Adaptive Bi-Directional LSTM Short-Term Load Forecasting with Improved Attention Mechanisms
Abstract
:1. Introduction
1.1. Background
1.2. Literature Review
1.3. Contributions
- (1)
- We propose a hierarchical short-term load forecast (STLF) framework to accurately forecast system load with a high penetration of EV and DR programs. The framework combines clustering and deep-learning methods to recognize load behavior patterns and improve forecasting accuracy.
- (2)
- We design an improved adaptive K-means clustering algorithm for load pattern recognition. By incorporating exploration probability into the centroid results, the proposed adaptive K-means clustering algorithm avoids local optimal searching. We utilize multiple indexes (mean square error, Davies–Bouldin, and separation index) to evaluate the algorithm performance.
- (3)
- We design bi-directional LSTM neural networks with an attention mechanism to forecast each recognized load pattern. The designed bi-directional LSTM neutral network effectively utilizes the observed factors and captures long-term temporal characteristics.
2. Hierarchical STLF Framework
2.1. Framework Structure
2.2. Improved Adaptive K-Means Algorithm
Algorithm 1 Improved Adaptive K-means Clustering Algorithm |
Input: Load vector set P |
Output: Clustering group G 1: Initialize ; 2: While , do 3: Initialize clustering number and clustering centroid ; 4: Adjust ; 5: Calculate and update clustering centroid ; 6: If , then 7: Adjust ; 8: End if 9: ; 10: ; |
11: End while |
2.3. Bi-Directional LSTM Neural Network with Attention Mechanism
3. Case Study
3.1. Data Preparation
3.2. Clustering Results
3.3. STLF Results
4. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Trull, O.; García-Díaz, J.C.; Troncoso, A. One-day-ahead electricity demand forecasting in holidays using discrete-interval moving seasonalities. Energy 2021, 231, 120966. [Google Scholar] [CrossRef]
- Trull, Ó.; García-Díaz, J.C.; Troncoso, A. Application of discrete-interval moving seasonalities to spanish electricity demand forecasting during easter. Energies 2019, 12, 1083. [Google Scholar] [CrossRef]
- Bozkurt Ö, Ö.; Biricik, G.; Tayşi, Z.C. Artificial neural network and SARIMA based models for power load forecasting in Turkish electricity market. PLoS ONE 2017, 12, e0175915. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Deng, S.; Wang, D. A short-term power load forecasting method based on k-means and SVM. J. Ambient. Intell. Humaniz. Comput. 2022, 13, 5253–5267. [Google Scholar] [CrossRef]
- Zhong, S.; Tam, K.S. Hierarchical classification of load profiles based on their characteristic attributes in frequency domain. IEEE Trans. Power Syst. 2014, 30, 2434–2441. [Google Scholar] [CrossRef]
- Gilanifar, M.; Wang, H.; Sriram, L.M.K.; Ozguven, E.E.; Arghandeh, R. Multitask Bayesian spatiotemporal Gaussian processes for short-term load forecasting. IEEE Trans. Ind. Electron. 2019, 67, 5132–5143. [Google Scholar] [CrossRef]
- Li, C. Designing a short-term load forecasting model in the urban smart grid system. Appl. Energy 2020, 266, 114850. [Google Scholar] [CrossRef]
- Sajjad, M.; Khan, Z.A.; Ullah, A.; Hussain, T.; Ullah, W.; Lee, M.Y.; Baik, S.W. A novel CNN-GRU-based hybrid approach for short-term residential load forecasting. IEEE Access 2020, 8, 143759–143768. [Google Scholar] [CrossRef]
- Tang, X.; Dai, Y.; Wang, T.; Chen, Y. Short-term power load forecasting based on multi-layer bidirectional recurrent neural network. IET Gener. Transm. Distrib. 2019, 13, 3847–3854. [Google Scholar] [CrossRef]
- Zhang, M.; Yu, Z.; Xu, Z. Short-term load forecasting using recurrent neural networks with input attention mechanism and hidden connection mechanism. IEEE Access 2020, 8, 186514–186529. [Google Scholar] [CrossRef]
- Yin, L.; Sun, Z.; Gao, F.; Liu, H. Deep forest regression for short-term load forecasting of power systems. IEEE Access 2020, 8, 49090–49099. [Google Scholar] [CrossRef]
- Sun, Q.; Wang, X.; Zhang, Y.; Zhang, F.; Zhang, P.; Gao, W. Multiple load prediction of integrated energy system based on long short-term memory and multi-task learning. Autom. Electr. Power Syst. 2021, 45, 63–70. [Google Scholar]
- Rafi, S.H.; Deeba, S.R.; Hossain, E. A short-term load forecasting method using integrated CNN and LSTM network. IEEE Access 2021, 9, 32436–32448. [Google Scholar] [CrossRef]
- Xuan, Y.; Si, W.; Zhu, J.; Sun, Z.; Zhao, J.; Xu, M.; Xu, S. Multi-model fusion short-term load forecasting based on random forest feature selection and hybrid neural network. IEEE Access 2021, 9, 69002–69009. [Google Scholar] [CrossRef]
- Munkhammar, J.; van der Meer, D.; Widén, J. Very short term load forecasting of residential electricity consumption using the Markov-chain mixture distribution (MCM) model. Appl. Energy 2021, 282, 116180. [Google Scholar] [CrossRef]
- Tang, X.; Dai, Y.; Liu, Q.; Dang, X.; Xu, J. Application of bidirectional recurrent neural network combined with deep belief network in short-term load forecasting. IEEE Access 2019, 7, 160660–160670. [Google Scholar] [CrossRef]
- Aly, H.H.H. A proposed intelligent short-term load forecasting hybrid models of ANN, WNN and KF based on clustering techniques for smart grid. Electr. Power Syst. Res. 2020, 182, 106191. [Google Scholar] [CrossRef]
- Atef, S.; Eltawil, A.B. Assessment of stacked unidirectional and bidirectional long short-term memory networks for electricity load forecasting. Electr. Power Syst. Res. 2020, 187, 106489. [Google Scholar] [CrossRef]
- Bian, H.; Zhong, Y.; Sun, J.; Shi, F. Study on power consumption load forecast based on K-means clustering and FCM–BP model. Energy Rep. 2020, 6, 693–700. [Google Scholar] [CrossRef]
- Sokhanvar, K.; Karimpour, A.; Pariz, N. Electricity price forecasting using a clustering approach. In Proceedings of the 2008 IEEE 2nd International Power and Energy Conference, Johor Bahru, Malaysia, 24–26 November 2008; pp. 1302–1305. [Google Scholar]
- Martínez-Álvarez, F.; Troncoso, A.; Riquelme, J.C.; Riquelme, J.M. Partitioning-clustering techniques applied to the electricity price time series. In Intelligent Data Engineering and Automated Learning-IDEAL 2007, Proceedings of the 8th International Conference, Birmingham, UK, 16–19 December 2007; Proceedings 8; Springer: Berlin/Heidelberg, Germany, 2007; pp. 990–999. [Google Scholar]
- Lin, W.; Wu, D.; Boulet, B. Spatial-temporal residential short-term load forecasting via graph neural networks. IEEE Trans. Smart Grid 2021, 12, 5373–5384. [Google Scholar] [CrossRef]
- Han, F.; Pu, T.; Li, M.; Taylor, G. Short-term forecasting of individual residential load based on deep learning and K-means clustering. CSEE J. Power Energy Syst. 2020, 7, 261–269. [Google Scholar]
- Che, J.X.; Wang, J.Z. Short-term load forecasting using a kernel-based support vector regression combination model. Appl. Energy 2014, 132, 602–609. [Google Scholar] [CrossRef]
- Ratnam, E.L.; Weller, S.R.; Kellett, C.M.; Murray, A.T. Residential load and rooftop PV generation: An Australian distribution network dataset. Int. J. Sustain. Energy 2017, 36, 787–806. [Google Scholar] [CrossRef]
Clustering Number | C1 | C2 | C3 | C4 | C5 |
---|---|---|---|---|---|
2 | 0.382 | 0.485 | 0.482 | 0.462 | 0.401 |
3 | 0.225 | 0.179 | 0.168 | 0.225 | 0.107 |
4 | 0.095 | 0.041 | 0.115 | 0.076 | 0.057 |
5 | 0.085 | 0.167 | 0.062 | 0.083 | 0.169 |
6 | 0.046 | 0.042 | 0.011 | 0.008 | 0.039 |
7 | 0.013 | 0.036 | 0.061 | ||
8 | 0.077 | 0.009 | |||
9 | 0.012 |
Clustering Number | C1 | C2 | C3 | C4 | C5 |
---|---|---|---|---|---|
2 | 0.0808 | 0.0454 | 0.0392 | 0.0558 | 0.0497 |
3 | 0.0767 | 0.0606 | 0.0396 | 0.0585 | 0.0679 |
4 | 0.0767 | 0.0514 | 0.0301 | 0.0540 | 0.0579 |
5 | 0.0696 | 0.0569 | 0.0390 | 0.0645 | 0.0465 |
6 | 0.0683 | 0.0543 | 0.0501 | ||
7 | 0.0417 | 0.0427 | |||
8 | 0.0344 |
Clustering Number | C1 | C2 | C3 | C4 | C5 |
---|---|---|---|---|---|
2 | 28.13 | 46.94 | 36.80 | 37.25 | 30.95 |
3 | 35.50 | 38.55 | 35.66 | 39.08 | 25.76 |
4 | 30.61 | 41.28 | 43.09 | 38.55 | 27.51 |
5 | 33.05 | 38.78 | 37.65 | 34.06 | 44.61 |
6 | 31.48 | 32.96 | 25.04 | ||
7 | 30.63 | 31.48 | |||
8 | 40.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, K. Adaptive Bi-Directional LSTM Short-Term Load Forecasting with Improved Attention Mechanisms. Energies 2024, 17, 3709. https://doi.org/10.3390/en17153709
Yu K. Adaptive Bi-Directional LSTM Short-Term Load Forecasting with Improved Attention Mechanisms. Energies. 2024; 17(15):3709. https://doi.org/10.3390/en17153709
Chicago/Turabian StyleYu, Kun. 2024. "Adaptive Bi-Directional LSTM Short-Term Load Forecasting with Improved Attention Mechanisms" Energies 17, no. 15: 3709. https://doi.org/10.3390/en17153709
APA StyleYu, K. (2024). Adaptive Bi-Directional LSTM Short-Term Load Forecasting with Improved Attention Mechanisms. Energies, 17(15), 3709. https://doi.org/10.3390/en17153709