Acoustic Detection of Pipeline Blockages in Gas Extraction Systems: A Novel Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Principle of Acoustic Detection
2.2. Experimental Apparatus
2.2.1. Geometric Similarity
2.2.2. Kinematic Similarity
2.3. Experimental Scheme
3. Results
3.1. Effect of Pipeline Slag Blockage on Acoustic Signals
3.1.1. Influence of Different Extraction Negative Pressures on the Frequency Domain of Acoustic Signals for Pipeline Slag Blockage
3.1.2. Influence of Different Transverse Blockage Intensities on the Frequency Domain of Acoustic Signals for Pipeline Slag Blockage
3.1.3. Influence of Different Longitudinal Blockage Intensities on the Frequency Domain of Acoustic Signals for Pipeline Slag Blockage
3.2. Effect of Pipeline Water Blockage on Acoustic Information
3.2.1. Effect of Different Extraction Negative Pressures on the Frequency Domain of Pipeline Acoustic Signals
3.2.2. Effect of Different Transverse Blockage Intensities on the Frequency Domain of Pipeline Acoustic Signals
3.2.3. Effect of Different Longitudinal Blockage Intensities on the Frequency Domain of Pipeline Acoustic Signals
4. Discussion
4.1. Parameter Characteristics of Acoustic Signal for Slag Blockage in Gas Extraction Pipelines
4.1.1. The Influence of Extraction Pressure on Mean Value of Sound Pressure Level in Characteristic Frequency Bands for Slag Blockage
4.1.2. The Influence of Transverse Blockage Intensity on Mean Value of Sound Pressure Level in Characteristic Frequency Bands for Slag Blockage
4.1.3. The Influence of Longitudinal Blockage Intensity on Mean Value of Sound Pressure Level in Characteristic Frequency Bands for Slag Blockage
4.2. Parameter Characteristics of Water Blockage Acoustic Signal in Gas Extraction Pipelines
4.2.1. The Influence of Extraction Pressure on Mean Value of Sound Pressure Level in Characteristic Frequency Bands for Water Blockage
4.2.2. The Influence of Transverse Blockage Intensity on Mean Value of Sound Pressure Level in Characteristic Frequency Bands for Water Blockage
4.2.3. The Influence of Longitudinal Blockage Intensity on Mean Value of Sound Pressure Level in Characteristic Frequency Bands for Water Blockage
5. Conclusions
- (1)
- Characteristic frequency ranges exist for both slag and water blockages. Separately, for the slag blockage, there is a prominent peak in the sound pressure level within the frequency range of 2 kHz to 3 kHz. For the water blockage, there are two peak points of sound pressure level in the frequency domain, located in the frequency range of 1 kHz–2 kHz and 3.5 kHz–4.5 kHz, respectively.
- (2)
- The transverse blockage intensity has a minor impact on the sound pressure level when the slag blockage and water blockage occur in the extraction pipeline. However, the extraction negative pressure and longitudinal blockage intensity have a significant influence on the average sound pressure amplitude within the characteristic frequency range. Under a transverse blockage intensity of 0.05 and the longitudinal blockage intensity of 0.07, as the extraction pressure increases from 12 kPa to 48 kPa, the average amplitude of the characteristic frequency band rises from 3.8 dB to 7.7 dB, with an increase of 102.6%. With an extraction pressure of −12 kPa and a transverse blockage intensity of 0.05, as the longitudinal blockage intensity rises from 0.07 to 0.2, the average amplitude of the characteristic frequency band has increased by 223.8%. However, when the transverse blockage intensity rises from 0.05 to 0.2, the average amplitude of the characteristic frequency band has only increased by 13.7%. Consequently, the impact of the longitudinal blockage intensity on the characteristic frequency band is much greater than that of transverse blockage intensity. In the process of acoustic detection, the influence of longitudinal blockage intensity on the amplitude of characteristic frequency band should be mainly analyzed. The origin is employed to fit the relationship between the slag or water blockage and the average amplitude of the characteristic frequency band under the longitudinal blockage intensity and the extraction negative pressure. As the fitting degrees reach 0.987 and 0.984, a high fitting degree is exhibited and can be considered as a reliable basis for assessing the longitudinal blockage intensity of pipelines.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, K.; Du, F. Coal-gas compound dynamic disasters in China: A review. Process Saf. Environ. Prot. 2020, 133, 1–17. [Google Scholar] [CrossRef]
- Lou, Z.; Wang, K.; Kang, M.; Zhao, W.; Wei, G.; Yue, J.; Yao, H. Plugging methods for underground gas extraction boreholes in coal seams: A review of processes, challenges and strategies. Gas Sci. Eng. 2024, 122, 205225. [Google Scholar] [CrossRef]
- Kurlenya, M.; Shilova, T.; Serdyukov, S.; Patutin, A. Sealing of coal bed methane drainage holes by barrier screening method. J. Min. Sci. 2014, 50, 814–818. [Google Scholar] [CrossRef]
- Tao, S.; Pan, Z.; Tang, S.; Chen, S. Current status and geological conditions for the applicability of CBM drilling technologies in China: A review. Int. J. Coal Geol. 2019, 202, 95–108. [Google Scholar] [CrossRef]
- Liu, T.; Lin, B.; Fu, X.; Zhu, C. Modeling air leakage around gas extraction boreholes in mining-disturbed coal seams. Process Saf. Environ. Prot. 2020, 141, 202–214. [Google Scholar] [CrossRef]
- Xi, X.; Tao, Y.; Jiang, S.; Yin, C. Study on the formation mechanism and mechanical properties of composite foam slurry material for mine plugging. Energy 2023, 281, 128295. [Google Scholar] [CrossRef]
- Li, C.; Zhang, Y.; Jia, W.; Hu, X.; Song, S.; Yang, F. Blockage detection techniques for natural gas pipelines: A review. Gas Sci. Eng. 2024, 122, 205187. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, Y.; Guo, X.; Wei, R.; Yu, T.; Xu, L.; Sun, L.; Yang, L. Gas production behavior from hydrate-bearing fine natural sediments through optimized step-wise depressurization. Appl. Energ. 2020, 260, 114275. [Google Scholar] [CrossRef]
- Shi, B.-H.; Song, S.-F.; Lv, X.-F.; Li, W.-Q.; Wang, Y.; Ding, L.; Liu, Y.; Yang, J.-H.; Wu, H.-H.; Wang, W.; et al. Investigation on natural gas hydrate dissociation from a slurry to a water-in-oil emulsion in a high-pressure flow loop. Fuel 2018, 233, 743–758. [Google Scholar] [CrossRef]
- Yu, Y.; Russell, D.; Reid, E. Electromagnetic Through-transmission and its Applications. Mater. Eval. 2012, 70, 1313–1319. [Google Scholar]
- Woolley, S.; Robins, L. Advances in Non-Intrusive Inspection. 2009. Available online: https://www.hartenergy.com/news/advances-non-intrusive-inspection-50141 (accessed on 5 August 2024).
- Li, X.; Liu, Y.; Liu, Z.; Chu, J.; Song, Y.; Yu, T.; Zhao, J. A hydrate blockage detection apparatus for gas pipeline using ultrasonic focused transducer and its application on a flow loop. Energy Sci. Eng. 2020, 8, 1770–1780. [Google Scholar] [CrossRef]
- Rogers, L. Pipeline blockage location by strain measurement using an ROV. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 2–5 May 1995; p. OTC–7862-MS. [Google Scholar]
- Hiebert, L.D. Non-Intrusive Locating of a Blockage in a Pipeline. U.S. Patent No. 6,725,717, 27 April 2004. [Google Scholar]
- Lile, N.; Jaafar, M.; Roslan, M.; Azmi, M.M. Blockage detection in circular pipe using vibration analysis. Int. J. Adv. Sci. Eng. Inf. Technol. 2012, 2, 252–257. [Google Scholar] [CrossRef]
- Kim, Y.; Simpson, A.; Lambert, M. The effect of orifices and blockages on unsteady pipe flows. In Proceedings of the World Environmental and Water Resources Congress 2007: Restoring Our Natural Habitat, Tampa, FL, USA, 15–19 May 2007; pp. 1–10. [Google Scholar]
- Ma, J.; Simonetti, F.; Lowe, M. Sludge and blockage characterization inside pipes using guided ultrasonic waves. AIP Conf. Proc. 2006, 820, 1656–1663. [Google Scholar]
- Ma, J.; Lowe, M.; Simonetti, F. Feasibility study of sludge and blockage detection inside pipes using guided torsional waves. Meas. Sci. Technol. 2007, 18, 2629. [Google Scholar] [CrossRef]
- Chu, J.; Yang, L.; Liu, Y.; Song, Y.; Yu, T.; Lv, X.; Li, Q.; Zhao, J. Pressure pulse wave attenuation model coupling waveform distortion and viscous dissipation for blockage detection in pipeline. Energy Sci. Eng. 2020, 8, 260–265. [Google Scholar] [CrossRef]
- Xu, Q.; Zhang, L.; Liang, W. Acoustic detection technology for gas pipeline leakage. Process Saf. Environ. Prot. 2013, 91, 253–261. [Google Scholar] [CrossRef]
- Papadopoulou, K.; Shamout, M.; Lennox, B.; Mackay, D.; Taylor, A.; Turner, J.; Wang, X. An evaluation of acoustic reflectometry for leakage and blockage detection. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2008, 222, 959–966. [Google Scholar] [CrossRef]
- Duan, W.; Kirby, R.; Prisutova, J.; Horoshenkov, K.V. On the use of power reflection ratio and phase change to determine the geometry of a blockage in a pipe. Appl. Acoust. 2015, 87, 190–197. [Google Scholar] [CrossRef]
- Jing, L.; Li, Z.; Wang, W.; Dubey, A.; Lee, P.; Meniconi, S.; Brunone, B.; Murch, R.D. An approximate inverse scattering technique for reconstructing blockage profiles in water pipelines using acoustic transients. J. Acoust. Soc. Am. 2018, 143, EL322–EL327. [Google Scholar] [CrossRef]
- Abdullahi, M.; Oyadiji, S.O. Simulation and detection of blockage in a pipe under mean fluid flow using acoustic wave propagation technique. Struct. Control. Health Monit. 2020, 27, e2449. [Google Scholar] [CrossRef]
- Diao, X.; Jiang, J.; Shen, G.; Chi, Z.; Wang, Z.; Ni, L.; Mebarki, A.; Bian, H.; Hao, Y. An improved variational mode decomposition method based on particle swarm optimization for leak detection of liquid pipelines. Mech. Syst. Signal Process. 2020, 143, 106787. [Google Scholar] [CrossRef]
- Fantozzi, M.; Fontana, E. Acoustic emission techniques: The optimum solution for leakage detection and location in water pipelines. Insight 2001, 43, 105–107. [Google Scholar]
- Zhu, X.; Feng, Z.; Fan, Y.; Ma, J. A multiple-blockage identification scheme for buried pipeline via acoustic signature model and SqueezeNet. Measurement 2022, 202, 111671. [Google Scholar] [CrossRef]
- An, Y.; Wang, X.; Yue, B.; Jin, S.; Wu, L.; Qu, Z. A novel method for natural gas pipeline safety online monitoring based on acoustic pulse compression. Process Saf. Environ. Prot. 2019, 130, 174–181. [Google Scholar] [CrossRef]
- Wang, X.; Lewis, K.M.; Papadopoulou, K.A.; Lennox, B.; Turner, J.T. Detection of hydrate and other blockages in gas pipelines using acoustic reflectometry. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2012, 226, 1800–1810. [Google Scholar] [CrossRef]
- Kim, M.-S.; Lee, S.-K. Detection of leak acoustic signal in buried gas pipe based on the time–frequency analysis. J. Loss Prev. Proc. 2009, 22, 990–994. [Google Scholar] [CrossRef]
- Qianxia, G.; Luping, L.; Hongde, R.; Jing, Y. Experimental Study of the Quantitative Relationship Between the Valve Leakage Fault State and Leakage Sound-emitted Signal Characteristics. J. Eng. Therm. Energy Power 2011, 26, 582–587+635. [Google Scholar]
- Quy, T.B.; Kim, J.-M. Leak localization in industrial-fluid pipelines based on acoustic emission burst monitoring. Measurement 2020, 151, 107150. [Google Scholar] [CrossRef]
- Sun, X.; Wang, X. (Eds.) Chapter 1—Basic equations of aeroacoustics. In Fundamentals of Aeroacoustics with Applications to Aeropropulsion Systems; Academic Press: Oxford, UK, 2021; pp. 1–32. [Google Scholar] [CrossRef]
Physical Quantity | Prototype | Equation | Type |
---|---|---|---|
Diameter of the branch pipe (mm) | 100 | 50 | |
Length of the transverse section of the branch pipe (m) | 2 | 1 | |
Flow rate | 2 | 2 |
Number | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
Blockage height h (cm) | 0.625 | 1.25 | 1.875 | 2.5 | 3.125 | 3.75 |
Longitudinal blockage intensity y | 0.07 | 0.2 | 0.34 | 0.5 | 0.66 | 0.8 |
Number | 1 | 2 | 3 | 4 |
---|---|---|---|---|
Blockage length L (cm) | 5 | 10 | 15 | 20 |
Transverse blockage intensity x | 0.05 | 0.1 | 0.15 | 0.2 |
Number | Extraction Pressure (kPa) | Longitudinal Blocking Intensity | Transverse Blocking Intensity |
---|---|---|---|
1 | 12 | 0.07 | 0.05 |
2 | 12 | 0.2 | 0.05 |
3 | 12 | 0.34 | 0.05 |
4 | 12 | 0.5 | 0.05 |
5 | 12 | 0.66 | 0.05 |
6 | 12 | 0.8 | 0.05 |
7 | 24 | 0.07 | 0.05 |
8 | 24 | 0.2 | 0.05 |
9 | 24 | 0.34 | 0.05 |
10 | 24 | 0.5 | 0.05 |
11 | 24 | 0.66 | 0.05 |
12 | 24 | 0.8 | 0.05 |
13 | 36 | 0.07 | 0.05 |
14 | 36 | 0.2 | 0.05 |
15 | 36 | 0.34 | 0.05 |
16 | 36 | 0.5 | 0.05 |
17 | 36 | 0.66 | 0.05 |
18 | 36 | 0.8 | 0.05 |
19 | 48 | 0.07 | 0.05 |
20 | 48 | 0.5 | 0.05 |
21 | 48 | 0.34 | 0.05 |
22 | 48 | 0.5 | 0.05 |
23 | 48 | 0.66 | 0.05 |
24 | 48 | 0.8 | 0.05 |
25 | 24 | 0.07 | 0.1 |
26 | 24 | 0.07 | 0.15 |
27 | 24 | 0.07 | 0.2 |
28 | 36 | 0.07 | 0.1 |
29 | 36 | 0.07 | 0.15 |
30 | 36 | 0.07 | 0.2 |
31 | 48 | 0.07 | 0.1 |
32 | 48 | 0.07 | 0.15 |
33 | 48 | 0.07 | 0.2 |
Extraction Pressure/kPa | Transverse Blockage Intensity | Longitudinal Blockage Intensity | |||||
---|---|---|---|---|---|---|---|
0.07 | 0.2 | 0.34 | 0.5 | 0.66 | 0.8 | ||
12 | 0.05 | 1574 | 1373 | 1742 | 1379 | 1265 | 1573 |
0.1 | 1792 | 1532 | 1742 | 1544 | 1371 | 1742 | |
0.15 | 1684 | 1399 | 1592 | 1395 | 1264 | 1635 | |
0.2 | 1483 | 1535 | 1733 | 1853 | 1784 | 1593 | |
24 | 0.05 | 1437 | 1537 | 1841 | 1732 | 1854 | 1538 |
0.1 | 1554 | 1415 | 1392 | 1843 | 1485 | 1854 | |
0.15 | 1743 | 1534 | 1754 | 1646 | 1854 | 1639 | |
0.2 | 1853 | 1734 | 1954 | 1854 | 1643 | 1843 | |
36 | 0.05 | 1293 | 1539 | 1643 | 1965 | 1854 | 1754 |
0.1 | 1483 | 1343 | 1531 | 1643 | 1645 | 1543 | |
0.15 | 1385 | 1481 | 1854 | 1853 | 1855 | 1593 | |
0.2 | 1631 | 1836 | 1483 | 1649 | 1956 | 1692 | |
48 | 0.05 | 1473 | 1743 | 1855 | 1476 | 1753 | 1775 |
0.1 | 1645 | 1942 | 1632 | 1854 | 1864 | 1945 | |
0.15 | 1591 | 1727 | 1843 | 1643 | 1459 | 1723 | |
0.2 | 1839 | 1541 | 1642 | 1858 | 1688 | 1654 |
Extraction Pressure/kPa | Transverse Blockage Intensity | Longitudinal Blockage Intensity | |||||
---|---|---|---|---|---|---|---|
0.07 | 0.2 | 0.34 | 0.5 | 0.66 | 0.8 | ||
12 | 0.05 | 1635/3844 | 1893/3422 | 1641/4128 | 1834/3847 | 1537/3837 | 1684/3742 |
0.1 | 1588/3973 | 1532/3572 | 1742/3392 | 1544/3274 | 1371/3932 | 1742/3284 | |
0.15 | 1748/4127 | 1399/3933 | 1592/4492 | 1395/3348 | 1264/3741 | 1635/3371 | |
0.2 | 1683/4352 | 1535/3972 | 1733/4238 | 1853/3853 | 1784/3429 | 1593/3736 | |
24 | 0.05 | 1583/3559 | 1537/3843 | 1841/3231 | 1732/3583 | 1854/3854 | 1538/4832 |
0.1 | 1554/3384 | 1415/4283 | 1392/3652 | 1843/3823 | 1485/4954 | 1854/3865 | |
0.15 | 1743/3583 | 1534/3549 | 1754/3833 | 1646/3422 | 1854/3532 | 1639/3483 | |
0.2 | 1853/3329 | 1734/3384 | 1954/3248 | 1854/3329 | 1643/3969 | 1843/3549 | |
36 | 0.05 | 1872/4248 | 1539/3432 | 1643/3867 | 1965/3482 | 1854/3439 | 1754/4392 |
0.1 | 1483/3438 | 1343/3592 | 1531/3482 | 1643/3283 | 1645/3852 | 1543/3853 | |
0.15 | 1385/3339 | 1481/3483 | 1854/3833 | 1853/3853 | 1855/3328 | 1593/3854 | |
0.2 | 1631/3832 | 1836/3843 | 1483/4382 | 1649/3932 | 1956/3958 | 1692/3332 | |
48 | 0.05 | 1734/3849 | 1743/3932 | 1855/3953 | 1476/3773 | 1753/4272 | 1775/3543 |
0.1 | 1645/4829 | 1942/4289 | 1632/3826 | 1854/3823 | 1864/3472 | 1945/3864 | |
0.15 | 1591/3943 | 1727/3285 | 1843/3747 | 1643/3953 | 1459/3572 | 1723/3993 | |
0.2 | 1839/3459 | 1541/4392 | 1642/3526 | 1858/4273 | 1688/3972 | 1654/3643 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.; Man, Z.; Li, W. Acoustic Detection of Pipeline Blockages in Gas Extraction Systems: A Novel Approach. Energies 2024, 17, 4875. https://doi.org/10.3390/en17194875
Liu C, Man Z, Li W. Acoustic Detection of Pipeline Blockages in Gas Extraction Systems: A Novel Approach. Energies. 2024; 17(19):4875. https://doi.org/10.3390/en17194875
Chicago/Turabian StyleLiu, Chun, Zhongyi Man, and Wenlong Li. 2024. "Acoustic Detection of Pipeline Blockages in Gas Extraction Systems: A Novel Approach" Energies 17, no. 19: 4875. https://doi.org/10.3390/en17194875
APA StyleLiu, C., Man, Z., & Li, W. (2024). Acoustic Detection of Pipeline Blockages in Gas Extraction Systems: A Novel Approach. Energies, 17(19), 4875. https://doi.org/10.3390/en17194875