S.; Reungsang, A.; Salakkam, A. High-Solid Dark Fermentation of Cassava Pulp and Cassava Processing Wastewater for Hydrogen Production. Int. J. Hydrogen Energy 2022, 47, 40672–40682. [Google Scholar] [CrossRef]
- Kazemi, R.; Mirmohamadsadeghi, S.; Amiri, H. Efficient Bio-Hydrogen Production by Dark Co-Fermentation of Food-Rich Municipal Solid Waste and Urban Pruning Wastes of Pine, Cypress, and Berry. Process Saf. Environ. Prot. 2024, 187, 398–407. [Google Scholar] [CrossRef]
- Ban, Q.; Wang, J.; Guo, P.; Yue, J.; Zhang, L.; Li, J. Improved Biohydrogen Production by Co-Fermentation of Corn Straw and Excess Sludge: Insights into Biochemical Process, Microbial Community and Metabolic Genes. Environ. Res. 2024, 256, 119171. [Google Scholar] [CrossRef]
- Hussien, M.; Jadhav, D.A.; Le, T.T.Q.; Jang, J.H.; Jang, J.K.; Chae, K.J. Tuning Dark Fermentation Operational Conditions for Improved Biohydrogen Yield during Co-Digestion of Swine Manure and Food Waste. Process Saf. Environ. Prot. 2024, 187, 1496–1507. [Google Scholar] [CrossRef]
- Srivastava, N.; Singh, R.; Lal, B.; Haque, S. Evaluation of Bioprocess Parameters for Pilot Scale Fermentative Biohydrogen Production Using Organic Waste: Environmental Remediation, Techno-Economic Challenges & Future Solutions. Int. J. Hydrogen Energy 2024. [Google Scholar] [CrossRef]
- Venkata Mohan, S.; Mohanakrishna, G.; Srikanth, S. Biohydrogen Production from Industrial Effluents. In Biofuels: Alternative Feedstocks and Conversion Processes; Academic Press: Cambridge, MA, USA, 2011; pp. 499–524. ISBN 9780123850997. [Google Scholar]
- Wang, J.; Yin, Y. Influencing Factors for Biohydrogen Production. In Biohydrogen Production from Organic Wastes; Green Energy and Technology; Springer: Berlin/Heidelberg, Germany, 2017; pp. 197–268. ISBN 9789811046759. [Google Scholar]
- Ananthi, V.; Bora, A.; Ramesh, U.; Yuvakkumar, R.; Raja, K.; Ponnuchamy, K.; Muthusamy, G.; Arun, A. A Review on the Technologies for Sustainable Biohydrogen Production. Process Saf. Environ. Prot. 2024, 186, 944–956. [Google Scholar] [CrossRef]
- Zhang, H.; Li, J.; Zhang, Q.; Zhu, S.; Yang, S.; Zhang, Z. Effect of Substrate Concentration on Photo-Fermentation Bio-Hydrogen Production Process from Starch-Rich Agricultural Leftovers under Oscillation. Sustainability 2020, 12, 2700. [Google Scholar] [CrossRef]
- Hallenbeck, P.C. Bioenergy from Microorganisms: An Overview. In Microbial BioEnergy: Hydrogen Production; Zannoni, D., De Philippis, R., Eds.; Springer: Dordrecht, The Netherlands, 2014; pp. 3–21. ISBN 978-94-017-8554-9. [Google Scholar]
- Yang, D.; Zhang, Y.; Barupal, D.K.; Fan, X.; Gustafson, R.; Guo, R.; Fiehn, O. Metabolomics of Photobiological Hydrogen Production Induced by CCCP in Chlamydomonas reinhardtii. Int. J. Hydrogen Energy 2014, 39, 150–158. [Google Scholar] [CrossRef]
- Chen, W.; Li, T.; Ren, Y.; Wang, J.; Chen, H.; Wang, Q. Biological Hydrogen with Industrial Potential: Improvement and Prospection in Biohydrogen Production. J. Clean. Prod. 2023, 387, 135777. [Google Scholar] [CrossRef]
- McNeely, K.; Xu, Y.; Bennette, N.; Bryant, D.A.; Dismukes, G.C. Redirecting Reductant Flux into Hydrogen Production via Metabolic Engineering of Fermentative Carbon Metabolism in a Cyanobacterium. Appl. Environ. Microbiol. 2010, 76, 5032–5038. [Google Scholar] [CrossRef]
- Moon, C.; Jang, S.; Yun, Y.M.; Lee, M.K.; Kim, D.H.; Kang, W.S.; Kwak, S.S.; Kim, M.S. Effect of the Accuracy of PH Control on Hydrogen Fermentation. Bioresour. Technol. 2015, 179, 595–601. [Google Scholar] [CrossRef]
- Copa Rey, J.R.; Tamayo Pacheco, J.J.; António da Cruz Tarelho, L.; Silva, V.; Cardoso, J.S.; Silveira, J.L.; Tuna, C.E. Evaluation of Cogeneration Alternative Systems Integrating Biomass Gasification Applied to a Brazilian Sugar Industry. Renew. Energy 2021, 178, 318–333. [Google Scholar] [CrossRef]
- Briones-Hidrovo, A.; Copa, J.; Tarelho, L.A.C.; Gonçalves, C.; Pacheco da Costa, T.; Dias, A.C. Environmental and Energy Performance of Residual Forest Biomass for Electricity Generation: Gasification vs. Combustion. J. Clean. Prod. 2021, 289, 125680. [Google Scholar] [CrossRef]
- Lepage, T.; Kammoun, M.; Schmetz, Q.; Richel, A. Biomass-to-Hydrogen: A Review of Main Routes Production, Processes Evaluation and Techno-Economical Assessment. Biomass Bioenergy 2021, 144, 105920. [Google Scholar] [CrossRef]
- Luo, Y.; Chen, J. Hydrogen Production from Biomass Steam Gasification: Experiment and Simulation. Chem. Eng. Sci. 2024, 292, 120011. [Google Scholar] [CrossRef]
- Shen, Y. Biomass Pretreatment for Steam Gasification toward H2-Rich Syngas Production—An Overview. Int. J. Hydrogen Energy 2024, 66, 90–102. [Google Scholar] [CrossRef]
- Li, H.; Chen, Z.; Huo, C.; Hu, M.; Guo, D.; Xiao, B. Effect of Bioleaching on Hydrogen-Rich Gas Production by Steam Gasification of Sewage Sludge. Energy Convers. Manag. 2015, 106, 1212–1218. [Google Scholar] [CrossRef]
- Pachapur, V.L.; Kutty, P.; Pachapur, P.; Brar, S.K.; Le Bihan, Y.; Galvez-Cloutier, R.; Buelna, G. Seed Pretreatment for Increased Hydrogen Production Using Mixed-Culture Systems with Advantages over Pure-Culture Systems. Energies 2019, 12, 530. [Google Scholar] [CrossRef]
- Gai, C.; Guo, Y.; Liu, T.; Peng, N.; Liu, Z. Hydrogen-Rich Gas Production by Steam Gasification of Hydrochar Derived from Sewage Sludge. Int. J. Hydrogen Energy 2016, 41, 3363–3372. [Google Scholar] [CrossRef]
- Niu, Y.; Han, F.; Chen, Y.; Lyu, Y.; Wang, L. Experimental Study on Steam Gasification of Pine Particles for Hydrogen-Rich Gas. J. Energy Inst. 2017, 90, 715–724. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, L.; Yang, Z.; Yan, Y.; Pu, G.; Guo, M. Hydrogen-Rich Gas Production from Wet Biomass Steam Gasification with CaO/MgO. Int. J. Hydrogen Energy 2015, 40, 8816–8823. [Google Scholar] [CrossRef]
- Cao, L.; Yu, I.K.M.; Xiong, X.; Tsang, D.C.W.; Zhang, S.; Clark, J.H.; Hu, C.; Ng, Y.H.; Shang, J.; Ok, Y.S. Biorenewable Hydrogen Production through Biomass Gasification: A Review and Future Prospects. Environ. Res. 2020, 186, 109547. [Google Scholar] [CrossRef]
- Chan, Y.H.; Cheah, K.W.; How, B.S.; Loy, A.C.M.; Shahbaz, M.; Singh, H.K.G.; Yusuf, N.R.; Shuhaili, A.F.A.; Yusup, S.; Ghani, W.A.W.A.K.; et al. An Overview of Biomass Thermochemical Conversion Technologies in Malaysia. Sci. Total Environ. 2019, 680, 105–123. [Google Scholar] [CrossRef]
- Barbuzza, E.; Buceti, G.; Pozio, A.; Santarelli, M.; Tosti, S. Gasification of Wood Biomass with Renewable Hydrogen for the Production of Synthetic Natural Gas. Fuel 2019, 242, 520–531. [Google Scholar] [CrossRef]
- Arregi, A.; Amutio, M.; Lopez, G.; Bilbao, J.; Olazar, M. Evaluation of Thermochemical Routes for Hydrogen Production from Biomass: A Review. Energy Convers. Manag. 2018, 165, 696–719. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, C.; Zhu, B.; Wang, C.; Jia, X.; Guan, G.; Zeng, X.; Hu, E.; Han, Z.; Xu, G. Pyrolysis of Biomass to Produce H-Rich Gas Facilitated by Simultaneously Occurring Magnesite Decomposition. Carbon Resour. Convers. 2024, 100265. [Google Scholar] [CrossRef]
- Dhyani, V.; Bhaskar, T. A Comprehensive Review on the Pyrolysis of Lignocellulosic Biomass. Renew. Energy 2018, 129, 695–716. [Google Scholar] [CrossRef]
- Chen, W.H.; Farooq, W.; Shahbaz, M.; Naqvi, S.R.; Ali, I.; Al-Ansari, T.; Saidina Amin, N.A. Current Status of Biohydrogen Production from Lignocellulosic Biomass, Technical Challenges and Commercial Potential through Pyrolysis Process. Energy 2021, 226, 120433. [Google Scholar] [CrossRef]
- Azizi, K.; Moraveji, M.K.; Najafabadi, H.A. A Review on Bio-Fuel Production from Microalgal Biomass by Using Pyrolysis Method. Renew. Sustain. Energy Rev. 2018, 82, 3046–3059. [Google Scholar] [CrossRef]
- Goyal, H.B.; Seal, D.; Saxena, R.C. Bio-Fuels from Thermochemical Conversion of Renewable Resources: A Review. Renew. Sustain. Energy Rev. 2008, 12, 504–517. [Google Scholar] [CrossRef]
- Al Arni, S. Comparison of Slow and Fast Pyrolysis for Converting Biomass into Fuel. Renew. Energy 2018, 124, 197–201. [Google Scholar] [CrossRef]
- Howe, D.; Westover, T.; Carpenter, D.; Santosa, D.; Emerson, R.; Deutch, S.; Starace, A.; Kutnyakov, I.; Lukins, C. Field-to-Fuel Performance Testing of Lignocellulosic Feedstocks: An Integrated Study of the Fast Pyrolysis–Hydrotreating Pathway. Energy Fuels 2015, 29, 3188–3197. [Google Scholar] [CrossRef]
- Yang, C.; Li, R.; Zhang, B.; Qiu, Q.; Wang, B.; Yang, H.; Ding, Y.; Wang, C. Pyrolysis of Microalgae: A Critical Review. Fuel Process. Technol. 2019, 186, 53–72. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, Y.; Omairey, E.; Cai, J.; Gu, F.; Bridgwater, A.V. Intermediate Pyrolysis of Organic Fraction of Municipal Solid Waste and Rheological Study of the Pyrolysis Oil for Potential Use as Bio-Bitumen. J. Clean. Prod. 2018, 187, 390–399. [Google Scholar] [CrossRef]
- Banks, S.W.; Bridgwater, A.V. 14—Catalytic Fast Pyrolysis for Improved Liquid Quality. In Handbook of Biofuels Production, 2nd ed.; Luque, R., Lin, C.S.K., Wilson, K., Clark, J., Eds.; Woodhead Publishing: Sawston, UK, 2016; pp. 391–429. ISBN 978-0-08-100455-5. [Google Scholar]
- Abou Rjeily, M.; Gennequin, C.; Pron, H.; Abi-Aad, E.; Randrianalisoa, J.H. Pyrolysis-Catalytic Upgrading of Bio-Oil and Pyrolysis-Catalytic Steam Reforming of Biogas: A Review. Environ. Chem. Lett. 2021, 19, 2825–2872. [Google Scholar] [CrossRef]
- Teoh, R.H.; Mahajan, A.S.; Moharir, S.R.; Abdul Manaf, N.; Shi, S.; Thangalazhy-Gopakumar, S. A Review on Hydrothermal Treatments for Solid, Liquid and Gaseous Fuel Production from Biomass. Energy Nexus 2024, 14, 100301. [Google Scholar] [CrossRef]
- Nizamuddin, S.; Baloch, H.A.; Griffin, G.J.; Mubarak, N.M.; Bhutto, A.W.; Abro, R.; Mazari, S.A.; Ali, B.S. An Overview of Effect of Process Parameters on Hydrothermal Carbonization of Biomass. Renew. Sustain. Energy Rev. 2017, 73, 1289–1299. [Google Scholar] [CrossRef]
- Pallarés, J.; González-Cencerrado, A.; Arauzo, I. Production and Characterization of Activated Carbon from Barley Straw by Physical Activation with Carbon Dioxide and Steam. Biomass Bioenergy 2018, 115, 64–73. [Google Scholar] [CrossRef]
- Gollakota, A.R.K.; Kishore, N.; Gu, S. A Review on Hydrothermal Liquefaction of Biomass. Renew. Sustain. Energy Rev. 2018, 81, 1378–1392. [Google Scholar] [CrossRef]
- El Bast, M.; Allam, N.; Abou Msallem, Y.; Awad, S.; Loubar, K. A Review on Continuous Biomass Hydrothermal Liquefaction Systems: Process Design and Operating Parameters Effects on Biocrude. J. Energy Inst. 2023, 108, 101260. [Google Scholar] [CrossRef]
- Okolie, J.A.; Epelle, E.I.; Nanda, S.; Castello, D.; Dalai, A.K.; Kozinski, J.A. Modeling and Process Optimization of Hydrothermal Gasification for Hydrogen Production: A Comprehensive Review. J. Supercrit. Fluids 2021, 173, 105199. [Google Scholar] [CrossRef]
- Nanda, S.; Rana, R.; Hunter, H.N.; Fang, Z.; Dalai, A.K.; Kozinski, J.A. Hydrothermal Catalytic Processing of Waste Cooking Oil for Hydrogen-Rich Syngas Production. Chem. Eng. Sci. 2019, 195, 935–945. [Google Scholar] [CrossRef]
- Lee, C.S.; Conradie, A.V.; Lester, E. Review of Supercritical Water Gasification with Lignocellulosic Real Biomass as the Feedstocks: Process Parameters, Biomass Composition, Catalyst Development, Reactor Design and Its Challenges. Chem. Eng. J. 2021, 415, 128837. [Google Scholar] [CrossRef]
- Okolie, J.A.; Rana, R.; Nanda, S.; Dalai, A.K.; Kozinski, J.A. Supercritical Water Gasification of Biomass: A State-of-the-Art Review of Process Parameters, Reaction Mechanisms and Catalysis. Sustain. Energy Fuels 2019, 3, 578–598. [Google Scholar] [CrossRef]
- Nanda, S.; Reddy, S.N.; Hunter, H.N.; Dalai, A.K.; Kozinski, J.A. Supercritical Water Gasification of Fructose as a Model Compound for Waste Fruits and Vegetables. J. Supercrit. Fluids 2015, 104, 112–121. [Google Scholar] [CrossRef]
- Abdol Ghaffar Ebadi Hikmat Hisoriev, M.Z.; Ahmadi, H. Hydrogen and Syngas Production by Catalytic Gasification of Algal Biomass (Cladophora glomerata L.) Using Alkali and Alkaline-Earth Metals Compounds. Environ. Technol. 2019, 40, 1178–1184. [Google Scholar] [CrossRef]
- Matamba, T.; Tahmasebi, A.; Yu, J.; Keshavarz, A.; Abid, H.R.; Iglauer, S. A Review on Biomass as a Substitute Energy Source: Polygeneration Influence and Hydrogen Rich Gas Formation via Pyrolysis. J. Anal. Appl. Pyrolysis 2023, 175, 106221. [Google Scholar] [CrossRef]
- Obiora, N.K.; Ujah, C.O.; Asadu, C.O.; Kolawole, F.O.; Ekwueme, B.N. Production of Hydrogen Energy from Biomass: Prospects and Challenges. Green Technol. Sustain. 2024, 2, 100100. [Google Scholar] [CrossRef]
- Rodriguez Correa, C.; Kruse, A. Supercritical Water Gasification of Biomass for Hydrogen Production—Review. J. Supercrit. Fluids 2018, 133, 573–590. [Google Scholar] [CrossRef]
- Zang, G.; Graham, E.J.; Mallapragada, D. H2 Production through Natural Gas Reforming and Carbon Capture: A Techno-Economic and Life Cycle Analysis Comparison. Int. J. Hydrogen Energy 2024, 49, 1288–1303. [Google Scholar] [CrossRef]
- Katebah, M.; Al-Rawashdeh, M.; Linke, P. Analysis of Hydrogen Production Costs in Steam-Methane Reforming Considering Integration with Electrolysis and CO2 Capture. Clean. Eng. Technol. 2022, 10, 100552. [Google Scholar] [CrossRef]
- Law, L.C.; Mastorakos, E.; Othman, M.R.; Trakakis, A. A Thermodynamics Model for the Assessment and Optimisation of Onboard Natural Gas Reforming and Carbon Capture. Emiss. Control Sci. Technol. 2024, 10, 52–69. [Google Scholar] [CrossRef]
- Gutiérrez Ortiz, F.J. Biofuel Production from Supercritical Water Gasification of Sustainable Biomass. Energy Convers. Manag. X 2022, 14, 100164. [Google Scholar] [CrossRef]
- Oni, A.O.; Anaya, K.; Giwa, T.; Di Lullo, G.; Kumar, A. Comparative Assessment of Blue Hydrogen from Steam Methane Reforming, Autothermal Reforming, and Natural Gas Decomposition Technologies for Natural Gas-Producing Regions. Energy Convers. Manag. 2022, 254, 115245. [Google Scholar] [CrossRef]
- Vuppaladadiyam, A.K.; Vuppaladadiyam, S.S.V.; Awasthi, A.; Sahoo, A.; Rehman, S.; Pant, K.K.; Murugavelh, S.; Huang, Q.; Anthony, E.; Fennel, P.; et al. Biomass Pyrolysis: A Review on Recent Advancements and Green Hydrogen Production. Bioresour. Technol. 2022, 364, 128087. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Bastardo, N.; Schlögl, R.; Ruland, H. Methane Pyrolysis for Zero-Emission Hydrogen Production: A Potential Bridge Technology from Fossil Fuels to a Renewable and Sustainable Hydrogen Economy. Ind. Eng. Chem. Res. 2021, 60, 11855–11881. [Google Scholar] [CrossRef]
- Kayfeci, M.; Keçebaş, A.; Bayat, M. Chapter 3—Hydrogen Production. In Solar Hydrogen Production; Calise, F., D’Accadia, M.D., Santarelli, M., Lanzini, A., Ferrero, D., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 45–83. ISBN 978-0-12-814853-2. [Google Scholar]
- AlZohbi, G.; AlShuhail, L.; Almoaikel, A. An Estimation of Green Hydrogen Generation from Wind Energy: A Case Study from KSA. Energy Rep. 2023, 9, 262–267. [Google Scholar] [CrossRef]
- Ozcan, H.; El-Emam, R.S.; Amini Horri, B. Thermochemical Looping Technologies for Clean Hydrogen Production—Current Status and Recent Advances. J. Clean. Prod. 2023, 382, 135295. [Google Scholar] [CrossRef]
- Boretti, A.; Nayfeh, J.; Al-Maaitah, A. Hydrogen Production by Solar Thermochemical Water-Splitting Cycle via a Beam Down Concentrator. Front. Energy Res. 2021, 9, 666191. [Google Scholar] [CrossRef]
- International Energy Agency. Global Hydrogen Review 2023; International Energy Agency: Paris, France, 2023. [Google Scholar]
- Zhou, Y.; Searle, S. Cost of Renewable Hydrogen Produced Onsite at Hydrogen Refueling Stations in Europe; International Council on Clean Transportation: Washington, DC, USA, 2022. [Google Scholar]
- Janssen, J.L.L.C.C.; Weeda, M.; Detz, R.J.; van der Zwaan, B. Country-Specific Cost Projections for Renewable Hydrogen Production through off-Grid Electricity Systems. Appl. Energy 2022, 309, 118398. [Google Scholar] [CrossRef]
- Hydrogen Europe. Clean Hydrogen Monitor 2023. 2023. Available online: https://hydrogeneurope.eu/wp-content/uploads/2023/10/Clean_Hydrogen_Monitor_11-2023_DIGITAL.pdf (accessed on 10 July 2024).
- Jang, D.; Kim, J.; Kim, D.; Han, W.B.; Kang, S. Techno-Economic Analysis and Monte Carlo Simulation of Green Hydrogen Production Technology through Various Water Electrolysis Technologies. Energy Convers. Manag. 2022, 258, 115499. [Google Scholar] [CrossRef]
- Han, W.; Yan, Y.; Gu, J.; Shi, Y.; Tang, J.; Li, Y. Techno-Economic Analysis of a Novel Bioprocess Combining Solid State Fermentation and Dark Fermentation for H2 Production from Food Waste. Int. J. Hydrogen Energy 2016, 41, 22619–22625. [Google Scholar] [CrossRef]
- Hosseinzadeh, A.; Zhou, J.L.; Li, X.; Afsari, M.; Altaee, A. Techno-Economic and Environmental Impact Assessment of Hydrogen Production Processes Using Bio-Waste as Renewable Energy Resource. Renew. Sustain. Energy Rev. 2022, 156, 111991. [Google Scholar] [CrossRef]
- Alam, M.; Nayan, N.F.; Fatema Nayan, N. Techno-Economic Assessment of Biohydrogen Production from Dark Fermentation of Wastewater Sludge. 2024. Available online: https://www.researchgate.net/publication/378002057_Techno-Economic_Assessment_of_Biohydrogen_Production_from_Dark_Fermentation_of_Wastewater_Sludge (accessed on 10 July 2024).
- Szima, S.; Cormos, C.C. Techno—Economic Assessment of Flexible Decarbonized Hydrogen and Power Co-Production Based on Natural Gas Dry Reforming. Int. J. Hydrogen Energy 2019, 44, 31712–31723. [Google Scholar] [CrossRef]
- Cormos, C.C.; Cormos, A.M.; Petrescu, L.; Dragan, S. Techno-Economic Assessment of Decarbonized Biogas Catalytic Reforming for Flexible Hydrogen and Power Production. Appl. Therm. Eng. 2022, 207, 118218. [Google Scholar] [CrossRef]
- Hajizadeh, A.; Mohamadi-Baghmolaei, M.; Cata Saady, N.M.; Zendehboudi, S. Hydrogen Production from Biomass through Integration of Anaerobic Digestion and Biogas Dry Reforming. Appl. Energy 2022, 309, 118442. [Google Scholar] [CrossRef]
- Byun, J.; Han, J.-h. Economic Feasible Hydrogen Production System from Carbohydrate-Rich Food Waste. Appl. Energy 2023, 340, 121044. [Google Scholar] [CrossRef]
- Anex, R.P.; Aden, A.; Kazi, F.K.; Fortman, J.; Swanson, R.M.; Wright, M.M.; Satrio, J.A.; Brown, R.C.; Daugaard, D.E.; Platon, A.; et al. Techno-Economic Comparison of Biomass-to-Transportation Fuels via Pyrolysis, Gasification, and Biochemical Pathways. Fuel 2010, 89, S29–S35. [Google Scholar] [CrossRef]
- Brown, T.R.; Thilakaratne, R.; Brown, R.C.; Hu, G. Techno-Economic Analysis of Biomass to Transportation Fuels and Electricity via Fast Pyrolysis and Hydroprocessing. Fuel 2013, 106, 463–469. [Google Scholar] [CrossRef]
- Tan, E.C.D.; Marker, T.L.; Roberts, M.J. Direct Production of Gasoline and Diesel Fuels from Biomass via Integrated Hydropyrolysis and Hydroconversion Process—A Techno-Economic Analysis. Environ. Prog. Sustain. Energy 2014, 33, 609–617. [Google Scholar] [CrossRef]
- Li, X.; Chen, Z.; Liu, P.; Wang, Z.; Sun, T.; Wu, S.; Wu, Y.; Lei, T. Oriented Pyrolysis of Biomass for Hydrogen-Rich Gas and Biochar Production: An Energy, Environment, and Economic Assessment Based on Life Cycle Assessment Method. Int. J. Hydrogen Energy 2024, 62, 979–993. [Google Scholar] [CrossRef]
- Salkuyeh, Y.K.; Saville, B.A.; MacLean, H.L. Techno-Economic Analysis and Life Cycle Assessment of Hydrogen Production from Different Biomass Gasification Processes. Int. J. Hydrogen Energy 2018, 43, 9514–9528. [Google Scholar] [CrossRef]
- Shaikh, A.R.; Wang, Q.; Han, L.; Feng, Y.; Sharif, Z.; Li, Z.; Cen, J.; Kumar, S. Techno-Economic Analysis of Hydrogen and Electricity Production by Biomass Calcium Looping Gasification. Sustainability 2022, 14, 2189. [Google Scholar] [CrossRef]
- Wang, Y.; Li, G.; Liu, Z.; Cui, P.; Zhu, Z.; Yang, S. Techno-Economic Analysis of Biomass-to-Hydrogen Process in Comparison with Coal-to-Hydrogen Process. Energy 2019, 185, 1063–1075. [Google Scholar] [CrossRef]
- Al-Qahtani, A.; Parkinson, B.; Hellgardt, K.; Shah, N.; Guillen-Gosalbez, G. Uncovering the True Cost of Hydrogen Production Routes Using Life Cycle Monetisation. Appl. Energy 2021, 281, 115958. [Google Scholar] [CrossRef]
- Okolie, J.A.; Nanda, S.; Dalai, A.K.; Kozinski, J.A. Techno-Economic Evaluation and Sensitivity Analysis of a Conceptual Design for Supercritical Water Gasification of Soybean Straw to Produce Hydrogen. Bioresour. Technol. 2021, 331, 125005. [Google Scholar] [CrossRef]
- Cook, B.; Hagen, C. Techno-Economic Analysis of Biomass Gasification for Hydrogen Production in Three US-Based Case Studies. Int. J. Hydrogen Energy 2024, 49, 202–218. [Google Scholar] [CrossRef]
- Zhou, Y.; Swidler, D.; Searle, S.; Baldino, C. Life-Cycle Greenhouse Gas Emissions of Biomethane and Hydrogen Pathways in the European Union; International Council on Clean Transportation: Washington, DC, USA, 2021. [Google Scholar]
- Camacho, C.I.; Estévez, S.; Conde, J.J.; Feijoo, G.; Moreira, M.T. Dark Fermentation as an Environmentally Sustainable WIN-WIN Solution for Bioenergy Production. J. Clean. Prod. 2022, 374, 134026. [Google Scholar] [CrossRef]
- Barghash, H.; AlRashdi, Z.; Okedu, K.E.; Desmond, P. Life-Cycle Assessment Study for Bio-Hydrogen Gas Production from Sewage Treatment Plants Using Solar PVs. Energies 2022, 15, 8056. [Google Scholar] [CrossRef]
- Zheng, X.; Wang, J.; Huang, J.; Xu, X.; Tang, J.; Hou, P.; Han, W.; Li, H. Environmental Impact Assessment of a Combined Bioprocess for Hydrogen Production from Food Waste. Waste Manag. 2024, 173, 152–159. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Liu, X.; Li, G.; Qiu, X.; Yao, D.; Zhu, Z.; Wang, Y.; Gao, J.; Cui, P. Energy Consumption, Environmental Performance, and Techno-Economic Feasibility Analysis of the Biomass-to-Hydrogen Process with and without Carbon Capture and Storage. J. Environ. Chem. Eng. 2021, 9, 106752. [Google Scholar] [CrossRef]
- Chen, J.; Xu, W.; Zuo, H.; Wu, X.; Jiaqiang, E.; Wang, T.; Zhang, F.; Lu, N. System Development and Environmental Performance Analysis of a Solar-Driven Supercritical Water Gasification Pilot Plant for Hydrogen Production Using Life Cycle Assessment Approach. Energy Convers. Manag. 2019, 184, 60–73. [Google Scholar] [CrossRef]
- Wu, D.; Gao, Z.; Wu, S.; Xiao, R. Negative Net Global Warming Potential Hydrogen Production through Biomass Gasification Combined with Chemical Looping: Environmental and Economic Assessments. Int. J. Hydrogen Energy 2024, 66, 24–32. [Google Scholar] [CrossRef]
Feedstock | Lignocellulosic Composition and Elemental Analysis (wt.% Dry Basis) | Ref. | |||||||
---|---|---|---|---|---|---|---|---|---|
CE | HCE | LIG | A | C | H | N | S | ||
Agricultural and Agro-Industrial Wastes | |||||||||
Cornstalk | 45.1 | 29.7 | 5.7 | 4.0 | 41.6 | 5.5 | 1.1 | --- | [40] |
Barley straw | 46.0 | 23.0 | 15.0 | 4.3 | 44.7 | 6.3 | 0.5 | 0.6 | [41] |
Cypress | 43.2 | 26.3 | 28.2 | 2.3 | 48.9 | 6.0 | 0.3 | --- | |
Corn straw | 30.8 | 25.5 | 16.8 | 7.0 | 44.6 | 5.5 | 0.9 | 0.1 | |
Peanut straw | 36.6 | 20.3 | 18.4 | 13.1 | 41.4 | 5.5 | 1.3 | 0.2 | |
Sugarcane bagasse | 46.5 | 36.4 | 19.0 | 1.2 | 44.8 | 6.1 | 2.6 | 0.7 | |
Blackcurrant pomace | 17.4 | 8.9 | 30.9 | 4.5 | 50.3 | 6.8 | 1.9 | 0.2 | |
Bagasse | 41.3 | 23.7 | 25.6 | 6.2 | 43.2 | 5.5 | 0.5 | --- | |
Salad dressing | --- | --- | --- | 4.9 | 65.6 | 10.0 | 1.0 | --- | |
Vegetable | --- | --- | --- | 2.4 | 44.6 | 6.4 | 2.2 | --- | |
Soybean straw | 42.4 | 22.1 | 18.9 | 4.4 | 46.0 | 6.1 | 1.4 | 0.1 | [42] |
Rice straw | 46.3 | 31.1 | 10.2 | 15.1 | 41.3 | 5.3 | 1.1 | 0.1 | |
Paulownia | 42.4 | 25.2 | 23.4 | --- | 45.5 | 6.3 | --- | --- | |
Litsea cubeba seeds | --- | --- | --- | 6.4 | 59.6 | 9.3 | 1.7 | --- | [43] |
Forestry wastes | |||||||||
Furniture Sawdust | 32.6 | 37.2 | 22.2 | 0.8 | 47.4 | 5.7 | 0.2 | --- | [42] |
RFB from eucalyptus | --- | --- | --- | 1.2 | 49.7 | 6.5 | 0.07 | --- | [44] |
Pine sawdust | --- | --- | --- | 0.8 | 50.4 | 5.8 | 0.2 | 0.03 | |
Pistachio shell | --- | --- | --- | 0.3 | 50.0 | 5.9 | 0.4 | 0.10 | |
RFB from pine | --- | --- | --- | 1.2 | 51.4 | 6.6 | 0.2 | 0.01 | |
Rubber woodchip | --- | --- | --- | 1.1 | 46.4 | 5.7 | 0.2 | --- | |
Sawdust | --- | --- | --- | 1.8 | 51.3 | 6.1 | 0.1 | 0.02 | |
Softwood pellets | --- | --- | --- | 0.6 | 54.6 | 5.8 | 0.03 | ||
Animal wastes | |||||||||
Swine manure | 15.1 | 19.9 | 0.9 | 22.3 | 33.5 | 6.2 | 2.8 | --- | [41] |
Cattle manure | --- | --- | --- | 7.2 | 35.4 | 4.7 | 2.4 | --- | |
Broiler manure | 21.3 | 19.5 | 1.4 | 34.7 | 29.9 | 3.8 | 2.7 | --- | |
Beef | --- | --- | --- | 2.3 | 61.3 | 9.3 | 6.2 | --- | |
Chicken | --- | --- | --- | 4.7 | 45.9 | 6.9 | 12.6 | --- | |
Swine manure | 12.2 | 34.0 | 5.4 | 17.1 | 49.7 | 6.8 | 4.7 | --- | [45] |
Dairy manure | 17.1 | 18.1 | 5.2 | 38.5 | 50.6 | 6.7 | 2.5 | --- | |
Beef manure | 30.1 | 26.7 | 10.8 | 43.0 | 54.5 | 6.6 | 3.4 | --- | |
Laying hen manure | 31.1 | 34.3 | 2.4 | 38.0 | 52.9 | 6.7 | 4.1 | --- | |
Sheep manure | 20.9 | 19.2 | 3.8 | 28.9 | 51.7 | 6.5 | 3.6 | --- | |
MSW and industrial wastes | |||||||||
Sewage sludge | --- | --- | --- | 39.2 | 43.4 | 5.9 | 3.2 | --- | [41] |
Dewatered sewage sludge | 0.3 | 4.1 | 18.0 | 41.8 | 25.6 | 4.4 | 4.6 | 0.15 | |
Pulp/paper sludge | --- | --- | --- | 15.0 | 45.6 | 5.2 | 7.2 | 1.70 | |
Activated sludge | --- | --- | --- | 23.6 | 38.0 | 5.2 | 7.2 | 0.75 | |
Municipal sludge | --- | --- | --- | 22.9 | 36.9 | 5.3 | 3.7 | --- | [46] |
Refinery oily sludge | --- | --- | --- | 27.8 | 42.7 | 5.4 | 4.1 | 1.23 | [47] |
Portugal MSW | --- | --- | --- | 14.9 | 48.0 | 6.3 | 1.4 | 0.7 | [48] |
Brazil MSW | --- | --- | --- | 14.3 | 49.7 | 7.2 | 0.8 | 0.7 |
Microorganism | Substrate | Operating Conditions | Hydrogen Yield | Ref. |
---|---|---|---|---|
Chlorella sp. | 30 mM glucose | Temp.: 25–42 °C; Light intensity: 120 μmol/m2/s; Incubation time: 70 h; pH: 8.6; Medium: MA; Reactor type: serum bottle reactor. | 140–160 (mL/L) | [65] |
C. vulgaris | Crude glycerol | Temp.: 30 °C; Light intensity: 48 μmol/m2/s, Incubation time: 72 h; pH: 6.8; Medium: Modified TAP; Reactor type: 1 L bioreactor | 11.65 (mL/L) | [66] |
C. reinhardtii | - | Temp.: 25 °C; Light intensity: 200 μmol/m2/s; Incubation time: 140 h; pH: 7.2; Medium: TAP; Reactor type: 250 mL Erlenmeyer flasks | 225 (mL/L) | [67] |
C. vulgaris | Corn stalk | Temp.: 30 °C; Light intensity: 108 μmol/m2/s; Incubation time: 144 h; pH: 7.0; Medium: Modified BG-11; Reactor type: 500 mL bioreactor | 220 (mL/L) | [68] |
C. sorokiniana | Acetate | Temp.: 30 °C; Light intensity: 120 μmol/m2/s; Incubation time: 222 h; pH: 7.2; Medium: BG-11; Reactor type: 500 mL Erlenmeyer flasks | 147 (mL/L) | [69] |
C. reinhardtii | Starch | Temp.: 28 °C; Light intensity: 50 μmol/m2/s; Incubation time: 144 h; pH: 7.5; Medium: TAP-C; Reactor type: 500 mL Erlenmeyer flasks | 118 (mL/L) | [70] |
P. boryanum | DCMU | Temp.: 22 °C; Light intensity: 50 μmol/m2/s; Incubation time: 188 h; pH: 7.5; Medium: 0.5 mM N; Reactor type: Roux bottle | 115 (mL/L) | [71] |
C. reinhardtii | - | Temp.: 24 °C; Light intensity: 60 μmol/m2/s; Incubation time: 204 h; pH: 7.2, Medium: TAP-S; Reactor type: 500 mL Duran glass bottles. | 61.7 (mL/L) | [72] |
Anabaena sp. | Glucose | Temp.: 24 °C; Light intensity: 4400 lux; Incubation time: 156 h; pH: 9.2; Medium: BG-11, Reactor type: 500 mL Duran glass bottles. | 13.15 (mmol H2/mg Chla) | [73] |
Arthrospira sp. | 0.10% glucose | Temp.: 30 °C; Light intensity: 40 μmol/m2/s; Incubation time: 156 h; pH: 9.0; Medium: ZN0. | 3.61 (µmol H2/mg Chla/h) | [74] |
Chlamydomonas sp. | - | Temp.: 24 °C; Light intensity: 60 μmol/m2/s; Incubation time: 372 h; pH: 7.2; Medium: TAP-S; Reactor type: 500 mL Duran glass bottles. | 9.23 (µmol H2/mg Chla/h) | [75] |
Parameters | Effect on Renewable-H2 Yield |
---|---|
Temperature |
|
pH |
|
Oxygen content |
|
Light intensity |
|
Nitrogen and sulfur limitation | |
Organic carbon |
|
Cell density and culture age |
|
Photo-Fermentation | ||||
Inoculum | Substrate | Operating Conditions | Max. Cumulative Hydrogen Yield | Ref. |
C. butyricum and R. palustris | Rice straw | Temp.:30 °C; pH 7.0; Light intensity: 6000 lux | 463 (mL H2/g VS) | [89] |
R. pseudopalustris DSM 123 | Tequila vinasses | Temp: 30 °C; pH 7.0; Light intensity: LED lamp (13.5 W/m2); Inoculum: 3.3 g/L cell suspension | 260 (mL H2/L) | [90] |
HAU-M1 (R. sphaeroides (9%), R. palustris (28%), R. rubrum (27%), R. capsulata (25%) and R. capsulatus (11%) | Corn stover | pH 7.0; Light intensity: 3000 lux; Inoculum: 30% 150 mg/g TS; TiO2/Activated carbon fiber addition of 100 mg/L | 74.0 (mL H2/g TS) | [91] |
Temp. = 30 °C; pH 7.0; Light intensity: 3000 lux; Substrate concentration: 25 gDM/L, | 68.4 (mL H2/g DM) | [92] | ||
R. sphaeroides NCIMB8253 | Combination of palm oil (25%, v/v), pulp and paper (75%, v/v) mill effluents | Temp.: 30 °C; Light intensity: 7000 lux; Combined substrate (25 vol.% POME and 75 vol.% PPME) | 14.4 (mL H2/mL medium) | [93] |
Dark fermentation | ||||
Inoculum | Substrate | Operating conditions | Max. cumulative hydrogen yield | Ref. |
Sludge from an anaerobic digester of a wastewater treatment plant | Food waste | Temp.: 35 °C; pH 5.3; HRT: 36 h | 0.900 (mol H2/mol substrate) | [94] |
Escherichia coli XL1-Blue/Enterobacter cloacae DSM 16657 | Beverage wastewater | Temp.: 37 °C; pH 6.5 | 0.259 (mol H2/mol substrate) | [95] |
Fermentative consortium MC 1 (mostly Firmicutes and Bacteroidota phyla) | Food waste + Fe-modified biochar | Temp.: 55 °C; pH 7.0; Inoculation ratio: 10 vol.% | 74.9 (mL H2/g VS) | [96] |
Inoculum sourced from activated sludge from a wastewater treatment facility | Corn stover + thermally modified maifanite | Temp.: 35 °C | 82.4 (mL H2/g TS) | [97] |
Anaerobic granules collected from an anaerobic digester of a wastewater treatment plant | Cassava processing wastes (cassava pulp and cassava processing wastewater) | Temp.: 35 °C; pH 6.0; HRT: 132 h | 225.2 (mL H2/g VS) | [98] |
Anaerobically digested sludge, collected from a primary anaerobic digester | Pruning wastes + food-rich MSW | Temp.: 37 °C; pH 5.0 and 7.0; HRT: 72 h | 84.0 (mL H2/g VS) | [99] |
Granular sludge from an upflow anaerobic sludge blanket treating papermaking wastewater | Corn straw + excess sludge | Temp. = 35 °C; pH 7.0; HRT: 17 days | 101.8 (mL H2/g VS) | [100] |
Anaerobic sludge obtained from an anaerobic digester | Swine manure + food waste | Temp. = 35 °C; pH from 5.5 to 6; HRT: 4 days | 275.6 (mL H2/g VS) | [101] |
Parameters | Effect on Renewable-H2 Yield |
---|---|
Inoculum |
|
Temperature |
|
pH |
|
Type of substrate |
|
Substrate concentration |
|
Parameters | Effect on Renewable-H2 Yield |
---|---|
Temperature |
|
Steam to biomass ratio (S/B) |
|
Biomass characteristics | |
Catalysts |
|
Parameters | Effect on Renewable-H2 Yield |
---|---|
Temperature | |
Heating rate | |
Biomass characteristics |
|
Residence time | |
Catalysts |
|
Parameters | Effect on Renewable-H2 Yield |
---|---|
Temperature |
|
Pressure |
|
Reagent concentration |
|
Catalysts |
|
Process | Feedstock | Capital Costs (M-EUR) | H2 Cost (EUR/kg) | Efficiency (%) | TRL | Ref. | Year |
---|---|---|---|---|---|---|---|
SRM without CCS | Natural gas + Water | 764 | 1.0–1.1 | 76 | 8–9 | [151,152] | 2022 2024 |
SRM with CCS | Natural gas + Water | 1068–1419 | 0.7–1.5 | 72–84 | 8–9 | ||
SRM with CCS | Natural gas + Water | 545.6 | 1.4–3.7 | 60 | 8–9 | [153] | 2024 |
SRM with PSA | Natural gas + Water | 435.9 | 1.74 | --- | --- | ||
ATR with CCS | Natural gas + Oxygen | 1090 | 1.23 | 75 | 7–8 | [152,154] | 2022 |
ATR without CCS | Natural gas + Oxygen | 1536 | 1.66 | 60 | 6–7 | ||
NGD with CCS | Natural gas + Heat | 1143 | 2.55 | 70 | 7–8 | [154,155] | |
NGD without CCS | Natural gas + Heat | 1363 | 2.65 | 60 | 6–7 | ||
Biomass pyrolysis | Biomass + Heat + Steam | 53.4–3.1 | 1.3–2.2 | 17–33 | 4–5 | [156] | |
Biomass gasification | Biomass + Water | 149.3–6.4 | 1.8–2.1 | 35–50 | 7–8 | [157] | 2021 |
Hydrothermal gasification | Biomass + Heat + Steam | --- | 1.5–3.2 | 70 | 2–3 | [154] | 2022 |
DbP | Sun + Water + Algae | 50 $/m2 | 2.13 | 12.2 | 2–3 | [158] | |
i-DbP | Water + Algae | 135 $/m2 | 1.42 | 4.1 | 2–3 | ||
Dark fermentation | Biomass + Anaerobic bacteria | --- | 2.57 | 12 | 4–5 | 2019 | |
Photo-fermentation | Sunlight + Biomass | --- | 2.83 | 8.5 | 4–5 | ||
Solar PV electrolysis | Power-Water | 12–54.5 | 5.8–23.3 | 20 | 4–5 | ||
Solar thermal electrolysis | Heat + Water | 421–22.1 | 5.1–10.5 | 30–36 | 3–4 | ||
Wind electrolysis | Power +Water | 504.8–499.6 | 5.9–6.0 | 80–90 | 6–7 | [159] | 2023 |
Nuclear electrolysis | Power + Water | --- | 4.2–7.0 | 50–60 | 3–4 | [160] | |
Nuclear thermolysis | Heat + Water | 39.6–2107.6 | 2.2–2.6 | 40–50 | 2–3 | ||
Solar thermolysis | Sunlight + Water | 5.7–16 | 8.0–8.4 | 17 | 4–5 | [161] | 2021 |
Photo-electrolysis | Sunlight + Water | --- | 10.36 | 8–14 | 2–3 | [158] | 2019 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rey, J.R.C.; Mateos-Pedrero, C.; Longo, A.; Rijo, B.; Brito, P.; Ferreira, P.; Nobre, C. Renewable Hydrogen from Biomass: Technological Pathways and Economic Perspectives. Energies 2024, 17, 3530. https://doi.org/10.3390/en17143530
Rey JRC, Mateos-Pedrero C, Longo A, Rijo B, Brito P, Ferreira P, Nobre C. Renewable Hydrogen from Biomass: Technological Pathways and Economic Perspectives. Energies. 2024; 17(14):3530. https://doi.org/10.3390/en17143530
Chicago/Turabian StyleRey, José Ramón Copa, Cecilia Mateos-Pedrero, Andrei Longo, Bruna Rijo, Paulo Brito, Paulo Ferreira, and Catarina Nobre. 2024. "Renewable Hydrogen from Biomass: Technological Pathways and Economic Perspectives" Energies 17, no. 14: 3530. https://doi.org/10.3390/en17143530
APA StyleRey, J. R. C., Mateos-Pedrero, C., Longo, A., Rijo, B., Brito, P., Ferreira, P., & Nobre, C. (2024). Renewable Hydrogen from Biomass: Technological Pathways and Economic Perspectives. Energies, 17(14), 3530. https://doi.org/10.3390/en17143530