Coffee Grounds as an Additive to Wood Pellets
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Research Material
2.2. Moisture Content of Granulated Substrates
2.3. Particle Size Distribution of Substrates
2.4. Pelletization Process
2.5. Mechanical Durability
2.6. Determination of Calorific Value
2.7. Gas Emissions
3. Results and Discussion
3.1. Particle Size Distribution of Substrates
3.2. Moisture Content
3.3. Mechanical Durability
3.4. Calorific Value
3.5. Gas Emissions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- IPCC. Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Lee, H., Romero, J., Eds.; IPCC: Geneva, Switzerland, 2023; pp. 35–115. [Google Scholar] [CrossRef]
- International Coffee Organization. Coffee Report and Outlook. December 2023. Available online: https://icocoffee.org/documents/cy2023-24/Coffee_Report_and_Outlook_December_2023_ICO.pdf (accessed on 15 March 2024).
- Geelen, J.; Karampinis, M.; Jossart, J.M. Report Pellets. Bioenergy Europe. Statistical Report 2023. 2023. Available online: https://bioenergyeurope.org/past-statistical-reports/ (accessed on 5 March 2024).
- Batista, M.J.P.A.; Ávilab, A.F.; Franca, A.S.; Oliveira, L.S. Polysaccharide-rich fraction of spent coffee grounds as promising biomaterial for films fabrication. Carbohydr. Polym. 2020, 233, 115851. [Google Scholar] [CrossRef] [PubMed]
- Ballesteros, L.F.; Teixeiraa, J.A.; Mussatto, S.I. Extraction of polysaccharides by autohydrolysis of spent coffee grounds and evaluation of their antioxidant activity. Carbohydr. Polym. 2017, 157, 258–266. [Google Scholar] [CrossRef] [PubMed]
- Simões, J.; Maricato, E.; Nunes, F.M.; Domingues, M.R.; Coimbra, M.A. Thermal stability of spent coffee ground polysaccharides: Galactomannans and arabinogalactans. Carbohydr. Polym. 2014, 101, 256–264. [Google Scholar] [CrossRef]
- Liu, Y.; Tu, Q.; Knothe, G.; Lu, M. Direct transesterification of spent coffee grounds for biodiesel production. Fuel 2017, 199, 157–161. [Google Scholar] [CrossRef]
- McNutt, J.; He, Q. Spent coffee grounds: A review on current utilization. J. Ind. Eng. Chem. 2019, 71, 78–88. [Google Scholar] [CrossRef]
- Campos-Vega, R.; Loarca-Piña, G.; Vergara-Castañeda, H.A.; Oomah, B.D. Spent coffee grounds: A review on current research and future prospects. Trends Food Sci. Technol. 2015, 45, 24–36. [Google Scholar] [CrossRef]
- Ballesteros, L.F.; Teixeira, J.A.; Mussatto, S.I. Chemical, Functional, and Structural Properties of Spent Coffee Grounds and Coffee Silverskin. Food Bioprocess Technol. 2014, 7, 3493–3503. [Google Scholar] [CrossRef]
- Czekała, W.; Łukomska, A.; Pulka, J.; Bojarski, W.; Pochwatka, P.; Kowalczyk-Juśko, A.; Oniszczuk, A.; Dach, J. Waste-to-energy: Biogas potential of waste from coffee production and consumption. Energy 2023, 276, 127604. [Google Scholar] [CrossRef]
- Chala, B.; Oechsner, H.; Latif, S.; Müller, J. Biogas Potential of Coffee Processing Waste in Ethiopia. Sustainability 2018, 10, 2678. [Google Scholar] [CrossRef]
- Vasamara, C.; Marchetti, R. Spent coffee grounds from coffee vending machines as feedstock for biogas production. Environ. Eng. Manag. J. 2018, 17, 2401–2408. Available online: http://www.eemj.icpm.tuiasi.ro/pdfs/vol17/full/no10/12_108_Vasmara_18.pdf (accessed on 5 March 2024).
- Luz, F.C.; Cordiner, S.; Manni, A.; Mulone, V.; Rocco, V. Anaerobic digestion of coffee grounds soluble fraction at laboratory scale: Evaluation of the biomethane potential. Appl. Energy 2017, 207, 166–175. [Google Scholar] [CrossRef]
- Evaristo, R.B.W.; Ferreira, R.; Petrocchi Rodrigues, J.; Sabino Rodrigues, J. Multiparameter-analysis of CO2/Steam-enhanced gasification and pyrolysis for syngas and biochar production from low-cost feedstock. Energy Convers. Manag. X 2012, 12, 100138. [Google Scholar] [CrossRef]
- Kibret, H.A.; Kuo, Y.L.; Ke, T.Y. Gasification of spent coffee grounds in a semi-fluidized bed reactor using steam and CO2 gasification medium. J. Taiwan Inst. Chem. Eng. 2021, 119, 115–127. [Google Scholar] [CrossRef]
- Saeed, S.; Shafeeq, A.; Raza, W.; Saed, S. Thermal Performance Analysis of Ionic Liquid-Pretreated Spent Coffee Ground Using Aspen Plus®. Chem. Eng. Technol. 2020, 43, 2447–2456. [Google Scholar] [CrossRef]
- Cho, E.J.; Lee, D.S.; Bae, E.J. Development of an advanced integrative process to create valuable biosugars including manno-oligosaccharides and mannose from spent coffee grounds. Bioresour. Technol. 2019, 272, 209–216. [Google Scholar] [CrossRef]
- Passadis, K.; Fragoulis, V.; Stoumpou, V.; Novakovic, J.; Barampouti, E.M.; Mai, S.; Moustakas, K.; Malamis, D.; Loizidou, M. Study of Valorisation Routes of Spent Cofee Grounds. Waste Biomass Valorization 2020, 11, 5295–5306. [Google Scholar] [CrossRef]
- Kusuma, J.; Indartono, Y.S.; Mujahidin, D. Biodiesel and activated carbon from arabica spent coffee grounds. Methods X 2023, 10, 102185. [Google Scholar] [CrossRef]
- Sarno, M.; Iliano, M. Active biocatalyst for biodiesel production from spent coffee ground. Biotesource Technol. 2018, 266, 431–438. [Google Scholar] [CrossRef]
- Picca, G.; Goñi-Urtiaga, A.; Gomez-Ruano, C.; Plaza, C.; Panettieri, M. Suitability of Co-Composted Biochar with Spent Coffee Grounds Substrate for Tomato (Solanum lycopersicum) Fruiting Stage. Horticulturae 2023, 9, 89. [Google Scholar] [CrossRef]
- Sołowiej, P.; Pochwatka, P.; Wawrzyniak, A.; Łapiński, K.; Lewicki, A.; Dach, J. The Effect of Heat Removal during Thermophilic Phase on Energetic Aspects of Biowaste Composting Process. Energies 2021, 14, 1183. [Google Scholar] [CrossRef]
- Liu, K.; Price, G.W. Evaluation of three composting systems for the management of spent coffee grounds. Bioresour. Technol. 2011, 102, 7966–7974. [Google Scholar] [CrossRef]
- Santos, C.; Fonseca, J.; Aires, A.; Coutinho, J.; Trindade, H. Effect of different rates of spent coffee grounds (CG) on composting process, gaseous emissions and quality of end-product. Waste Manag. 2017, 59, 37–47. [Google Scholar] [CrossRef] [PubMed]
- Hechmi, S.; Guizani, M.; Kallel, A.; Zoghlami, R.I.; Ben Zrig, E.; Louati, Z.; Jedidi, N.; Trabelsi, I. Impact of raw and pre-treated spent coffee grounds on soil properties and plant growth: A mini-review. Clean Technol. Environ. Policy 2023, 25, 2831–2843. [Google Scholar] [CrossRef]
- Vela-Cano, M.; Cervera-Mata, A.; Purswani, J.; Pozo, C.; Delgado, G.; González-López, J. Bacterial community structure of two Mediterranean agricultural soils amended with spent coffee grounds. Appl. Soil Ecol. 2019, 137, 12–20. [Google Scholar] [CrossRef]
- Cervera-Mata, A.; Martín-García, J.M.; Delgado, R.; Párraga, J.; Sánchez-Marañón, M.; Delgado, G. Short-term effects of spent coffee grounds on the physical properties of two Mediterranean agricultural soils. Int. Agrophysics 2019, 33, 205–216. [Google Scholar] [CrossRef]
- Jeníček, L.; Tunklová, B.; Malaťák, J.; Neškudla, M.; Velebil, J. Use of Spent Coffee Ground as an Alternative Fuel and Possible Soil Amendment. Materials 2022, 15, 6722. [Google Scholar] [CrossRef]
- Sermyagina, E.; Mendoza Martinez, C.L.; Nikku, M.; Vakkilainen, E. Spent coffee grounds and tea leaf residues: Characterization, evaluation of thermal reactivity and recovery of high-value compounds. Biomass Bioenergy 2021, 150, 106141. [Google Scholar] [CrossRef]
- Allesina, G.; Pedrazzi, S.; Allegretti, F.; Tartarini, P. Spent coffee grounds as heat source for coffee roasting plants: Experimental validation and case study. Appl. Therm. Eng. 2017, 126, 730–736. [Google Scholar] [CrossRef]
- Kang, S.B.; Oh, H.Y.; Choi, K.S. Characteristics of spent coffee ground as fuel and combustion test in a small boiler (6.5 kW). Renew. Energy 2017, 113, 1208–1214. [Google Scholar] [CrossRef]
- Wei, Y.; Chen, M.; Li, Q.; Niu, S.; Li, Y. Isothermal combustion characteristics of anthracite and spent coffee grounds briquettes. J. Therm. Anal. Calorim. 2019, 136, 1447–1456. [Google Scholar] [CrossRef]
- Potip, S.; Wongwuttanasatian, T. Combustion characteristics of spent coffee ground mixed with crude glycerol briquette fuel. Combust. Sci. Technol. 2018, 190, 2030–2043. [Google Scholar] [CrossRef]
- Fehse, F.; Kummich, J.; Schröder, H.-W. Influence of pre-treatment and variation of briquetting parameters on the mechanical refinement of spent coffee grounds. Biomass Bioenergy 2021, 152, 106201. [Google Scholar] [CrossRef]
- Soares, L.D.S.; Maia, A.A.D.; Moris, V.A.S.; De Paiva, J.M.F. Study of the Effects of the Addition of Coffee Grounds and Sugarcane Fibers on Thermal and Mechanical Properties of Briquettes. J. Nat. Fibers 2020, 17, 1430–1438. [Google Scholar] [CrossRef]
- Ciesielczuk, T.; Karwaczyńska, U.; Sporek, M. The possibility of disposing of spent coffee ground with energy recycling. J. Ecol. Eng. 2015, 16, 133–138. [Google Scholar] [CrossRef] [PubMed]
- Lisowski, A.; Olendzki, D.; Świętochowski, A.; Dąbrowska, M.; Mieszkalski, L.; Ostrowska-Ligęza, E. Spent coffee grounds compaction process: Its effects on the strength properties of biofuel pellets. Renew Energy 2019, 142, 173–183. [Google Scholar] [CrossRef]
- Park, S.; Jeong, H.-R.; Shin, Y.-A.; Kim, S.-J.; Ju, Y.-M.; Oh, K.-C.; Cho, L.-H.; Kim, D. Performance Optimisation of Fuel Pellets Comprising Pepper Stem and Coffee Grounds through Mixing Ratios and Torrefaction. Energies 2021, 14, 4667. [Google Scholar] [CrossRef]
- Park, S.; Kim, S.J.; Oh, K.C.; Cho, L.; Kim, M.K.; Jeong, I.S.; Lee, C.G.; Kim, D. Investigation of agro-byproduct pellet properties and improvement in pellet quality through mixing. Energy 2020, 190, 116380. [Google Scholar] [CrossRef]
- Lachman, J.; Lisý, M.; Baláš, M.; Matúš, M.; Lisá, H.; Milčák, P. Spent coffee grounds and wood co-firing: Fuel preparation, properties, thermal decomposition, and emissions. Renew. Energy 2022, 193, 464–474. [Google Scholar] [CrossRef]
- Atabani, A.E.; Mahmoud, E.; Aslam, M.; Naqvi, S.R.; Juchelková, D.; Bhatia, S.K.; Badruddin, I.A.; Khan, T.M.Y.; Hoang, A.T.; Palacky, P. Emerging potential of spent coffee ground valorization for fuel pellet production in a biorefinery. Environ. Dev. Sustain. 2023, 25, 7585–7623. [Google Scholar] [CrossRef]
- Limousy, L.; Jeguirim, M.; Dutournié, P.; Kraiem, N.; Lajili, M.; Said, R. Gaseous products and particulate matter emissions of biomass residential boiler fired with spent coffee grounds pellets. Fuel 2013, 107, 323–329. [Google Scholar] [CrossRef]
- PN-G-04511:1980; Solid Fuels—Determination of Moisture Content. Polish Committee for Standardization: Warsaw, Poland, 1980.
- ISO 17831-1:2015; Solid Biofuels—Determination of Mechanical Durability of Pellets and Briquettes—Part 1: Pellets. ISO: Geneva, Switzerland, 2024.
- PN ISO 1928:2002; Solid Mineral Fuels—Determination of Gross Calorific Value by the Bomb Calorimetric Method, and Calculation of Net Calorific Value. Polish Committee for Standardization: Warsaw, Poland, 2020.
- ISO 17225-6:2021; Solid Biofuels—Fuel Specifications and Classes. Part 6: Graded Non-Woody Pellets. ISO: Geneva, Switzerland, 2021.
- PN-EN 303-5+A1:2023-05; Heating Boilers—Part 5: Solid Fuel Heating Boilers with Manual and Automatic Fuel Charge Up to 500 kW—Terminology, Requirements, Testing and Marking. Polish Committee for Standardization: Warsaw, Poland, 2023.
- Bergström, D.; Israelsson, S.; Öhman, M.; Dahlqvist, S.-A.; Gref, R.; Boman, C.; Wästerlund, I. Effects of raw material particle size distribution on the characteristics of Scots pine sawdust fuel pellets. Fuel Process. Technol. 2008, 89, 1324–1329. [Google Scholar] [CrossRef]
- Jezerska, L.; Sassmanova, V.; Prokes, R.; Gelnar, D. The pelletization and torrefaction of coffee grounds, garden chaff and rapeseed straw. Renew. Energy 2023, 210, 346–354. [Google Scholar] [CrossRef]
- Woo, D.-G.; Kim, S.H.; Kim, T.H. Solid Fuel Characteristics of Pellets Comprising Spent Coffee Grounds and Wood Powder. Energies 2021, 14, 371. [Google Scholar] [CrossRef]
- PN-EN ISO 18134-1:2023-02; Solid Biofuels—Determination of Moisture Content—Part 1: Reference Method. Polish Committee for Standardization: Warsaw, Poland, 2023.
- Kaliyan, N.; Morey, R.V. Factors affecting strength and durability of densified biomass products. Biomass Bioenergy 2009, 33, 337–359. [Google Scholar] [CrossRef]
- Obernberger, I.; Gerold Thek, G. Physical characterisation and chemical composition of densified biomass fuels with regard to their combustion behaviour. Biomass Bioenergy 2004, 27, 653–669. [Google Scholar] [CrossRef]
- Tumuluru, J.S. Effect of process variables on the density and durability of the pellets made from high moisture corn stover. Biosyst. Eng. 2014, 119, 44–57. [Google Scholar] [CrossRef]
- Hedlund, F.H.; Astad, J.; Nichols, J. Inherent hazards, poor reprint and limited learning in the solid biomass energy sector: A case study of a wheel loader igniting wood dust, leading to fatal explosion at wood pellet manufacturer. Biomass Bioenergy 2014, 66, 450–459. [Google Scholar] [CrossRef]
- Kim, Y.S.; Woo, D.G.; Kim, T.H. Characteristics of direct transesterification using ultrasound on oil extracted from spent coffee grounds. Environ. Eng. Res. 2020, 25, 470–478. [Google Scholar] [CrossRef]
- Bottani, E.; Tebaldi, L.; Volpi, A. The role of ICT in supporting spent coffee grounds collection and valorization: A quantitative assessment. Sustainability 2019, 11, 6572. [Google Scholar] [CrossRef]
- Tumuluru, J.S.; Tabil, L.; Opoku, A.; Mosqueda, M.R.; Fadeyi, O. Effect of process variables on the quality characteristics of pelleted wheat distiller’s dried grains with solubles. Biosyst. Eng. 2010, 105, 466–475. [Google Scholar] [CrossRef]
- Nosek, R.; Tun, M.M.; Juchelkova, D. Energy Utilization of Spent Coffee Grounds in the Form of Pellets. Energies 2020, 13, 1235. [Google Scholar] [CrossRef]
- Bejenari, V.; Marcu, A.; Ipate, A.M.; Rusu, D.; Tudorachi, N.; Anghel, I.; Şofran, I.E.; Lisa, G. Physicochemical characterization and energy recovery of spent coffee grounds. J. Mater. Res. Technol. 2021, 15, 4437–4451. [Google Scholar] [CrossRef]
- Roy, M.M.; Dutta, A.; Corscadden, K. An experimental study of combustion and emissions of biomass pellets in a prototype pellet furnace. Appl. Energy 2013, 108, 298–307. [Google Scholar] [CrossRef]
- Sungur, B.; Basar, C. Experimental investigation of the effect of supply airflow position, excess air ratio and thermal power input at burner pot on the thermal and emission performances in a pellet stove. Renew. Energy 2023, 202, 1248–1258. [Google Scholar] [CrossRef]
Fertilizer | Proximate Analysis (wt.%db) | Elementals Analysis (wt.%db) | ||||||
---|---|---|---|---|---|---|---|---|
Ash | VM | FC | C | O | H | N | S | |
PS | 0.32 | 87.93 | 11.75 | 48.91 | 45.35 | 5.59 | 0.12 | 0.03 |
CG | 1.97 | 85.52 | 12.51 | 58.11 | 30.57 | 8.23 | 2.89 | 0.20 |
Sample 1 | Sample 2 | Sample 3 | Sample 4 | Sample 5 | |
---|---|---|---|---|---|
PS | 100% | 95% | 85% | 70% | 0% |
CG | 0% | 5% | 15% | 30% | 100% |
Proportion by Weight [%] | Moisture Content [%] | |
---|---|---|
PS | CG | |
100 | 0 | 12.94 |
95 | 5 | 12.83 |
85 | 15 | 12.68 |
70 | 30 | 12.46 |
0 | 100 | 11.02 |
Particle size (mm) | ≥4 | 3–<4 | 2–<3 | 1–<2 | 0.25–<1 | <0.25 | |
Weight proportion (%) | CG | 0 | 0 | 0 | 0 | 68.56 | 31.44 |
PS | 3.6 | 5.2 | 12.5 | 41.18 | 27.43 | 10.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sołowiej, P.; Neugebauer, M.; Esmer, O. Coffee Grounds as an Additive to Wood Pellets. Energies 2024, 17, 4595. https://doi.org/10.3390/en17184595
Sołowiej P, Neugebauer M, Esmer O. Coffee Grounds as an Additive to Wood Pellets. Energies. 2024; 17(18):4595. https://doi.org/10.3390/en17184595
Chicago/Turabian StyleSołowiej, Piotr, Maciej Neugebauer, and Ogulcan Esmer. 2024. "Coffee Grounds as an Additive to Wood Pellets" Energies 17, no. 18: 4595. https://doi.org/10.3390/en17184595
APA StyleSołowiej, P., Neugebauer, M., & Esmer, O. (2024). Coffee Grounds as an Additive to Wood Pellets. Energies, 17(18), 4595. https://doi.org/10.3390/en17184595